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The stochastic MAB model

Arms = probability distributions an agent can choose from:
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@ selects arm A, € {1,... A} sequential protocol:
@ observes a sample X; ~ v, Att1 = Fe(A1, X1y ..o, A, Xe)

independent from past data
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The stochastic MAB model

Arms = probability distributions an agent can choose from:
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In each round t, the agent

@ selects arm A; € [A] sequential protocol:

@ observes a sample X; ~ 3(j4,) Att1 = Fe(A1, X1y ..o, A, Xe)

independent from past data

Assumption (in this work): arms are simple distribution
parameterized by their means (e.g. Bernoulli, exponential families)

Notation: v, = v,,, = (u1,...,pa) € TA.



One bandit model, many bandit problems

pure exploration
rewards maximization...
with a twist @ a generic stopping rule for
active identification [Ch. 3]

o feedback # reward [Ch. 1] o the complexity of best arm

@ structured bandits [Ch. 1] identification [Ch. 4]
e multi-player bandits [Ch. 2] o two MCTS-related examples
[Ch. 5]

Common emphasis on designing optimal algorithms
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Technical tools

@ Lower bounds...
and how they inspire algorithms

@ Mixture martingales for new deviation inequalities

@ Recent tools for the analysis of Thompson Sampling
[Agrawal and Goyal, 2013, Russo, 2016]



@ Thompson Sampling for a Structured Bandit Problem
e The Complexity of Pure Exploration

© Thompson Sampling for Pure Exploration?



@ Thompson Sampling for a Structured Bandit Problem



Structured bandits

o Classical bandits: g = (p1,...,ua) € Z#
o Structured bandits: p = (1, ...,u4) €S C IA
=» can we exploit the knowledge of S to gain more reward?

y = Ms + L(X-Xs)

X &

Y = Mo - L(X-X3)
———— —— 1
1 2 3 4 5 6 X1 X2 X3 X4 Xs
unimodal bandit Lipschitz bandit

[Combes and Proutiere, 2014] [Magureanu et al., 2014]



Lower Bounds can help

In each round t, the agent
@ selects arm A; € [A], observes a reward X; ~ v,

Goal: maximize the expected total reward <+ minimize the regret

;
Ru(AT) = mT—Eu|d X
t=1
= Z (N* - Ma)EM[Na( T)]

ac[A]

N,(T): number of selections of arm a up to round T.

Theorem in the HDR document)
Let A be such that Vi € S,V € (0,1], Ru(A, T) = o(T?).

Ru(A, T)

T—oo log(T) > Cs()-

=> A is asymptotically optimal if R.(A, T) = Cs(p)log(T) + o(log(T))



Lower Bounds can help

In each round t, the agent
@ selects arm A; € [A], observes a reward X; ~ v,

Goal: maximize the expected total reward <+ minimize the regret
T

> Xe
t=1

= Z (ta, — p1a)Ep[Na(T)]

ac[A]

Ru(A,T) = pa T—E,

N,(T): number of selections of arm a up to round T.

Theorem in the HDR document)
Let A be such that Vi € S,V € (0,1], Ru(A, T) = o(T?).

Ru(A, T)

T—oo log(T) > Cs()-

=> A is asymptotically optimal if R.(A, T) = Cs(p)log(T) + o(log(T))



Lower bounds can help

Cs(p) features the Kullback-Leibler divergence d(p, ') := KL(vp, v1) J

o S =TI Cs(p) = Y0y Jrizles [Lai and Robbins, 1985]

e in general, Cs(p) has no closed-form expression
(solution of a complex optimization problem)

Special case

p is unimodal with respect to a graph G = ([A], E): for all a € [A]
there exists an increasing path to the optimal arm ay:

(a1 =a,...,am, = ax) : (aj,ai+1) € E and pa < pua,;-
For graphical unimodal bandits,

Csw)= >, 2% No(a)={a:(aa) € E}

ae./\/g(a*) d(ﬂa, lu’*)

y

= an optimal algorithm focusses on neighbors of the optimal arm



Solving Rank-One Bandits

du e [07 1]K7 v e [07 1]L (k) = UkV[}

Sr1 = {u = ((k,0))1<k<K
1<<L
[Katariya et al., 2017]

