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Bayesian bandits versus Frequentist Bandit Two probablistic modelling

Two probabilistic modelling

K independent arms. µ∗ = µj∗ highest expectation of reward.

Frequentist :
θ1, . . . , θK unknown parameters

(Yj,t)t is i.i.d. with distribution
νθj with mean µj

Bayesian :

θj
i.i.d.∼ πj

(Yj,t)t is i.i.d. conditionally to θj
with distribution νθj

At time t, arm It is chosen and reward Xt = YIt,t is observed

Two measures of performance

Minimize (classic) regret

Rn(θ) = Eθ

[
n∑
t=1

µ∗ − µIt

] Minimize bayesian regret

Rn =

∫
Rn(θ)dπ(θ)
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Bayesian bandits versus Frequentist Bandit Bayesian versus frequentist bandit algorithms

Our goal

Design Bayesian bandit algorithms
which are optimal in terms of frequentist regret

Lai and Robbins asymptotic rate for the regret:

lim inf
Eθ[Nn(j)]

log(n)
≥ 1

KL(νθj , νθ∗)
if j is non optimal

lim inf
Eθ[Rn]

log(n)
≥

∑
j non optimal

µ∗ − µj
KL(νθj , νθ∗)
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Bayesian bandits versus Frequentist Bandit Bayesian versus frequentist bandit algorithms

Some Bayesian and frequentist algorithms

Πt = (πt1, . . . , π
t
K) the current posterior over (θ1, ..., θK)

Λt = (λt1, . . . , λ
t
K) the current posterior over the means (µ1, ..., µK)

A Bayesian algorithm uses Πt−1 to determine action It.

Frequentist algorithms:

upper confidence bound on the
empirical mean (UCB)
[Auer at al. 2002]

UCB based on KL-divergence
(KL-UCB)
[Garivier, Cappé 2011]

Bayesian algorithms:

Gittins indices
[Gittins, 1979]

quantiles of the posterior

samples from the posterior
[Thompson, 1933]
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Gittins’ Bayesian solution

The Finite-Horizon Gittins algorithm

Often heard : Gittins solved the Bayesian MAB
ONLY PARTIALLY TRUE

gives an optimal policy for bayesian discounted regret

only for simple parametric cases

Finite-Horizon Gittins algorithm :

is Bayesian optimal for the finite horizon problem

involves indices hard to compute

is heavily horizon-dependent

no theoretical proof of its frequentist optimality
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The Bayes-UCB algorithm The algorithm

The general algorithm

Recall :

Λt = (λt1, . . . , λ
t
K) is the current posterior over the means (µ1, ..., µK)

The Bayes-UCB algorithm is the index policy associated with:

qj(t) = Q

(
1− 1

t(log t)c
, λt−1j

)

ie, at time t choose
It = argmax

j=1...K
qj(t)
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The Bayes-UCB algorithm The algorithm

An illustration for Bernoulli bandits

Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, 2012 11 / 25



The Bayes-UCB algorithm The Bernoulli case

Theoretical results for the Bernoulli case

νθj is the Bernoulli distribution B(µj), π0j the (conjugate) prior Beta(1, 1)

Bayes-UCB is frequentist optimal in this case

Theorem (Kaufmann,Cappé,Garivier 2012)

Let ε > 0; for the Bayes-UCB algorithm with parameter c ≥ 5, the number
of draws of a suboptimal arm j is such that :

Eθ[Nn(j)] ≤ 1 + ε

KL (B(µj),B(µ∗))
log(n) + oε,c (log(n))
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The Bayes-UCB algorithm The Bernoulli case

Link to a frequentist algorithm:

Bayes-UCB index is close to KL-UCB index: ũj(t) ≤ qj(t) ≤ uj(t)
with:

uj(t) = argmax
x>

St(j)
Nj(t)

{
d

(
St(j)

Nt(j)
, x

)
≤ log(t) + c log(log(t))

Nt(j)

}

ũj(t) = argmax
x>

St(j)
Nt(j)+1

d
(

St(j)

Nt(j) + 1
, x

)
≤

log
(

t
Nt(j)+2

)
+ c log(log(t))

(Nt(j) + 1)


where d(x, y) = KL (B(x),B(y)) = x log x

y + (1− x) log 1−x
1−y

Bayes-UCB appears to build automatically confidence intervals
based on Kullback-Leibler divergence, that are adapted to the
geometry of the problem in this specific case.
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The Bayes-UCB algorithm The Bernoulli case

Where does it come from?

