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The stochastic MAB model

Arms = probability distributions an agent can choose from:

In each round t, the agent

selects arm At ∈ {1, . . . ,A}
observes a sample Xt ∼ νAt

independent from past data

sequential protocol:

At+1 = Ft(A1,X1, . . . ,At ,Xt)

Assumption (in this work): arms are simple distribution
parameterized by their means (e.g. Bernoulli , exponential families)

Notation: νa = νµa , µ = (µ1, . . . , µA) ∈ IA.
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One bandit model, many bandit problems

rewards maximization...
with a twist

feedback 6= reward [Ch. 1]

structured bandits [Ch. 1]

multi-player bandits [Ch. 2]

pure exploration

a generic stopping rule for
active identification [Ch. 3]

the complexity of best arm
identification [Ch. 4]

two MCTS-related examples
[Ch. 5]

Common emphasis on designing optimal algorithms

Research motivated by some applications
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Technical tools

Lower bounds...
and how they inspire algorithms

Mixture martingales for new deviation inequalities

Recent tools for the analysis of Thompson Sampling
[Agrawal and Goyal, 2013, Russo, 2016]
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Outline

1 Thompson Sampling for a Structured Bandit Problem

2 The Complexity of Pure Exploration

3 Thompson Sampling for Pure Exploration?
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Structured bandits

Classical bandits: µ = (µ1, . . . , µA) ∈ IA

Structured bandits: µ = (µ1, . . . , µA) ∈ S ⊂ IA

Ü can we exploit the knowledge of S to gain more reward?

1 2 3 4 5 6

μ2

μ1

μ3
μ4

μ5

μ6

μ2

μ1
μ3

μ4

x1 x2 x3 x4 x5

μ5

y = μ3 + L(x-x3)

y = μ3 - L(x-x3)

unimodal bandit Lipschitz bandit
[Combes and Proutière, 2014] [Magureanu et al., 2014]
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Lower Bounds can help

In each round t, the agent

selects arm At ∈ [A], observes a reward Xt ∼ νAt

Goal: maximize the expected total reward ↔ minimize the regret

Rµ(A,T ) = µ?T − Eµ

[
T∑
t=1

Xt

]
=

∑
a∈[A]

(µ? − µa)Eµ[Na(T )]

Na(T ): number of selections of arm a up to round T .

Theorem [Graves and Lai, 1997] (Theorem 1.8 in the HDR document)

Let A be such that ∀µ ∈ S,∀α ∈ (0, 1], Rµ(A,T ) = o(Tα).

∀µ ∈ S, lim
T→∞

Rµ(A,T )

log(T )
≥ CS(µ).

Ü A is asymptotically optimal if Rµ(A,T ) = CS(µ) log(T ) + o(log(T ))
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Lower bounds can help

CS(µ) features the Kullback-Leibler divergence d(µ, µ′) := KL(νµ, νµ′)

S = IA, CS(µ) =
∑A

a=1
µ?−µa
d(µa,µ?) [Lai and Robbins, 1985]

in general, CS(µ) has no closed-form expression
(solution of a complex optimization problem)

Special case [Combes and Proutière, 2014]

µ is unimodal with respect to a graph G = ([A],E ): for all a ∈ [A]
there exists an increasing path to the optimal arm a?:

(a1 = a, . . . , ama = a?) : (ai , ai+1) ∈ E and µai < µai+1 .

For graphical unimodal bandits,

CS(µ) =
∑

a∈NG (a?)

µ? − µa
d(µa, µ?)

NG (a?) = {a : (a, a?) ∈ E}

Ü an optimal algorithm focusses on neighbors of the optimal arm
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Solving Rank-One Bandits

SR1 =

{
µ = (µ(k,`))1≤k≤K

1≤`≤L

∣∣∣∣∃u ∈ [0, 1]K , v ∈ [0, 1]L : µ(k,`) = ukv`

}
[Katariya et al., 2017]

Example: content optimization with two independent factors

u1v1 u1v2 u1v3 u1v4

u2v1 u2v2 u2v3 u2v4

u3v1 u3v2 u3v3 u3v4

μ  =

clic probability µ(k,`) = uk × v`

Key observation

µ is unimodal with respect to the graph G1 = ([K ]× [L],E )(
(i , j), (k , `)

)
∈ E if (i = k (x)or j = `)
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Unimodal Thompson Sampling for Rank-One Bandits