Example: content optimization with two independent factors

/ \ AT\ AT VRN
Fuve | [ uve ) [ wve [ wvae )
N N 4 \ Y \__/
N N
Usvi Usvz Uava UsVa

clic probability gk = uk X vp



Solving Rank-One Bandits

du e [07 1]K7 v e [07 l]L (k) = UkV[}

Sr1 = {u = ((k,0))1<k<K
1</<L
[Katariya et al., 2017]

Example: content optimization with two independent factors

VN VN TN
[uw | uivz [uve | | uve )
N4 . S

N g

usvi usvz usvs Usva

clic probability gk = uk X vp

Key observation

p is unimodal with respect to the graph G; = ([K] x [L], E)
((1,)), (k,0)) € E if (i =k (x)or j=1)




Solving Rank-One Bandits

du € [0, 1]K, v E [0, 1]L C (k) = ung}

Sr1 = {N = (k0 )1<k<k
1<i<L
[Katariya et al., 2017]

Example: content optimization with two independent factors

TN AN
[ uvi€eT— uve Cuvs | e
AN 777/,// A o 4 \\,\,, ,//

Usvt Usva Usvs UsVa

clic probability (k) = uk X vp

Key observation

p is unimodal with respect to the graph G; = ([K] x [L], E)
((i,4), (k,£)) € E if (i =k (x)or j =1)




Unimodal Thompson Sampling for Rank-One Bandits

Idea: use an optimal algorithm for graphical unimodal bandits

@ Unimodal Thompson Sampling [Paladino et al., 2017]

UTS with parameter for Bernoulli bandits

In each round t + 1:

@ compute the empirical leader B; 1 = argmax fi,(t)
ac[A]

o if {g,,,(t + 1) =0[y], select Ari1 = B:y1 (leader exploration)

e else, draw posterior samples for arms in N (B:1) U {B: 1}

0a(t) ~ Beta(Sa(t) + 1, Na(t) — Sa(t) + 1)

and Apy1 = argmax 0.(t) (TS around the leader)
a€NG(Bry1)U{Bti1}
Sa(t) = YoL_; Xs1(As = a): sum of rewards from arm a

f1a(t) = Sa(t)/Na(t): empirical mean of arm a

£5(t) = 3°E_, 1(Bs = b): number of times arm b has been leader



Unimodal Thompson Sampling for Rank-One Bandits

Idea: use an optimal algorithm for graphical unimodal bandits
e Unimodal Thompson Sampling [Paladino et al., 2017]

UTS with parameter for Bernoulli bandits

In each round t + 1:

o compute the empirical leader Bey1 = argmax [fi(x)(t)
(kO€ElKIx[L]

o if {5, (t+ 1) =0[y], select A;i1 = B:y1 (leader exploration)
e else, draw posterior samples for arms in N (B: 1) U {B;: 1}

Ok,0) (t) ~ Beta(S(k o) (t) + 1, Ny o) (t) — Seieoy (£) + 1)

and Ai1 = argmax O(k,0)(t) (TS around the leader)
(k0)e{(k,B2)YU{(B}.0')}

4

Sa(t) = 3oL Xs1(As = a): sum of rewards from arm a
f1a(t) = Sa(t)/Na(t): empirical mean of arm a

£p(t) = 3°E_; 1(Bs = b): number of times arm b has been leader



Unimodal Thompson Sampling for Rank-One Bandits

Theorem

Let p be a unimodal bandit instance with respect to a graph G,
with Bernoulli rewards. For all v > 2, UTS with parameter
satisfies, for every £ > 0,

(s — Ha)

am ) BT+ Clamie).

Ru(UTS(). T < (146) 3
aeNg(ax)

@ a novel analysis, valid for any leader exploration parameter ~,
with v = 2 being the best choice in practice

e UTS(y) is asymptotically optimal for Rank-One bandits
(matching the existing lower bound of [Katariya et al., 2017])

@ ... and greatly outperforms the previous state-of-the-art



© The Complexity of Pure Exploration



Active ldentification in a bandit model

Goal: answer some question about the unknown mean vector
p=(p1,...,1a) by adaptively sampling the arms

Input:

@ R C T a subset that contains p

@ / regions R1,...,R; such that R C U,’-:1 Ri
Output: one region R; that contains pu.

