Preprints
2024
- Optimal Multi-Fidelity Best Arm Identification. Riccardo Poiani, Rémy Degenne, Emilie Kaufmann, Alberto Maria Metelli, Marcello Restelli. Advances in Neural Information Processing Systems (NeurIPS).
- Finding good policies in average-reward Markov Decision Processes without prior knowledge. .
Adrienne Tuynman, Rémy Degenne, Emilie Kaufmann. Advances in Neural Information Processing Systems (NeurIPS), also presented at EWRL 2024.
- Power Mean Estimation in Stochastic Monte-Carlo Tree Search. Tuan Dam, Odalric-Ambrym Maillard, Emilie Kaufmann. Conference on Uncertainty in Artificial Intelligence (UAI).
- Bandit Pareto Set Identification: The Fixed Budget Setting. Cyrille Kone, Emilie Kaufmann and Laura Richert. 27th International Conference on Artificial Intelligence and Statistics (AISTATS).
2023
2022
- Top Two algorithms revisited. Marc Jourdan, Rémy Degenne, Dorian Baudry, Rianne de Heide and Emilie Kaufmann. Advances in Neural Information Processing Systems (NeurIPS).
- Near Optimal Collaborative Learning in Bandits. Clémence Réda, Sattar Vakili and Emilie Kaufmann. Advances in Neural Information Processing Systems (NeurIPS).
- Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs. Andrea Tirinzoni, Aymen Al-Marjani and Emilie Kaufmann. Advances in Neural Information Processing Systems (NeurIPS), European Workshop on Reinforcement Learning (EWRL).
- Optimistic PAC Reinforcement Learning: the Instance-Dependent View. Andrea Tirinzoni, Aymen Al-Marjani and Emilie Kaufmann. European Workshop on Reinforcement Learning (EWRL).
- Efficient Algorithms for Extreme Bandits. Dorian Baudry, Yoan Russac and Emilie Kaufmann. 25th International Conference on Artificial Intelligence and Statistics (AISTATS).
- Efficient Change-Point Detection for Tackling Piecewise-Stationary Bandits. Lilian Besson, Emilie Kaufmann, Odalric-Ambrym Maillard and Julien Seznec. Journal of Machine Learning Research, 23(77): 1-40.
2021
- Mixture Martingales Revisited with Applications to Sequential Tests and Confidence Intervals. Emilie Kaufmann and Wouter M. Koolen. Journal of Machine Learning Research, 22(246), 1-44.
- Optimal Thompson Sampling strategies for support-aware CVaR bandits. Dorian Baudry, Romain Gautron, Emilie Kaufmann and Odalric-Ambrym Maillard. International Conference on Machine Learning (ICML).
- Fast Active Learning for Pure Exploration in Reinforcement Learning . Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard Leurent and Michal Valko. International Conference on Machine Learning (ICML).
- Kernel-Based Reinforcement Learning: a Finite-Time Analysis. Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann and Michal Valko. International Conference on Machine Learning (ICML).
- A Kernel-Based Approach to Non-Stationary Reinforcement Learning in Metric Spaces. Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann and Michal Valko. 24th International Conference on Artificial Intelligence and Statistics (AISTATS).
- Top-m identification for linear bandits. Clémence Réda, Emilie Kaufmann and Andrée Delahaye-Duriez. 24th International Conference on Artificial Intelligence and Statistics (AISTATS).
- Non-Asymptotic Sequential Tests for Overlapping Hypotheses and application to near optimal arm identification in bandit models. Aurélien Garivier and Emilie Kaufmann. Sequential Analysis, 40(1):61-96. Julia code for best arm identification.
- Episodic Reinforcement Learning in Finite MDPs: Minimax Lower Bounds Revisited . Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann and Michal Valko. International Conference on Algorithmic Learning Theory (ALT).
- Adaptive Reward-Free Exploration. Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent and Michal Valko. International Conference on Algorithmic Learning Theory (ALT).
- On Multi-Armed Bandit Designs for Dose-Finding Trials. Maryam Aziz, Emilie Kaufmann and Marie-Karelle Rivière. Journal of Machine Learning Research, 22(14):1−38.
2020
- Sub-sampling for Efficient Non-Parametric Bandit Exploration. Dorian Baudry, Emilie Kaufmann and Odalric-Ambrym Maillard. Advances in Neural Information Processing Systems (NeurIPS).
- Planning in Markov Decision Processes with Gap-Dependent Sample Complexity. Anders Jonsson, Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Edouard Leurent and Michal Valko. Advances in Neural Information Processing Systems (NeurIPS).
- Adaptive Reward-Free Exploration. Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent and Michal Valko. Theoretical Foundations of Reinforcement Learning Workshop @ICML. Video.
- A Kernel-Based Approach to Non-Stationary Reinforcement Learning in Metric Spaces. Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann and Michal Valko. Theoretical Foundations of Reinforcement Learning Workshop @ICML. Video.
- Fixed Confidence Guarantees for Bayesian Best Arm Identification. Xuedong Shang, Rianne de Heide, Emilie Kaufmann, Pierre Ménard and Michal Valko. 23rd International Conference on Artificial Intelligence and Statistics (AISTATS).
- A Practical Algorithm for Multiplayer Bandits when Arm Means Vary Among Players. Etienne Boursier, Emilie Kaufmann, Abbas Mehrabian and Vianney Perchet. 23rd International Conference on Artificial Intelligence and Statistics (AISTATS).
- Solving Bernoulli Rank-One Bandits with Unimodal Thompson Sampling.
Cindy Trinh, Emilie Kaufmann, Claire Vernade and Richard Combes. International Conference on Algorithmic Learning Theory (ALT).
- Machine learning applications in drug development.
Clémence Réda, Emilie Kaufmann, Andrée Delahaye-Duriez. Computational and Structural Biotechnology Journal 18: 241-252.
2019
2018
2017
2016
2015
2014
2013
2012
2011
Theses