On Bayesian bandit algorithms

Emilie Kaufmann

joint work with

Olivier Cappé, Aurélien Garivier, Nathaniel Korda and Rémi Munos

July 1st, 2012

Emilie Kaufmann (Telecom ParisTech)

On Bayesian bandit algorithms

July 1st, 2012 1 / 25

Emilie Kaufmann (Telecom ParisTech)

On Bayesian bandit algorithms

July 1st, 2012 2 / 25

・ロト ・四ト ・ヨト ・ヨト ・ヨ

2 Gittins' Bayesian solution

2 Gittins' Bayesian solution

3 The Bayes-UCB algorithm

2 Gittins' Bayesian solution

3 The Bayes-UCB algorithm

4 Thompson Sampling

Emilie Kaufmann (Telecom ParisTech)

On Bayesian bandit algorithms

July 1st, 2012 2 / 25

2 Gittins' Bayesian solution

3 The Bayes-UCB algorithm

4 Thompson Sampling

Two probabilistic modelling

K independent arms. $\mu^*=\mu_{j^*}$ highest expectation of reward.

At time t, arm I_t is chosen and reward $X_t = Y_{I_t,t}$ is observed

Two measures of performance

Minimize (classic) regret

$$R_n(\theta) = \mathbb{E}_{\theta} \left[\sum_{t=1}^n \mu^* - \mu_{I_t} \right]$$

Minimize bayesian regret

$$R_n = \int R_n(\theta) d\pi(\theta)$$

イロト イ理ト イヨト イヨト ニヨー のくの

Our goal

Design Bayesian bandit algorithms which are optimal in terms of frequentist regret

• Lai and Robbins asymptotic rate for the regret:

$$\liminf \frac{\mathbb{E}_{\theta}[N_n(j)]}{\log(n)} \geq \frac{1}{\mathsf{KL}(\nu_{\theta_j}, \nu_{\theta^*})} \quad \text{if } j \text{ is non optimal}$$
$$\liminf \frac{\mathbb{E}_{\theta}[R_n]}{\log(n)} \geq \sum_{j \text{ non optimal}} \frac{\mu^* - \mu_j}{\mathsf{KL}(\nu_{\theta_j}, \nu_{\theta^*})}$$

Emilie Kaufmann (Telecom ParisTech)

July 1st, 2012 5 / 25

イロト イポト イヨト イヨト

Some Bayesian and frequentist algorithms

•
$$\Pi_t = (\pi_1^t, \dots, \pi_K^t)$$
 the current posterior over $(\theta_1, \dots, \theta_K)$

• $\Lambda_t = (\lambda_1^t, \dots, \lambda_K^t)$ the current posterior over the means (μ_1, \dots, μ_K)

A Bayesian algorithm uses Π_{t-1} to determine action I_t .

Frequentist algorithms:

Bayesian algorithms:

- upper confidence bound on the empirical mean (UCB) [Auer at al. 2002]
- UCB based on KL-divergence (KL-UCB)
 [Garivier, Cappé 2011]

- Gittins indices [Gittins, 1979]
- quantiles of the posterior
- samples from the posterior [Thompson, 1933]

2 Gittins' Bayesian solution

3 The Bayes-UCB algorithm

4 Thompson Sampling

Emilie Kaufmann (Telecom ParisTech)

The Finite-Horizon Gittins algorithm

<u>Often heard :</u> Gittins solved the Bayesian MAB ONLY PARTIALLY TRUE

- gives an optimal policy for bayesian discounted regret
- only for simple parametric cases

Finite-Horizon Gittins algorithm :

- **is Bayesian optimal** for the **finite horizon problem**
- involves indices hard to compute
- is heavily horizon-dependent
- no theoretical proof of its frequentist optimality

2 Gittins' Bayesian solution

3 The Bayes-UCB algorithm

4 Thompson Sampling

Emilie Kaufmann (Telecom ParisTech)

イロト イポト イヨト イヨト

The general algorithm

Recall :

• $\Lambda_t = (\lambda_1^t, \dots, \lambda_K^t)$ is the current posterior over the means (μ_1, \dots, μ_K)