Active Ildentification with fixed-confidence

Given a risk parameter ¢ € (0,1), the goal is to build a

@ sampling rule (A¢)
@ stopping rule 7

@ recommendation rule &, € [/]

such that P, (it ¢ R;,) < ¢ and the sample complexity 7 is small.

w




Best Arm Identification

=» Identify the arm with largest mean:

R = {MGIA:EIae [A] : pa > max,ub}
b#a

and R, = {MEIA3Mi>F22XMb} for i € [A]
1

[Even-Dar et al., 2006]

Example: identify the version of a webpage with the largest
conversion probability (A/B/C testing)

L1 - ===
0 H 0
[ N 0

H1 H2 ‘e KA



Bandits and thresholds

=» Identify the arm whose mean is the closest to some threshold:}

R;:{MERilﬂi—m:mai"‘”a_m}

[Garivier et al., 2019a] [Aziz, K., Riviere, JMLR 2021]
Motivation: identify the Maximum Tolerated Dose in a

dose-finding clinical trial

o Toxicity

06

Toxicity probability

02 03 04
P —

"""""""""""""""" '™ Maximum acceptable
| targeted toxicity

00




Designing a good stopping rule

Let us fix some sampling rule (A;):cn, giving a data stream

A1,X1,A2,X2,...,At,Xt,... where XtNVMAt

Goal: construct a sequential test (7,i,) for the hypotheses

Hi:(peERL) Ho:(WeER2) ... Hi:(nweR)

=» multiple, composite hypotheses (possibly overlapping)

Definition

A d-correct sequential test is a pair (7,%;) where
@ 7 is a stopping time with respect to F; = o(X1,..., Xt)
@ iy € [/] is Fr-measurable

such that Vu e R, P, (7 <oo,u ¢ R;,) < 0.




The Parallel GLRT rule

Idea: run / statistical tests of

Ho: (1 € R\R;) against Hi: (€ R)

in parallel until one of them rejects ﬁo.

Individual test: a GLR Test rejects 7?[0 for large values of the
Generalized Likelihood Ratio

suprer (X1, XeA) Lo X X (E))
SUPAeR\R; U X1y s Xes A) AeR\R;: U(X1,..., X6 A)

where ((X1,..., X¢; A) is the likelihood of the observations under a
bandit model with means A = (A1, ..., \a).

[Wilks, 1938]
2(t) = (fis(t), ..., pa(t)), Maximum Likelihood Estimator.



The Parallel GLRT rule

Parallel GLRT

Given some threshold function j3(t, ),

, _ UX1, ..., Xe: p(2))
= inf<t : f ol t, o
7 n { €N %?/Txe%\n,- °8 U Xy, .., Xes A) > A(t,9)

" c E(Xl X ;ﬂ(’i’(;))
2. € argmax inf lo 920090
’ :ge[l] AER\R; & E(Xl, ooy Xogs A)

In an exponential family bandit model,

(X, Xei o
log e(xl,...,xt, g{;\]/\/ £):Aa)

with d(s, /') = KL (v, vp0).

(rewards in a one-parameter exponential family: Bernoulli, Gaussian, Poisson...)



The Parallel GLRT rule

Parallel GLRT

Given some threshold function §(t, ),

= inf{t : inf Na( 50
s in { eN 52%)‘6!72\72 z[;] Aa) > f(t, )}
i, € argmax inf Z Na(75)d(fia(7s5), Xa)

icll] AER\R; A

In an exponential family bandit model,

(X, ... Xt,
Na( t)
Iog K(X]_,, o GZ[A] /'[/a( )

with d(y, 1) = KL (v, vp0).

(rewards in a one-parameter exponential family: Bernoulli, Gaussian, Poisson...)



