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Pre-requisite In statistics 1, you have seen:

● classical distributions

● examples of estimators

● confidence intervals

● the statistical testing protocol (type I and type II error)

● example of classical tests

In statistics 2, we will revisit statistical estimation and testing with a focus on optimality.
We will notably discuss:

● different performance measure for estimators

● generic estimation strategies, notably the maximum likelihood principle

● asymptotic properties of estimators

● likelihood-ratio based testing procedures

Several examples will come from an important family of distributions called exponential families.



Chapter 1

Estimation

1.1 Statistical inference

In statistical inference, we observe a realization of some random variable (or random vector) X , called
the observation, whose distribution over some space X is PX . The goal is to discover (“infer”) some
properties of this underlying distribution, assuming that PX belongs to some set of possible distributions,
called the statistical model. Depending on the situation, we may make assumptions on the cumulative
distribution function (cdf) of X , FX or on its density fX with respect to some reference measure and
the statistical model may be a set of distribution, a set of cdfs or a set of pdfs parameterized by some
parameter θ:

M= {Pθ, θ ∈ Θ}, M= {Fθ, θ ∈ Θ} or M= {fθ, θ ∈ Θ}.

When the parameter space Θ ⊆ Rd, the model is called parametric, otherwise it is non-parametric. Given
the “true” parameter θ (i.e. θ such that PX = Pθ), the probability space on which X is defined is denoted
by (Ω,F ,Pθ), and the corresponding expectation is denoted by Eθ.

The n-sample example Often the random variable X is of the form X = (X1, . . . ,Xn) where the Xi

are assumed to be iid realizations of the same distribution. These iid copies represent the repetition of
some random experiment (for example the vote expressed by one individual in a population, or the effect
of a treatment on one patient). These random variables Xi are defined on some common probability
space (Ω,F ,P) and will most of the time take values in R (we could consider some multi-dimensional
outcomes in, e.g. two-sample testing problems).

In the n-sample setting, we denote by P the distribution of X1 (which is the common distribution of
all Xi’s), by F the cdf of this distribution and by f its density (with respect to some reference measure
ν), if it admits one. We will write indifferently

X1, . . . ,Xn
i.i.d.
∼ P , X1, . . . ,Xn

i.i.d.
∼ F or X1, . . . ,Xn

i.i.d.
∼ f .

In that case, the statistical model is typically expressed as possible candidates for P , F or f . Those also
denoted by Pθ, Fθ and fθ, respectively (by a slight abuse of notation), for some parameter θ belonging
to the parameter space Θ.
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Example 1.1. Take a Gaussian n-sample with known variance 1 and unknown mean θ ∈ R: X1, . . . ,Xn
iid
∼

N(θ,1). Let fθ be the density of a N(θ,1) variable with respect to the Lebesgue measure (in R):

fθ(x) =
1

√
2π

exp(−
(x − θ)2

2
) .

If we look at the observationX = (X1, . . . ,Xn), the statistical modelM is a set of multivariate Gaussian
distributions whose densities with respect to the Lebesgue measure in Rn is

fθ(x1, . . . , xn) =
n

∏
i=1

fθ(xi)

for some parameter θ ∈ R.

In statistical inference, we are interested in making statements about the “true” parameter θ generat-
ing the data or about some parameter of interest which can be some function of θ, denoted by g(θ). This
statement can be a guess for its value (estimation), an interval to which it belongs (confidence interval)
or the answer to some question about this parameter (statistical test).

Example 1.2. X1, . . . ,Xn
iid
∼ N(µ,σ2). The parameter of the model is θ = (µ,σ) and the parameter

space is Θ = {(µ,σ), µ ∈ R, σ > 0}. If we are solely interested in estimating the mean, the parameter of
interest is µ and σ may be called a nuisance parameter.

In some situations, we may be interested in estimating more complex functions of θ. For example,
assume that Xi models the amount of antibodies produced 15 days after receiving a vaccine. For a given
disease, the vaccine is considered efficient if this amount exceeds some threshold v. A possible parameter
of interest is the probability of efficacy of the vaccine, p, which can be expressed as

p = P(X1 ≥ v) = 1 − P(X1 < v) = 1 − P(
X1 − µ

σ
<
v − µ

σ
) = 1 −Φ(

v − µ

σ
)

where Φ is the cdf of a N(0,1) random variable.