Idea: use an optimal algorithm for graphical unimodal bandits

Unimodal Thompson Sampling [Paladino et al., 2017]

UTS with parameter γ ∈ {2, 3, . . . } for Bernoulli bandits

In each round t + 1:

compute the empirical leader Bt+1 = argmax
a∈[A]

µ̂a(t)

if `Bt+1(t + 1) = 0[γ], select At+1 = Bt+1 (leader exploration)

else, draw posterior samples for arms in NG (Bt+1) ∪ {Bt+1}:

θa(t) ∼ Beta
(
Sa(t) + 1,Na(t)− Sa(t) + 1

)
and At+1 = argmax

a∈NG (Bt+1)∪{Bt+1}
θa(t) (TS around the leader)

Sa(t) =
∑t

s=1 Xs1(As = a): sum of rewards from arm a
µ̂a(t) = Sa(t)/Na(t): empirical mean of arm a

`b(t) =
∑t

s=1 1(Bs = b): number of times arm b has been leader
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Unimodal Thompson Sampling for Rank-One Bandits

Theorem [Trinh, K., Vernade, Combes, ALT 2020]

Let µ be a unimodal bandit instance with respect to a graph G ,
with Bernoulli rewards. For all γ ≥ 2, UTS with parameter γ
satisfies, for every ε > 0,

Rµ(UTS(γ),T ) ≤ (1 + ε)
∑

a∈NG (a?)

(µ? − µa)

d(µa, µ?)
log(T ) + C (µ, γ, ε).

a novel analysis, valid for any leader exploration parameter γ,
with γ = 2 being the best choice in practice

UTS(γ) is asymptotically optimal for Rank-One bandits
(matching the existing lower bound of [Katariya et al., 2017])

... and greatly outperforms the previous state-of-the-art
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Outline

1 Thompson Sampling for a Structured Bandit Problem

2 The Complexity of Pure Exploration

3 Thompson Sampling for Pure Exploration?
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Active Identification in a bandit model

Goal: answer some question about the unknown mean vector
µ = (µ1, . . . , µA) by adaptively sampling the arms

Input:

R ⊆ IA a subset that contains µ

I regions R1, . . . ,RI such that R ⊆
⋃I

i=1Ri

Output: one region Ri that contains µ.

Active Identification with fixed-confidence

Given a risk parameter δ ∈ (0, 1), the goal is to build a

sampling rule (At)

stopping rule τ

recommendation rule ı̂τ ∈ [I ]

such that Pµ (µ /∈ Rı̂τ ) ≤ δ and the sample complexity τ is small.
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Best Arm Identification

Ü Identify the arm with largest mean:

R =

{
µ ∈ IA : ∃a ∈ [A] : µa > max

b 6=a
µb

}
and Ri =

{
µ ∈ IA : µi > max

b 6=i
µb

}
for i ∈ [A]

[Even-Dar et al., 2006]

Example: identify the version of a webpage with the largest
conversion probability (A/B/C testing)

. . .

µ1 µ2 . . . µA
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Bandits and thresholds

Ü Identify the arm whose mean is the closest to some threshold:

Ri =
{
µ ∈ R : |µi − θ| = min

a
|µa − θ|

}
[Garivier et al., 2019a] [Aziz, K., Rivière, JMLR 2021]

Motivation: identify the Maximum Tolerated Dose in a
dose-finding clinical trial

[Aziz et al., 2018, Trinh et al., 2020, Kaufmann et al., 2018,
Garivier and Kaufmann, 2016, Shang et al., 2020]
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Designing a good stopping rule

Let us fix some sampling rule (At)t∈N, giving a data stream

A1,X1,A2,X2, . . . ,At ,Xt , . . . where Xt ∼ νµAt

Goal: construct a sequential test (τ, ı̂τ ) for the hypotheses

H1 : (µ ∈ R1) H2 : (µ ∈ R2) . . . HI : (µ ∈ RI )

Ü multiple, composite hypotheses (possibly overlapping)

Definition

A δ-correct sequential test is a pair (τ, ı̂τ ) where

τ is a stopping time with respect to Ft = σ(X1, . . . ,Xt)

ı̂τ ∈ [I ] is Fτ -measurable

such that ∀µ ∈ R, Pµ (τ <∞,µ /∈ Rı̂τ ) ≤ δ.
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The Parallel GLRT rule

Idea: run I statistical tests of

H̃0 : (µ ∈ R\Ri ) against H̃1 : (µ ∈ Ri )

in parallel until one of them rejects H̃0.