Upper bound on the error probability

For any sampling rule, under the GLRT stopping rule,

P, (T5 < oo,u ¢ 73%75)

< P(3teN3i:pu¢R;, inf
- ( €N3ind Ae'%\n

3 N()d(Ra(t), A0) > /3(t,5)>

"aclA]

a€c[A]

IN

< ]P’(Elt e N* Ji: p e R\R;, Z N, (t)d(fia(t), pa) > B(t, 5))

P(3te N, 37 Na(0)d(at), 1a) > B, 6))

ac[A]
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=» deviations are measured with KL-divergence
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Upper bound on the error probability

For any sampling rule, under the GLRT stopping rule,

P, (Ta < oo,u ¢ 73%75)

< P|3teN*"3Ti: R;, inf
B ( : u¢ Ae%g\R

3 N()d(Ra(t), A0) > /3(t,5)>

"aclA]

< ]P’(Elt e N* Ji: p e R\R;, Z N, (t)d(fia(t), pa) > B(t, 5))

a€c[A]

IN

P(at eN, Y No(t)d(fia(t), pa) > B(E, 6))
ac[A]

Wanted: a deviation inequality in which

=» deviations are measured with KL-divergence

=» deviations are uniform over time (martingales...)

=» deviations take into account multiple arms (..products)



A universal d-correct stopping rule

Theorem

Let pu be an exponential family bandit model. There exists a
threshold function 7 (x) ~ x + log(x) such that, for any subset
S C [A], for all x >0,

Pu (3t € N* 57 Na(6)d(Aa(t), 1a) > 3 log(1+log Na(£)+ISIT (%) ) < e
aesS I

Consequence: the Parallel GLRT stopping rule with threshold
ﬂ(tg (5) = 3A|Og(1 + log t) + AT (log(j\./d))

is 6-correct
=¥ for any active identification problem
=» regardless of the sampling rule
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A universal d-correct stopping rule

Theorem

Let p be an exponential family bandit model. There exists a
threshold function 7 (x) ~ x + log(x) such that, for any subset
S C [A], for all x >0,

Pu (3t € N* 57 Na(£)d(Ra(t), #a) > 3 log(1+log Na(£)+ISIT (%) ) < e
aesS aeS

Consequence: the Parallel GLRT stopping rule with threshold
B(t,0) ~log(1/5) + Aloglog (1/9) + 3Aloglog(t)

is d-correct
=» for any active identification problem

=» regardless of the sampling rule

The sample complexity 7g crucially depends on the sampling rule! J




Best achievable sample complexity

R = U,I-:1 R; forms a partition
i(pe): unique region that contains p.

Theorem

Any J-correct algorithm satisfies, for all u € R,
Eulrs] = T*(p) log(1/(34))

T(w)'= sup inf wad(fha, As).
(N) WEZA)\EAlt(H)aGZ[A] a (Ma a)

Ta={we0, 11" ¥, qwa =1} Alt(p) = {X:i(X) # is(p)}

with

Proof. change of distribution between p and A : i, () # ()

KL (B0 ) 2 1 (B = (V). BaCir = (V)

with kl(x, y) = KL(B(x), B(y))- [Garivier et al., 2019b]



Best achievable sample complexity

R = U,I-:1 R; forms a partition
i(pe): unique region that contains p.

Theorem

Any J-correct algorithm satisfies, for all u € R,

Eulrs] > T*(u)log(1/(30))
with
T(u) ' = su inf Wad (s, Ns).
e WegAxeAlt(maez[;\] )

Ta={welo, l]A 0 Zae[A] w, =1} Alt(p) = {A:i(A) # in(p)}

Proof. change of distribution between p and A : i () # i(p)

KI, (PﬁL...,Xr’P;\(l,m,XT) > kl(Pu(é\T = I*(A)l, P)\(;L\T = I*()\)))

<6 >1-§
with kl(x, y) = KL(B(x), B(y))- [Garivier et al., 2019b]




Best achievable sample complexity

R = U,I-:1 R; forms a partition
i(pe): unique region that contains p.

Theorem

Any J-correct algorithm satisfies, for all u € R,

Eul[7s] > T* () log(1/(39))

T(w)'= sup inf wad(fha, As).
(N) WEZA)\EAlt(H)aGZ[A] a (Ma a)

Ta={we0, 11" ¥, qwa =1} Alt(p) = {X:i(X) # is(p)}

with

Proof. change of distribution between p and A : i, () # ()
o Xe XLy X
KL (Pjﬁlv X pR ) > Kk1(5,1 - 0)

with kl(x, y) = KL(B(x), B(y))- [Garivier et al., 2019b]



Best achievable sample complexity

R =J!_, Ri forms a partition
i(pt): unique region that contains p.