Example 1.3 (regression model). Z1, . . . , Zn
iid
∼ P . Xi = (Zi, Yi) ∈ X ×R such that

Yi = h(Zi) + εi

where εi
iid
∼ N(0,1) and h ∶ X → Y is the regression function. The observation is X = (X1, . . . ,Xn)

and the parameters of the model are P (that could belong to some parametric class of probability dis-
tributions) and the regression function h (that could belong to a parametric families of functions, e.g.
linear functions). In that case the “parameter” of interest is usually the regression function.

1.2 Performance of an estimator

An estimator of g(θ) is any function of the observation ĝ = h(X) that is supposed to be “close” to the
parameter of interest g(θ). When X = (X1, . . . ,Xn) has the n-sample structure, we will materialize the
dependency in n of the estimator by writing ĝn = h(X1, . . . ,Xn).

From its definition, ĝ is a random variable (or a random vector, when we estimate a multi-dimensional
parameter), hence its quality will be expressed in terms of some properties of its distribution, which
should ideally be concentrated around g(θ). Two important characteristics of this distributions are its
mean and its variance.
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Definition 1.4. The bias of estimator ĝ of g(θ) is defined as bθ(ĝ) = Eθ[ĝ] − g(θ).
When bθ(ĝ) = 0, the estimator is called unbiased.

Definition 1.5. The variance of a real-valued estimator ĝ is Varθ[ĝ] ∶= Eθ[(ĝ −Eθ[ĝ])2].

A good (real-valued) estimator has ideally a small bias and a small variance, which indicates that on
average, its value is close to g(θ) and that under different realizations of the experiments, its value would
not change too much. The closeness from ĝ to g(θ) can also directly be measured using their average
distance, a notion that can also be meaningful in the multi-dimensional setting.

Definition 1.6. The quadratic risk of an estimator ĝ of g(θ) ∈ Rp is

Rθ(ĝ) = Eθ [∥ĝ − g(θ)∥2] ,

where ∥u∥ is the Euclidian norm in Rp, such that ∥u∥2 = u⊺u. In the one-dimensional case (p = 1), this
quantity is sometimes called the mean-squared error, and denoted by MSEθ(ĝ).

Theorem 1.7 (bias-variance decomposition). Assume g(θ) ∈ R. We have

Rθ(ĝ) = (b(ĝ))2
+Varθ [ĝ] .

Exercise 1.8. Prove it.

Comparing estimators with the quadratic risk The quadratic risk can be used to compare estimators,
and we say that an estimator ĝ is better than an estimator g̃ if for all θ ∈ Θ, Rθ(ĝ) ≤ Rθ(g̃). However,
this relationship is not a total order, as there may exists estimators for which Rθ1(ĝ) ≤ Rθ1(g̃) for some
parameter θ1 but Rθ2(ĝ) > Rθ2(g̃) for a different parameter θ2.

Definition 1.9. An estimator ĝ of g(θ) is called admissible is there exists no estimator g̃ which is strictly
better than ĝn i.e. for which

∀θ ∈ Θ, Rθ(g̃) ≤ Rθ(ĝ)

and the inequality is strict for at least one value θ0.

Influence of the sample size When X is a n-sample, the above properties for an estimator ĝn are all
considering a fixed sample size n, and are not capturing another desirable property of an estimator: ĝn
should get closer to g(θ) when the sample size n goes larger. We expect to ĝn to get closer to g(θ),
meaning that its distribution concentrates for and more around g(θ). We will discuss these asymptotic
properties in the next chapter.

Recap: Densities and Expectations All the criteria for evaluating estimators in this section are ex-
pressed with expectations. In general, if Z is a random variable taking values in Z whose distribution P
has a density f with respect to some reference measure ν, we have, for all function φ,

E[φ(Z)] = ∫
Z
φ(x)f(x)dν(x).

We will mostly see examples of random variables defined on Z = Rd whose distributions have a density
with respect to the Lebesgue measure in Rd, or of discrete random random variables (i.e. for which Z
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is discrete) that have a density with respect to the counting measure. In the discrete case, the density is
simply defined, for all z ∈ Z , by

f(z) = P ({z}) = PZ∼P (Z = z) .