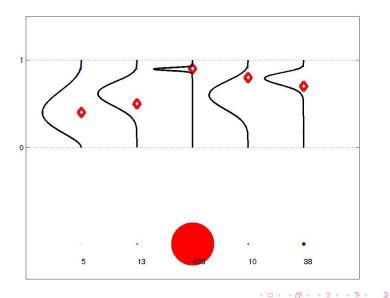
The **Bayes-UCB** algorithm is the index policy associated with:

$$q_j(t) = Q\left(1 - \frac{1}{t(\log t)^c}, \lambda_j^{t-1}\right)$$

ie, at time t choose

$$I_t = \underset{j=1\dots K}{\operatorname{argmax}} q_j(t)$$

An illustration for Bernoulli bandits



July 1st, 2012 11 / 25

Theoretical results for the Bernoulli case

 ν_{θ_i} is the Bernoulli distribution $\mathcal{B}(\mu_j)$, π_i^0 the (conjugate) prior Beta(1,1)

Bayes-UCB is frequentist optimal in this case

Theorem (Kaufmann, Cappé, Garivier 2012)

Let $\epsilon > 0$; for the Bayes-UCB algorithm with parameter $c \ge 5$, the number of draws of a suboptimal arm j is such that :

$$\mathbb{E}_{\theta}[N_n(j)] \le \frac{1+\epsilon}{KL\left(\mathcal{B}(\mu_j), \mathcal{B}(\mu^*)\right)} \log(n) + o_{\epsilon,c}\left(\log(n)\right)$$

Emilie Kaufmann (Telecom ParisTech)

July 1st, 2012 12 / 25

イロト 不得 トイヨト イヨト ヨー のなの

Link to a frequentist algorithm:

Bayes-UCB index is close to KL-UCB index: $\tilde{u}_j(t) \leq q_j(t) \leq u_j(t)$ with:

$$\begin{split} u_j(t) &= \underset{x > \frac{S_t(j)}{N_j(t)}}{\operatorname{argmax}} \left\{ d\left(\frac{S_t(j)}{N_t(j)}, x\right) \le \frac{\log(t) + c \log(\log(t))}{N_t(j)} \right\} \\ \tilde{u}_j(t) &= \underset{x > \frac{S_t(j)}{N_t(j)+1}}{\operatorname{argmax}} \left\{ d\left(\frac{S_t(j)}{N_t(j)+1}, x\right) \le \frac{\log\left(\frac{t}{N_t(j)+2}\right) + c \log(\log(t))}{(N_t(j)+1)} \right\} \end{split}$$

where $d(x, y) = KL(\mathcal{B}(x), \mathcal{B}(y)) = x \log \frac{x}{y} + (1 - x) \log \frac{1 - x}{1 - y}$

Bayes-UCB appears to build automatically confidence intervals based on Kullback-Leibler divergence, that are adapted to the geometry of the problem in this specific case.

The Bernoulli case

Where does it come from?

First element: link between Beta and Binomial distribution:

$$\mathbb{P}(X_{a,b} \ge x) = \mathbb{P}(S_{a+b-1,x} \le a-1)$$

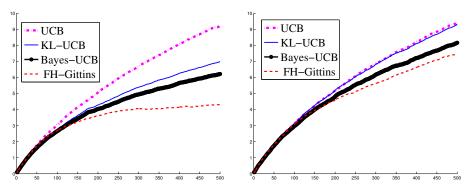
Second element: Sanov inequality leads to the following inequality:

$$\frac{e^{-nd\left(\frac{k}{n},x\right)}}{n+1} \le \mathbb{P}(S_{n,x} \ge k) \le e^{-nd\left(\frac{k}{n},x\right)}$$

Emilie Kaufmann (Telecom ParisTech)

July 1st, 2012 14 / 25

Experimental results



 $\theta_1 = 0.1, \theta_2 = 0.2 \qquad \qquad \theta_1 = 0.45, \theta_2 = 0.55$

Cumulated regret curves for several strategies (estimated with N = 5000 repetitions of the bandit game with horizon n = 500) for two different problems

イロト イポト イヨト イヨト

Beyond the Bernoulli case

In more general cases, the Bayes-UCB algorithm is very close to existing frequentist algorithms:

- bandits with rewards in a one parameter exponential familly
- Gaussian bandits with unknown mean and variance
- Linear Bandit setting with prior over the parameter

2 Gittins' Bayesian solution

3 The Bayes-UCB algorithm

4 Thompson Sampling

イロト イポト イヨト イヨト

The algorithm

A very simple algorithm:

$$\forall j \in \{1..K\}, \ s_{j,t} \sim \lambda_j^t$$

 $I_t = \operatorname{argmax}_j s_{j,t}$

(Recent) interest for this algorithm:

- a very old algorithm : dates back to 1933
- partial analysis proposed
 [Granmo 2010][May, Korda, Lee, Leslie 2011]
- extensive numerical study beyond the Bernoulli case [Chapelle, Li 2011]
- first logarithmic upper bound on the regret [Agrawal,Goyal COLT 2012]

An optimal regret bound for the Bernoulli case

Assume the first arm is the unique optimal and $\Delta_a = \mu_1 - \mu_a$.