Theorem

Any §-correct algorithm satisfies, for all p € R,
Eplrs] > T*(u)log(1/(35))

T(pw)™ ' = su inf wad(tta, Aa)-
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with

Proof. change of distribution between p and A : i (X) # ()

KL (X P > log(1/(36))



Best achievable sample complexity

R = J!_, Ri forms a partition
i(pe): unique region that contains p.

Theorem

Any é-correct algorithm satisfies, for all u € R,
Eplrs] = T*(n)log(1/(35))

T(w)™'= sup inf wad(tta, Aa).
W= an bl g{;‘] (t1a: Aa)

Ta={wel01]": Dacpa Wa = 11 Alt(p) = {A 1 i(A) # i(p)}

with

Proof. change of distribution between p and A : i () # ()

S EulNa(r)]d (122, Aa) > log(1/(35))

ac[A]



Best achievable sample complexity

R = J!_, Ri forms a partition
i(pe): unique region that contains p.

Theorem

Any é-correct algorithm satisfies, for all u € R,

Eul[7s] > T* () log(1/(39))

T(w)™'= sup inf wad(tta, Aa).
W= an bl g{;‘] (tta: Xa)
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Proof. change of distribution between p and A : i, () # ()

)\eiAnlf(p) g[;\] EM[Na(T)]d(Na Aa) > log(1/(34))



Best achievable sample complexity

R = U,I-:1 R; forms a partition
i(pe): unique region that contains p.

Theorem

Any J-correct algorithm satisfies, for all u € R,
Eulrs] = T*(n)log(1/(35))

T* -1 _ inf J Y
(u) WSGUEAAEAIAnlt(H)SGZ[A] Wa (Ma7 a)

Ta={we0, 11" ¥ cqwa =1} Alt(p) = {X:i(X) # is(p)}

with

Proof. change of distribution between p and A : i () # ()

E x inf Md a2, Aa)| > log(1/(36
ul7] AEALb () o Epl7] (1a; Aa) | = log(1/(30))



Best achievable sample complexity

R = U,I-:1 R; forms a partition
i(pe): unique region that contains p.

Theorem

Any J-correct algorithm satisfies, for all u € R,
Eulrs] = T7(p) log(1/(34))

T(w)'= sup inf wad(fta, As).
0= sty T

Ta={we0, 1" ¥ qwa =1} Alt(p) = {X:i(X) # is(p)}

with

Proof. change of distribution between p and A : i (X) # i(w)

E,[7] x| su inf wod (s, A > log(1/(39
ulrl x| sup  inf ) g{;} Jd(11a:2s) | > log(1/(35))



Insights from the lower bound

An algorithm matching the lower bound should satisfy

EM[NB(T)] ~ *( )

Va € [A], TR S

for a vector of optimal proportions

w* € argmax  inf wad(tta, Aa)-
(1) wgeZA )\EAlt(,u)aez[;] 2d(fa; Aa)

Remark: in general w*(u)
=» may be non unique

=» may be hard to compute



A lower-bound-inspired sampling rule for BAI

Optimal proportions

For the Best Arm Identification (BAI) problem, we propose an
efficient algorithm to compute w*(u) for any p.

The Tracking sampling rule:

argmin N,(t) if Us #0 (forced exploration)
A E aGUt
e argmax |w)(fu(t)) — N"’T(t)] else. (tracking)
ac[A]

with Uy = {a: N,(t) < Vt}.

Under the Tracking sampling rule,

P (im0 i) <1




Optimal Best Arm ldentification

The Parallel GLRT for BAI:
=inf{te N*: inf N,(t)d > B(t,d
{ el oy 2 Mol O7(0:2e) > )}
Characteristic time:

(T*(w)) ™" = sup _inf >~ wad(/ia, Aa)

A€Alt
weY 4 AE (H) aE[A]

Theorem

The Track-and-Stop algorithm which uses
@ the Tracking sampling rule
@ the Parallel GLRT stopping rule 74

@ recommends the empirical best arm 4., = arg max, fi5(7s)

Eplrs]

satisfies Py, (ar; # ax(w)) < 0 and limsups_,o 575 < T (1)

=» an asymptotically optimal algorithm for fixed-confidence BAI!