Back to our statistical model, in the most common n-sample case in whichX = (X1, . . . ,Xn)
iid
∼ Pθ,

we will often uncounter two cases.
Either Xi ∈ R and Pθ has a density with respect to the Lebesgue measure. Then

● for any φ ∶ Rn → R, Eθ[φ(X)] = ∫R φ(x1, . . . , xn)fθ(x1, . . . , xn)dx1 . . . dxn

● for any φ ∶ R→ R, Eθ[φ(X1)] = ∫R φ(u)fθ(u)du

Or Xi ∈ S for some discrete set S (typically a subset of N) and we have

● for any φ ∶ Sn → R, Eθ[φ(X)] = ∑x∈Sn φ(x1, . . . , xn)fθ(x1, . . . , xn)

● for any φ ∶ S → R, Eθ[φ(X1)] = ∑u∈S φ(u)fθ(u)

1.3 Estimation procedures

1.3.1 The moment method

When X = (X1, . . . ,Xn)
iid
∼ Pθ, the moment method can be used when the parameter of interest g(θ)

can be expressed as a function of the moments of X1.
In the simple case, we have

g(θ) = Eθ [φ(X1)]

for some function φ such that E[∣φ(X1)∣] < ∞. Motivated by the law of large numbers, we define the
moment estimator

ĝn ∶=
1

n

n

∑
i=1

φ(Xi)

which satisfies ĝn → g(θ), Pθ − a.s.. Hence, this estimator is naturally going to be close to g(θ) at least
for a large sample size n.

More generally, suppose that we seek to estimate a multi-dimensional parameter θ = (θ1, . . . , θk)
and that for 1 ≤ j ≤ k the j-th moment can be expressed as some function of the parameter θ:

Eθ[Xj
] = αj(θ).

Letting α̂j = 1
n ∑

n
i=1X

j
i the j-th sample moment, the moment estimator is defined as the solution θ̂n of

the system of equations
α1(θ) = α̂1, . . . , αk(θ) = α̂k.

Example 1.10. X1, . . . ,Xn
iid
∼ N(µ,σ2). We can find the moment estimator for the parameter θ =

(µ,σ2). There are two parameters so we can look at the first two moments.

Eθ[X1] = µ

Eθ[X2
1 ] = Varθ[X1] + (Eθ[X1])

2
= σ2

+ µ2
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The empirical first and second moments are 1
n ∑

n
i=1Xi and 1

n ∑
n
i=1X

2
i so we get the system

{
µ = 1

n ∑
n
i=1Xi

µ2 + σ2 = 1
n ∑

n
i=1X

2
i

from which we get θ̂n = (µ̂n, σ̂
2
n) where

µ̂n =
1

n

n

∑
i=1

Xi and σ̂2
n =

1

n

n

∑
i=1

X2
i − (

1

n

n

∑
i=1

Xi)

2

We recognize the well-known empirical mean and empirical variance, which can also be rewritten

σ̂2
n =

1

n

n

∑
i=1

(Xi −
1

n

n

∑
k=1

Xk)

2

.

1.3.2 The plug-in method

The plug-in method is also suited for the n-sample setting, when the parameter of interest can be ex-
pressed as some functional of P , the distribution of X1 (for example some moment of this distribution,
or some quantile), we write

g(θ) =H(P ).

The idea is construct some empirical version of this distribution, denoted by P̂n and to “plug-in” this
empirical distribution, that is to define

ĝn =H(P̂n).

We now describe this empirical distribution.

Definition 1.11. Given a n-sample X = (X1, . . . ,Xn) ∈ Rn, the empirical distribution P̂n is a proba-
bility measure on R defined as

P̂n =
1

n

n

∑
i=1

δXi

where δx is the Dirac measure in x. The Dirac measure is defined, for all event A as δx(A) = 1 if x ∈ A,
δx(A) = 0 otherwise. For any x ∈ R, we have

P̂n({x}) =
1

n

n

∑
i=1

δXi({x}) =
#{i ∶Xi = x}

n
.