Individual test: a GLR Test rejects H̃0 for large values of the
Generalized Likelihood Ratio

supλ∈R `(X1, . . . ,Xt ;λ)

supλ∈R\Ri
`(X1, . . . ,Xt ;λ)

= inf
λ∈R\Ri

`(X1, . . . ,Xt ; µ̂(t))

`(X1, . . . ,Xt ;λ)

where `(X1, . . . ,Xt ;λ) is the likelihood of the observations under a
bandit model with means λ = (λ1, . . . , λA).

[Wilks, 1938]

µ̂(t) = (µ̂1(t), . . . , µ̂A(t)), Maximum Likelihood Estimator.
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The Parallel GLRT rule

Parallel GLRT

Given some threshold function β(t, δ),

τδ = inf

{
t ∈ N : max

i∈[I ]
inf

λ∈R\Ri

log
`(X1, . . . ,Xt ; µ̂(t))

`(X1, . . . ,Xt ;λ)
> β(t, δ)

}

ı̂τδ ∈ arg max
i∈[I ]

inf
λ∈R\Ri

log
`(X1, . . . ,Xτδ ; µ̂(τδ))

`(X1, . . . ,Xτδ ;λ)

In an exponential family bandit model,

log
`(X1, . . . ,Xt ; µ̂(t))

`(X1, . . . ,Xt ;λ)
=
∑
a∈[A]

Na(t)d(µ̂a(t), λa)

with d(µ, µ′) = KL
(
νµ, νµ′

)
.

(rewards in a one-parameter exponential family: Bernoulli, Gaussian, Poisson...)
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Upper bound on the error probability

For any sampling rule, under the GLRT stopping rule,

Pµ

(
τδ <∞,µ /∈ Rı̂τδ

)
≤ P

(
∃t ∈ N∗, ∃i : µ /∈ Ri , inf

λ∈R\Ri

∑
a∈[A]

Na(t)d(µ̂a(t), λa) > β(t, δ)

)

≤ P

(
∃t ∈ N∗, ∃i : µ ∈ R\Ri ,

∑
a∈[A]

Na(t)d(µ̂a(t), µa) > β(t, δ)

)

≤ P

(
∃t ∈ N∗,

∑
a∈[A]

Na(t)d(µ̂a(t), µa) > β(t, δ)

)

Wanted: a deviation inequality in which

Ü deviations are measured with KL-divergence

Ü deviations are uniform over time (martingales...)

Ü deviations take into account multiple arms (..products)



19/34

Upper bound on the error probability

For any sampling rule, under the GLRT stopping rule,

Pµ

(
τδ <∞,µ /∈ Rı̂τδ

)
≤ P

(
∃t ∈ N∗, ∃i : µ /∈ Ri , inf

λ∈R\Ri

∑
a∈[A]

Na(t)d(µ̂a(t), λa) > β(t, δ)

)

≤ P

(
∃t ∈ N∗, ∃i : µ ∈ R\Ri ,

∑
a∈[A]

Na(t)d(µ̂a(t), µa) > β(t, δ)

)

≤ P

(
∃t ∈ N∗,

∑
a∈[A]

Na(t)d(µ̂a(t), µa) > β(t, δ)

)

Wanted: a deviation inequality in which

Ü deviations are measured with KL-divergence

Ü deviations are uniform over time (martingales...)

Ü deviations take into account multiple arms (..products)



19/34

Upper bound on the error probability

For any sampling rule, under the GLRT stopping rule,

Pµ

(
τδ <∞,µ /∈ Rı̂τδ

)
≤ P

(
∃t ∈ N∗, ∃i : µ /∈ Ri , inf

λ∈R\Ri

∑
a∈[A]

Na(t)d(µ̂a(t), λa) > β(t, δ)

)

≤ P

(
∃t ∈ N∗, ∃i : µ ∈ R\Ri ,

∑
a∈[A]

Na(t)d(µ̂a(t), µa) > β(t, δ)

)

≤ P

(
∃t ∈ N∗,

∑
a∈[A]

Na(t)d(µ̂a(t), µa) > β(t, δ)

)

Wanted: a deviation inequality in which

Ü deviations are measured with KL-divergence

Ü deviations are uniform over time (martingales...)