© Thompson Sampling for Pure Exploration?



Thompson Sampling for BAI

Track-and-Stop can be a bit computationally heavy due to the
computation of w*(fi(t)) in every round

=» more efficient Thompson Sampling based alternatives?

Top-Two Thompson Sampling

Input: parameter 5 < (0,1). In round t 4 1:
@ draw a posterior sample 8 ~ I, a,(0) = arg max, 0,
e with probability /3, select Ar11 = a.(6)

@ with probability 1 — 3, re-sample the posterior 8’ ~ I1; until
a,(0") # a.(0), select Arr1 = a,(0")

[Russo, 2016| performs a Bayesian analysis of TTTS:

Me(Alb(R)) S Cexp (—t/ T3 () ass.



Thompson Sampling for BAI

@ New fixed-confidence guarantees for Gaussian bandits

Theorem
Using the TTTS sampling rule and the Parallel GLRT yields a
d-correct BAI algorithm satisfying

e Tog(1/0) = A4

where

* -1 .

pe p— f d A
(T35 () an S > wad(pa, Aa)
a*(}‘«):‘g QE[A]

w.

= oracle tuning 3 = w} (p) needed for asymptotic optimality...



Comparing the Smallest Mean to a Threshold

Fix threshold -, let timin = min, ;. Does p belong to
Re = {pe€T?: pimin <7}
orto Re = {pmeI?: pimin>7}7?

Algorithm:
o sampling rule A;
@ stopping rule 7
e recommendation rule 71 € {<, >}.

Goal: P, (i, # m*(p)) < 0, small sample complexity 7. )




Optimal allocation for this problem

For any d-correct strategy,

Epulr] = Ti(p) log(1/(36))

Oracle allocation: w*(u) = argmax inf A Wad(as As).
(1) wgeZA AeAlt(u)Za_l 2d(fta, Aa)

Closed-form expression for the optimal allocation :

1(«3:13min) if peRe
W;(“) = d(uayiv)
Z:J' d(kj)

ifH€R>

and the characteristic time

L ifueRrR
T* — d(Imeinv'Y) . <
" {Zm fueR-



Dichotomous Oracle Behaviour!




Dichotomous Oracle Behaviour!
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Two different ideas to converge to those sampling profiles:

o Thompson Sampling @ a LCB algorithm
Sample 0(t) ~ N Compute a LCB on pu,
Select Ary1 = argmin, 0,(t) Select Ary1 = argmin, LCB,(t)

(M¢: posterior after t rounds) (Lower Confidence Bound on u5)



A Solution: Murphy Sampling!
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Murphy Sampling

Sample 6(t) ~ Mg (-| min, 0, < 7)
Select Ary1 = argmin, 0,(t).

Idea: condition on low minimum mean



Properties of Murphy Sampling

For all exponential family bandit model g, Murphy Sampling

satisfies, for all a,
No()

Sampling rule:
Thompson Sampling
Lower Confidence Bound
Murphy Sampling

<x<®
<X O

Murphy Sampling combined with a “good” stopping rule satisfies

. T,
lim sup 51 < To(p), a.s.
5—0 log 5




Conclusion

For both regret minimization and pure exploration:

@ lower bounds are crucial to validate the (asymptotic)
optimality of an algorithm

@ ... and can also guide the design of optimal algorithms

@ variants of Thompson Sampling provide efficient algorithms in
different contexts



Solving best arm identification in the fixed-budget setting

Towards universal, optimal and efficient lower-bound inspired
algorithms

... based on Thompson Sampling?

Beyond “simple parameteric distributions”:
the power of re-sampling / sub-sampling based approaches?