First element: link between Beta and Binomial distribution:

P(Xa,b ≥ x) = P(Sa+b−1,x ≤ a− 1)

Second element: Sanov inequality leads to the following inequality:

e−nd(
k
n
,x)

n+ 1
≤ P(Sn,x ≥ k) ≤ e−nd(

k
n
,x)
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The Bayes-UCB algorithm The Bernoulli case

Experimental results
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θ1 = 0.45, θ2 = 0.55

Cumulated regret curves for several strategies (estimated with N = 5000

repetitions of the bandit game with horizon n = 500) for two different problems
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The Bayes-UCB algorithm Beyond the Bernoulli case

Beyond the Bernoulli case

In more general cases, the Bayes-UCB algorithm is very close to
existing frequentist algorithms:

bandits with rewards in a one parameter exponential familly

Gaussian bandits with unknown mean and variance

Linear Bandit setting with prior over the parameter
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Thompson Sampling
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Thompson Sampling The algorithm

The algorithm

A very simple algorithm:

∀j ∈ {1..K}, sj,t ∼ λtj
It = argmaxj sj,t

(Recent) interest for this algorithm:

a very old algorithm : dates back to 1933

partial analysis proposed
[Granmo 2010][May, Korda, Lee, Leslie 2011]

extensive numerical study beyond the Bernoulli case
[Chapelle, Li 2011]

first logarithmic upper bound on the regret
[Agrawal,Goyal COLT 2012]
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Thompson Sampling Theoretical analysis

An optimal regret bound for the Bernoulli case

Assume the first arm is the unique optimal and ∆a = µ1 − µa.

First upper bound :

Theorem (Agrawal,Goyal, 2012)

E[Rn] ≤ C

 K∑
j=2

1

∆j

 log(n) + oθ(log(n))

First optimal upper bound :

Theorem (Kaufmann,Korda,Munos 2012)

∀ε > 0

E[Rn] ≤ (1 + ε)

 K∑
j=2

∆j

KL (B(µj),B(µ1))

 log(n) + oθ,ε(log(n))
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Thompson Sampling Theoretical analysis

Sketch of the analysis

Bound the expected number of draws of a suboptimal arm j
(1 is optimal)

A usual decomposition in an index policy analysis is

E[Nt(j)] ≤
T∑
t=1

P (ind1,t < µ1) +

T∑
t=1

P (indj,t ≥ ind1,t > µ1, It = j)

Decomposisition used for Thompson Sampling is

E[Nt(j)] ≤
T∑
t=1

P

(
s1,t ≤ µ1 −

√
6 ln(t)

Nt(1)

)

+

T∑
t=1

P

(
sj,t > µ1 −

√
6 ln(t)

Nt(1)
, It = j

)
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Thompson Sampling Theoretical analysis

Sketch of the analysis

An extra deviation inequality is needed

Proposition

There exists constants b = b(µ1, µj) ∈ (0, 1) and Cb = Cb(µ1, µj) <∞
such that

∞∑
t=1

P
(
Nt(1) ≤ tb

)
≤ Cb.
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Thompson Sampling Theoretical analysis

Where does it come from?

(
Nt(1) ≤ tb

)
=
(

exists a time range of length at least t1−b − 1

with no draw of arm 1)
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Thompson Sampling Theoretical analysis

Numerical summary
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Regret as a function of time (on a log scale) in a ten arms problem with low

rewards, horizon n = 20000, average over N = 50000 trials.
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Thompson Sampling Theoretical analysis

Conclusion and perspectives

You are now aware that:

Bayesian algorithms are efficient for the frequentist MAB problem

Bayes-UCB show striking similarity with frequentist algorithms

Bayes-UCB and Thompson Sampling are optimal for Bernoulli bandits

Some perspectives:

A better understanding of the Finite-Horizon Gittins indices

Using Thompson with more involved priors

A more general analysis of Bayes-UCB and Thompson Sampling
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Thompson Sampling Theoretical analysis

Summary of the contributions

Gittins and Bayes-UCB algorithm:

Emilie Kaufmann, Olivier Cappé and Aurélien Garivier
On Bayesian upper confidence bounds for bandits problem
AISTATS 2012.

Analysis of Thompson Sampling:

Emilie Kaufmann, Nathaniel Korda and Rémi Munos
Thompson Sampling : an optimal finite time analysis
Submitted.
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