P̂n is a discrete distribution whose (finite) support (= set of values that have non-zero probability in the
discrete case) is the values in {X1, . . . ,Xn}.

For any function φ, the expectation of φ(Z) when Z is distributed according to the empirical distri-
bution P̂n is given by

EZ∼P̂n[φ(Z)] = ∑
x∈S

φ(x)P̂n(x) =
1

n

n

∑
i=1

φ(Xi)

where S is the support of P̂n, i.e. the number of distinct values in the observation X . In particular, the
cdf F̂n of the empirical distribution, which by definition is F̂n(x) = PZ∼P̂n(Z ≤ x) = EZ∼P̂n [1(Xi ≤ x)]
can be written

F̂n(x) =
1

n

n

∑
i=1

1(Xi ≤ x).
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Remark 1.12. When the functional H(P ) is defined as some expectation under P , the moment method
and the plug-in method actually concide. Indeed, if

g(θ) = EX∼P [φ(X)]

the plug-in method yields

ĝn = EX∼P̂n
[φ(X)] =

1

n

n

∑
i=1

φ(Xi).

We also call such estimators “empirical estimators”.
But plug-in estimator can be more general when H is not defined as some expectation, for example

we can define the empirical quantiles of a distribution to estimate its quantiles.

Exercise 1.13. Using the plug-in approach, justify (again) the expression of the empirical mean and
empirical variance of a distribution.

1.3.3 Maximum Likelihood Estimation (MLE)

The maximum likelihood approach can be used to estimate g(θ) = θ when the statistical model is of the
form

M= {Pθ ∶ Pθ has a density fθ with respect to ν, θ ∈ Θ}

where ν is a fixed reference measure (which is the same for all the distributions in the model). Such a
model is called dominated (by the reference measure ν).

In most practical cases, this reference measure will be the Lebesgue measure in Rd (when the distri-
butions are continuous) or the counting measure on discrete set (when the distributions are discrete). In
that case, the density is given by fθ(x) = Pθ(X = x).

Definition 1.14. The likelihood of the observation X given a parameter θ is defined by

L(X; θ) = fθ(X).

In the n-sample case, due to independence, the log-likelihood can be written

L(X1, . . . ,Xn; θ) =
n

∏
i=1

fθ(Xi). (1.1)

Example 1.15. If X1, . . . ,Xn ∼ B(θ). The density of a Bernoulli distribution with parameter θ can be
written

fθ(x) = θ1(x = 1) + (1 − θ)1(x = 0) = θx(1 − θ)1−x1(x ∈ {0,1})

hence we have

L(X1, . . . ,Xn; θ) =
n

∏
i=1

θXi(1 − θ)1−Xi = θ∑
n
i=1Xi(1 − θ)n−∑

n
i=1Xi

If X1, . . . ,Xn ∼ N(θ, σ2), we get

L(X1, . . . ,Xn; θ) =
n

∏
i=1

1
√

2πσ2
exp(−

(Xi − θ)
2

2σ2
)

which can also be re-arranged.
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The likelihood can be interpreted as the probability of making observation X if the underlying pa-
rameter is θ. Indeed, if M is a set of discrete distributions (i.e. when ν is the counting measure), we
have fθ(xi) = Pθ(Xi = xi). Due to independence, we have

Pθ(X1 = x1, . . . ,Xn = xn) =
n

∏
i=1

fθ(xi) = L(x; θ) where x = (x1, . . . , xn)

In the continuous case (i.e. when ν is the Lebesgue measure), the probability of a given x = (x1, . . . , xn)
is zero and we replace it by the value of the (joint) density in the point.

This observation motivates the maximum likelihood estimator as the estimator of g(θ) = θ seek-
ing the parameter θ for which the actual observation X is the most likely (i.e. which as it the largest
“probability”).

Definition 1.16. A maximum likelihood estimator (MLE) of a parameter θ is an estimator satisfying

θ̂ ∈ argmax
θ∈Θ

L(X; θ).

Remark 1.17. As will be seen in some exercises, the maximum likelihood is not always unique.

Computational considerations In simple case, the maximum likelihood can be computed explicitely,
by finding the critical points (for which the derivative are zero) and proving that it is indeed a maximizer
(e.g., by checking that the second derivative is negative in the critical point). In more complex cases,
it can only be approximated using some optimization algorithm. In complex models (like the Gaussian
mixture model), more fancy approximation schemes are needed, like the EM algorithm (Expectation
Maximization) algorithm.