Beyond bandits:
pure exploration done right in reinforcement learning

Sequential methods for drug design?
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More explicit expression for BAI

Characteristic time: (for a,(p) = 1)

T -t = inf a a, N\a
(T*(w)) e Aexllt(p)ag[;] wad(pa, Aa)
o . W11 + Walla W11 + Wafta
- WSEU)F:)A T‘TJ? [Wld (Ml, w1 + wa ) wad (Ma, w1 + Wa ):|
Parallel GLRT:
T = inf{t e N*: Z(t) > B(t,é)}
with
2(t) = D wad(f1a(t), Aa)
AeAlt( ) S
= min [Ny, () (fa, (1) (1), s, (1),a(1)) + Na(t)d (fa(t), s, a(1))]

aFa(t)

letting /i, 5(t) = W



Practical impact of Track-and-Stop

Using the right stopping rule can make a big difference in practice!J

o 1 =[0.50.45 0.43 0.4], such that
W, (p1) = [0.417 0.390 0.136 0.057]
=[0.30.21 0.2 0.19 0.18], such that
w,(p2) = [0.336 0.251 0.177 0.132 0.104]

NB. GLRT with “stylized” threshold set to log ("’g( ”1)

Track-and-Stop | GLRT-SE* | KL-LUCB | KL-SE*
1 4052 4516 8437 9590
2 1406 3078 2716 3334

Table: Expected number of draws E,[75] for 6 = 0.1,
averaged over NN = 3000 experiments.

* Succesive Elimination



Mixture martingales

How to prove

P, (Elt EN* 1 3 Na(t)d(fia(t), 1a) > 3> log(1+log Na(t))+[S|T (Ig—l) ) <e*7?
aesS aces

Letting Xa(t) = Na(t)d(fia(t), 1a) — 3log(1 + log Na(t)), find a martingale M2\(t) and
a function g : A — R such that

VA € AVt e N, MM (t) > eMa(t)—e(N)

and such that [],cg M2(t) is still a martingale.
=» Cramer-Chernoff method 4+ Doob inequality easily yields
ISlg(A) + x

VA €A, ]P’(HtGN:ZXa(t)> 5

aesS

<o
Building the martingale(s):

27(2) = [ & (1S:(6) — 61 (NS (0)) ()

for a well chosen continuous mixture of discrete priors.



Good stopping rules for the Smallest Minimum

Sufficient for asymptotic guarantees: a simple stopping rule
based on individual confidence intervals 789 := min (7.; =) where

S ©
EE ; i [Teeel

T« =inf{t:3a: UCB,(t) <y} 7 =inf{t:Va,LCB,(t) >~}



Good stopping rules for the Smallest Minimum

Sufficient for asymptotic guarantees: a simple stopping rule
based on individual confidence intervals 789 := min (7.; =) where

© S)
fg ; R1E o0, .

T« =inf{t :3a: UCB,(t) <~} 7 =inf{t:Va,LCB,(t) > v}

The Parallel GLRT?

7SLRT — inf {t € N*: ar’g[ig] Na(t)d(fa(t), V)L (Aa(t) = v) > ﬁ(t,ci)}



Good stopping rules for the Smallest Minimum

Sufficient for asymptotic guarantees: a simple stopping rule
based on individual confidence intervals 789 := min (7.; =) where

© S,
ig ; R1E °e0s .

T« =inf{t:3a: UCB,(t) <~} 7 =inf{t:Va,LCB,(t) >~}

The Parallel GLRT?

TSLRT = inf {t e N*: Z N, (t)d(fia(t),va) > B(t, 6)}

a:fia(t)<~y



Practical performance of Murphy Sampling

Empirical sample complexity for a Gaussian instance with
s € {—1,0} and v = 0 as a function of the number k of low arms

Sample Complexity for delta=0.1 (N=1000 repetitions)

16001 , —— MS + GLRT
\ —— MS + Box
1400 I| —— MS + Aggregate
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2 1200 \ -==- LCB + Box
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s
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Convergence of Murphy Sampling

p = linspace(1/2,1,5) € R>

p = linspace(—1,1,10) € R«
empirical proportions versus theoretical optimal weights empirical proportions versus theoretical optimal weights
07
=%- LCB sampling rule -»= LCB sampling rule
- TS sampling rule
06 = MS sampling rule
= Optimal Weights

1.0
—%= MS sampling rule
- Conjectured Weights for LCB

s Optimal Weights

7

23 Sampling proportions vs oracle, § = e~

Sampling proportions vs oracle, § = e~
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