Ü deviations take into account multiple arms (..products)



19/34

Upper bound on the error probability

For any sampling rule, under the GLRT stopping rule,

Pµ

(
τδ <∞,µ /∈ Rı̂τδ

)
≤ P

(
∃t ∈ N∗, ∃i : µ /∈ Ri , inf

λ∈R\Ri

∑
a∈[A]

Na(t)d(µ̂a(t), λa) > β(t, δ)

)

≤ P

(
∃t ∈ N∗, ∃i : µ ∈ R\Ri ,

∑
a∈[A]

Na(t)d(µ̂a(t), µa) > β(t, δ)

)

≤ P

(
∃t ∈ N∗,

∑
a∈[A]

Na(t)d(µ̂a(t), µa) > β(t, δ)

)

Wanted: a deviation inequality in which

Ü deviations are measured with KL-divergence

Ü deviations are uniform over time (martingales...)

Ü deviations take into account multiple arms (..products)



20/34

A universal δ-correct stopping rule

Theorem [K. and Koolen, 2018, under review]

Let µ be an exponential family bandit model. There exists a
threshold function T (x) ' x + log(x) such that, for any subset
S ⊆ [A], for all x > 0,

Pµ

(
∃t ∈ N∗ :

∑
a∈S

Na(t)d(µ̂a(t), µa) ≥ 3
∑
a∈S

log(1+log Na(t))+|S|T
(

x
|S|

))
≤ e−x .

Consequence: the Parallel GLRT stopping rule with threshold

β(t, δ) = 3A log(1 + log t) + AT
(

log(1/δ)
A

)
is δ-correct

Ü for any active identification problem

Ü regardless of the sampling rule

The sample complexity τδ crucially depends on the sampling rule!
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Best achievable sample complexity

R =
⋃I

i=1Ri forms a partition
i?(µ): unique region that contains µ.

Theorem [K. and Garivier, COLT 2016]

Any δ-correct algorithm satisfies, for all µ ∈ R,

Eµ[τδ] ≥ T ?(µ) log(1/(3δ))

with
T ?(µ)−1 = sup

w∈ΣA

inf
λ∈Alt(µ)

∑
a∈[A]

wad(µa, λa).

ΣA = {w ∈ [0, 1]A :
∑

a∈[A] wa = 1} Alt(µ) = {λ : i?(λ) 6= i?(µ)}

Proof. change of distribution between µ and λ : i?(λ) 6= i?(µ)

KL
(
PX1,...,Xτ
µ ,PX1,...,Xτ

λ

)
≥ kl (Pµ(̂ıτ = i?(λ)),Pλ(̂ıτ = i?(λ)))

with kl(x , y) = KL(B(x),B(y)). [Garivier et al., 2019b]
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with kl(x , y) = KL(B(x),B(y)). [Garivier et al., 2019b]
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Best achievable sample complexity

R =
⋃I

i=1Ri forms a partition
i?(µ): unique region that contains µ.
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Insights from the lower bound

An algorithm matching the lower bound should satisfy

∀a ∈ [A],
Eµ[Na(τ)]

Eµ[τ ]
' w?

a (µ)

for a vector of optimal proportions

w?(µ) ∈ argmax
w∈ΣA

inf
λ∈Alt(µ)

∑
a∈[A]

wad(µa, λa).

Remark: in general w?(µ)

Ü may be non unique

Ü may be hard to compute
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A lower-bound-inspired sampling rule for BAI

Optimal proportions

For the Best Arm Identification (BAI) problem, we propose an
efficient algorithm to compute w?(µ) for any µ.

The Tracking sampling rule:

At+1 ∈


argmin
a∈Ut

Na(t) if Ut 6= ∅ (forced exploration)

argmax
a∈[A]

[
w?
a (µ̂(t))− Na(t)

t

]
else. (tracking)

with Ut = {a : Na(t) <
√
t}.

Lemma

Under the Tracking sampling rule,

Pµ

(
lim
t→∞

Na(t)

t
= w?

a (µ)

)
= 1.
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Optimal Best Arm Identification

The Parallel GLRT for BAI:

τδ = inf

{
t ∈ N∗ : inf

λ∈Alt(µ̂(t))

∑
a∈[A]

Na(t)d(µ̂a(t), λa) > β(t, δ)

}

Characteristic time:

(T ?(µ))−1 = sup
w∈ΣA

inf
λ∈Alt(µ)

∑
a∈[A]

wad(µa, λa)

Theorem [K. and Garivier, COLT 2016]

The Track-and-Stop algorithm which uses

the Tracking sampling rule

the Parallel GLRT stopping rule τδ

recommends the empirical best arm âτδ = arg maxa µ̂a(τδ)

satisfies Pµ(âτδ 6= a?(µ)) ≤ δ and lim supδ→0
Eµ[τδ]

log(1/δ) ≤ T ?(µ).