From a computational prespective (and due to the common product form of the likelihood, see (1.1))
it is often more convenient to maximize the logarithm of the likelihood (which then becomes a sum).

Definition 1.18. The log-likelihood of the observation X given a parameter θ is denoted by

`(X; θ) = logL(X; θ).

Exercise 1.19. Poisson distributions are often used to model count data (e.g. the number of monthly
purchases of a customer on an e-commerce website may follow a Poisson distribution). A Poisson distri-
bution with parameter λ > 0, denoted by P(λ), is a discrete distribution defined as

P(Z = k) =
λk

k!
e−λ for all k ∈ N.

Compute the maximum likelihood estimator of λ given iid observations X1, . . . ,Xn
iid
∼ P(λ). What

other method(s) could you use to obtain the same estimator?

Example 1.20. In the logistic regression model, there are iid pairs of observations (Xi, Yi) where Xi

comes from some distribution on Rd that is assumed to have some density and Yi ∈ {−1,1} is such that

P (Yi = 1∣Xi = x) =
1

1 + e−x⊺θ

where θ ∈ Rd is a regression parameter.
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To define the likelihood of the data, we admit that the density of (X1, Y1) ∈ Rd × {0,1} is

fθ(x, y) = P(Y1 = y∣X1 = x)f(x).

You can verify that for all x ∈ Rd and all y ∈ {−1,1}, P(Y1 = y∣X1 = x) =
1

1+e−yx⊺θ . The likelihood can
therefore be written

L((X1, Y1), . . . , (Xn, Yn)) =
n

∏
i=1

f(Xi) (
1

1 + e−Yi(X
⊺
i θ)

)

and a maximum likelihood estimator θ̂n satisfies

θ̂n ∈ argmin
θ∈Rd

n

∑
i=1

log (1 + e−Yi(X
⊺
i θ)) .

In this example, no closed-form expression exists for the MLE (unlike in a linear regression example),
and we should resort to an optimization algorithm.

M -estimators The MLE estimator is actually an example of a more general family of estimators called
M -estimators, that are obtained as the minimization of some cumulative loss function of the data. A M
estimator is of the form

θ̂n ∈ argmin
θ∈Rd

Mn(θ) where Mn(θ) =
n

∑
i=1

m(Xi; θ).

In the particular case of the MLE, we have m(X; θ) = − log fθ(X).

1.4 Beyond the likelihood

Under some additional regularity conditions on some dominated model it is possible to define an impor-
tant quantity called the Fisher information, which is useful to provide a lower bound on the quality of an
(unbiased) estimator (see Section 1.5). The Fisher information will also be useful in the next chapter to
characterize the asymptotic distribution of the maximum likelihood estimator.

To ease the presentation, we define everything in the single-parameter setting, that is when the pa-
rameter space Θ is a subset of R. All this concepts can be extended to the multi-dimensional setting by
replacing derivative with gradients, variances with covariances, and second derivative with Hessian. We
will briefly discuss this extension afterwards.

Definition 1.21. A (uni-dimensional) parameteric modelM= {Pθ, θ ∈ Θ ⊆ R} is regular if

1. it is dominated by some reference measure ν and for all θ, the support of fθ, S = {x ∈ X ∶ fθ(x) >
0} is independent of θ

2. for all x ∈ S, θ ↦ fθ(x) is twice differentiable on Θ and its second derivative is continuous

3. for any event E , we have

∂

∂θ
∫
E
fθ(x)dν(x) = ∫

E

∂

∂θ
fθ(x)dν(x)

∂2

∂2θ
∫
E
fθ(x)dν(x) = ∫

E

∂2

∂2θ
fθ(x)dν(x)
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Example 1.22. We can show that many classical parameteric model satisfy this assumption (e.g. Bernoulli
models, Gaussian model, Poisson model). A counter-example that will be studied in an exercise is the
family of uniform distributions on [0, θ] for θ ∈ R+, which already violates assumption 1.