- First upper bound :
- Theorem (Agrawal, Goyal, 2012)

$$\mathbb{E}[R_n] \leq \frac{C}{\left(\sum_{j=2}^K \frac{1}{\Delta_j}\right)} \log(n) + o_{\theta}(\log(n))$$

First optimal upper bound :

Theorem (Kaufmann,Korda,Munos 2012) $orall \epsilon > 0$

$$\mathbb{E}[R_n] \le (1+\epsilon) \left(\sum_{j=2}^K \frac{\Delta_j}{\mathsf{KL}\left(\mathcal{B}(\mu_j), \mathcal{B}(\mu_1)\right)} \right) \log(n) + o_{\theta,\epsilon}(\log(n))$$

Sketch of the analysis

- Bound the expected number of draws of a suboptimal arm j (1 is optimal)
- A usual decomposition in an index policy analysis is

$$\mathbb{E}[N_t(j)] \leq \sum_{t=1}^T \mathbb{P}\left(ind_{1,t} < \mu_1\right) + \sum_{t=1}^T \mathbb{P}\left(ind_{j,t} \geq ind_{1,t} > \mu_1, I_t = j\right)$$

Decomposisition used for Thompson Sampling is

$$\mathbb{E}[N_t(j)] \leq \sum_{t=1}^T \mathbb{P}\left(s_{1,t} \leq \mu_1 - \sqrt{\frac{6\ln(t)}{N_t(1)}}\right) + \sum_{t=1}^T \mathbb{P}\left(s_{j,t} > \mu_1 - \sqrt{\frac{6\ln(t)}{N_t(1)}}, I_t = j\right)$$

Sketch of the analysis

An extra deviation inequality is needed

Proposition

There exists constants $b = b(\mu_1, \mu_j) \in (0, 1)$ and $C_b = C_b(\mu_1, \mu_j) < \infty$ such that

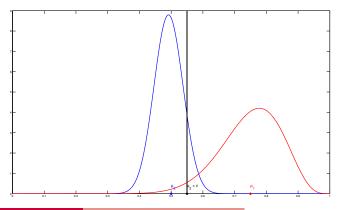
$$\sum_{t=1}^{\infty} \mathbb{P}\left(N_t(1) \le t^b\right) \le C_b.$$

Emilie Kaufmann (Telecom ParisTech)

July 1st, 2012 21 / 25

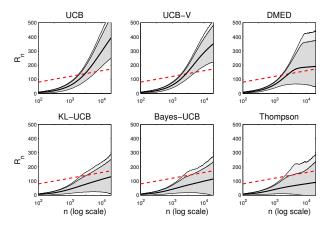
Where does it come from?

$$\left(N_t(1) \le t^b\right) = \left($$
 exists a time range of length at least $t^{1-b} - 1$ with no draw of arm 1)



July 1st, 2012 22 / 25

Numerical summary



Regret as a function of time (on a log scale) in a ten arms problem with low rewards, horizon n = 20000, average over N = 50000 trials.

3

イロト イポト イヨト イヨト

Conclusion and perspectives

You are now aware that:

- Bayesian algorithms are efficient for the frequentist MAB problem
- Bayes-UCB show striking similarity with frequentist algorithms
- Bayes-UCB and Thompson Sampling are optimal for Bernoulli bandits

Some perspectives:

- A better understanding of the Finite-Horizon Gittins indices
- Using Thompson with more involved priors
- A more general analysis of Bayes-UCB and Thompson Sampling

Summary of the contributions

Gittins and Bayes-UCB algorithm:

Emilie Kaufmann, Olivier Cappé and Aurélien Garivier On Bayesian upper confidence bounds for bandits problem AISTATS 2012.

Analysis of Thompson Sampling:

Emilie Kaufmann, Nathaniel Korda and Rémi Munos *Thompson Sampling : an optimal finite time analysis* Submitted.