Ü an asymptotically optimal algorithm for fixed-confidence BAI!
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Outline

1 Thompson Sampling for a Structured Bandit Problem

2 The Complexity of Pure Exploration

3 Thompson Sampling for Pure Exploration?
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Thompson Sampling for BAI

Track-and-Stop can be a bit computationally heavy due to the
computation of w?(µ̂(t)) in every round

Ü more efficient Thompson Sampling based alternatives?

Top-Two Thompson Sampling [Russo, 2016]

Input: parameter β ∈ (0, 1). In round t + 1:

draw a posterior sample θ ∼ Πt , a?(θ) = arg maxa θa

with probability β, select At+1 = a?(θ)

with probability 1− β, re-sample the posterior θ′ ∼ Πt until
a?(θ′) 6= a?(θ), select At+1 = a?(θ′)

[Russo, 2016] performs a Bayesian analysis of TTTS:

Πt(Alt(µ)) . C exp
(
−t/T ?

β (µ)
)

a.s.
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Thompson Sampling for BAI

New fixed-confidence guarantees for Gaussian bandits

Theorem [Shang, De Heide, K., Ménard, Valko, AISTATS 2020]

Using the TTTS sampling rule and the Parallel GLRT yields a
δ-correct BAI algorithm satisfying

lim sup
δ→0

Eµ[τδ]

log(1/δ)
≤ T ?

β (µ)

where (
T ?
β (µ)

)−1
= sup

w∈ΣA
wa?(µ)=β

inf
λ∈Alt(µ)

∑
a∈[A]

wad(µa, λa)

Ü oracle tuning β = w?
a?(µ) needed for asymptotic optimality...



28/34

Comparing the Smallest Mean to a Threshold

Fix threshold γ, let µmin = mina µa. Does µ belong to

R< = {µ ∈ IA : µmin < γ}
or to R> = {µ ∈ IA : µmin > γ}?

µ1 µ2 . . . µK

γ

Algorithm:

sampling rule At

stopping rule τ

recommendation rule m̂τ ∈ {<,>}.

Goal: Pµ(m̂τ 6= m?(µ)) ≤ δ, small sample complexity τ .
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Optimal allocation for this problem

For any δ-correct strategy,

Eµ[τ ] ≥ T?(µ) log(1/(3δ))

Oracle allocation: w?(µ) = argmax
w∈ΣA

inf
λ∈Alt(µ)

∑A
a=1 wad(µa, λa).

Closed-form expression for the optimal allocation :

w?
a (µ) =


1(a=amin) if µ ∈ R<

1
d(µa,γ)∑
j

1
d(µj ,γ)

if µ ∈ R>

and the characteristic time

T?(µ) =

{
1

d(µmin,γ) if µ ∈ R<∑
a

1
d(µa,γ) if µ ∈ R>
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Dichotomous Oracle Behaviour!

<
←
µ
→ γ

>

γ

Two different ideas to converge to those sampling profiles:

Thompson Sampling

Sample θ(t) ∼ Πt

Select At+1 = arg mina θa(t)

(Πt : posterior after t rounds)

a LCB algorithm

Compute a LCB on µa
Select At+1 = arg mina LCBa(t)

(Lower Confidence Bound on µa)
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A Solution: Murphy Sampling!

<
←
µ
→ γ

>

γ

Murphy Sampling

Sample θ(t) ∼ Πt (·|mina θa < γ)
Select At+1 = arg mina θa(t).

Idea: condition on low minimum mean



32/34

Properties of Murphy Sampling

Theorem [K., Koolen and Garivier, NeurIPS 2018]

For all exponential family bandit model µ, Murphy Sampling
satisfies, for all a,

Na(t)

t
→ w?

a (µ).

Sampling rule: < >

Thompson Sampling
Lower Confidence Bound
Murphy Sampling

Corollary [K., Koolen and Garivier, NeurIPS 2018]

Murphy Sampling combined with a “good” stopping rule satisfies

lim sup
δ→0

τδ

log 1
δ

≤ T?(µ), a.s.
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Conclusion

For both regret minimization and pure exploration:

lower bounds are crucial to validate the (asymptotic)
optimality of an algorithm

... and can also guide the design of optimal algorithms

variants of Thompson Sampling provide efficient algorithms in
different contexts
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Perspective

Solving best arm identification in the fixed-budget setting

Towards universal, optimal and efficient lower-bound inspired
algorithms

... based on Thompson Sampling?

Beyond “simple parameteric distributions”:
the power of re-sampling / sub-sampling based approaches?

Beyond bandits:
pure exploration done right in reinforcement learning

Sequential methods for drug design?
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More explicit expression for BAI

Characteristic time: (for a?(µ) = 1)

(T?(µ))−1 = sup
w∈ΣA

inf
λ∈Alt(µ)

∑
a∈[A]

wad(µa, λa)

= sup
w∈ΣA

min
a 6=1

[
w1d

(
µ1,

w1µ1 + waµa

w1 + wa

)
+ wad

(
µa,

w1µ1 + waµa

w1 + wa

)]

Parallel GLRT:

τ = inf
{
t ∈ N∗ : Ẑ (t) > β(t, δ)

}
with

Ẑ(t) = inf
λ∈Alt(µ̂(t))

∑
a∈[A]

wad(µ̂a(t), λa)

= min
a 6=â?(t)

[
Nâ?(t)(t)d

(
µ̂â?(t)(t), µ̂â?(t),a(t)

)
+ Na(t)d

(
µ̂a(t), µ̂â?,a(t)

)]
,

letting µ̂a,b(t) = Na(t)µ̂a(t)+Nb(t)µ̂b(t)
Na(t)+Nb(t)

.
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Practical impact of Track-and-Stop

Using the right stopping rule can make a big difference in practice!

µ1 = [0.5 0.45 0.43 0.4], such that

w?(µ1) = [0.417 0.390 0.136 0.057]

µ2 = [0.3 0.21 0.2 0.19 0.18], such that

w?(µ2) = [0.336 0.251 0.177 0.132 0.104]

NB. GLRT with “stylized” threshold set to log
(

log(t)+1
δ

)
.

Track-and-Stop GLRT-SE∗ KL-LUCB KL-SE∗

µ1 4052 4516 8437 9590

µ2 1406 3078 2716 3334

Table: Expected number of draws Eµ[τδ] for δ = 0.1,
averaged over N = 3000 experiments.

∗ Succesive Elimination
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Mixture martingales

How to prove

Pµ

(
∃t ∈ N∗ :

∑
a∈S

Na(t)d(µ̂a(t), µa) ≥ 3
∑
a∈S

log(1+log Na(t))+|S|T
(

x
|S|

))
≤ e−x ?

Letting Xa(t) = Na(t)d(µ̂a(t), µa)− 3 log(1 + log Na(t)), find a martingale Mλ
a (t) and

a function g : Λ→ R such that

∀λ ∈ Λ, ∀t ∈ N,Mλ
a (t) ≥ eλXa(t)−g(λ)

and such that
∏

a∈S Mλ
a (t) is still a martingale.

Ü Cramer-Chernoff method + Doob inequality easily yields

∀λ ∈ Λ, P
(
∃t ∈ N :

∑
a∈S

Xa(t) >
|S|g(λ) + x

λ

)
≤ e−x

Building the martingale(s):

Z̃πa (t) =

∫
exp

(
ηSa(t)− φµa (η)Na(t)

)
dπ(η)

for a well chosen continuous mixture of discrete priors.
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Good stopping rules for the Smallest Minimum

Sufficient for asymptotic guarantees: a simple stopping rule
based on individual confidence intervals τBox := min (τ<; τ>) where

τ< = inf{t : ∃a : UCBa(t) < γ} τ> = inf{t : ∀a,LCBa(t) > γ}

The Parallel GLRT?

τGLRT = inf

{
t ∈ N∗ : inf

λ∈Alt(µ̂(t))

∑
a∈[A]

Na(t)d(µ̂a(t), λa) > β(t, δ)

}
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Practical performance of Murphy Sampling

Empirical sample complexity for a Gaussian instance with
µa ∈ {−1, 0} and γ = 0 as a function of the number k of low arms
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Convergence of Murphy Sampling

µ = linspace(−1, 1, 10) ∈ R<
γ = 0

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

empirical proportions versus theoretical optimal weights
LCB sampling rule
MS sampling rule
Conjectured Weights for LCB
Optimal Weights

Sampling proportions vs oracle, δ = e−23.
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