1.4.1 The Fisher information

Definition 1.23. The score function is defined as the derivative of the log-likelihood.

s(X; θ) =
∂`(X; θ)

∂θ
=

1

fθ(X)

∂fθ(X)

∂θ

An important property of the score under a regular model is the following.

Lemma 1.24. Under a regular model, for all θ ∈ Θ, Eθ[s(X; θ)] = 0.

Proof.

Eθ[s(X; θ)] = ∫
∂`(x; θ)

∂θ
fθ(x)dν(x) = ∫

∂
∂θfθ(x)

fθ(x)
fθ(x)dν(x) = ∫

∂

∂θ
fθ(x)dν(x)

=
(a)

∫
S

∂

∂θ
fθ(x)dν(x) =

(b)

∂

∂θ
(∫

S
fθ(x)dν(x)) =

(c)

∂

∂θ
(1) = 0

where (a) uses property 1. of a regular model, (b) uses property 3 and (c) uses that fθ is a density.

◻

The Fisher information matrix is defined as the variance of the score, which is equal to its second
moment as the score is centered.

Definition 1.25. In a regular model, the Fisher information of the observation X is defined as

IX(θ) = Varθ [s(X; θ)] = Eθ [(s(X,θ))2] .

In the n-sample case, we will write In(θ) to denote the Fisher information of the n-sample, and I(θ) the
Fisher information of the observation made of a single realisation X1 ∼ Pθ.

1.4.2 Some properties of the Fisher information

Lemma 1.26. Under a regular model, it holds that IX(θ) = −Eθ [∂
2`(X;θ)
∂2θ

].

Exercise 1.27. Prove it. Hint: start by computing the right-hand side, using property 3. of a regular
model as in the proof of Lemma 1.24.

The above lemma can be useful for the computation of the Fisher information. We now present
another interesting property which is the additivity of the Fisher information. This property follows from
the fact that the density of a couple of independent random variable is the product of their densities, and
uses properties of the logarithm.
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Lemma 1.28. If X and Y are two independent random variables defined on the same probability space
(Ω,F ,Pθ), then

I(X,Y )
(θ) = IX(θ) + IY (θ) .

It follows that for a n sample X = (X1, . . . ,Xn)
iid
∼ Pθ,

In(θ) = I
X
(θ) = nIX1(θ) = nI(θ) .

Example 1.29. Consider the Bernoulli model X1, . . . ,Xn
iid
∼ B(θ). We have seen above that In(θ) =

nI(θ) where I(θ) is the Fisher information in a model with one Bernoulli observationX1. In this model,
we have

L(X1; θ) = θX1(1 − θ)1−X1

`(X1; θ) = X1 log(θ) + (1 −X1) log(1 − θ)

∂`(X1; θ)

∂θ
=

X1

θ
−

1 −X1

1 − θ
∂2`(X1; θ)

∂2θ
= −

X1

θ2
+

1 −X1

(1 − θ)2

hence

I(θ) = −Eθ [
∂2`(X1; θ)

∂2θ
] = Eθ [

X1

θ2
−

1 −X1

(1 − θ)2
] =

1

θ
−

1

1 − θ
=

1

θ(1 − θ)

Finally, using Lemma 1.28, we get In(θ) = n
θ(1−θ) .

Extension to the multi-dimensional setting If θ = (θ1, . . . , θd), the score is a vector in Rd, defined as

s(X; θ) = ∇θ`(X; θ) = (
∂`(X; θ)

∂θ1
, . . . ,

∂`(X; θ)

∂θd
)

⊺

.

In (an extension of the definition of a) regular model, the score satisfies E[s(X; θ)] = 0 and the Fisher
information is defined as the (covariance) of the score, ie

I(θ) = E [(s(X,θ))(s(X,θ))⊺] .

The Fisher information is therefore a d × d matrix, and a counterpart of Lemma 1.26 can be proved:

I(θ) = −E
⎡
⎢
⎢
⎢
⎢
⎢
⎣

(
∂2`(X; θ)

∂θi∂θj
)

1≤i≤d
1≤j≤d

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

1.4.3 Interpretation of the Fisher information (more advanced)

The Fisher information will be shortely related to the minimal variance that a unbiased estimator can
have. But we can still try to provide an explanation as to why it can be called “information”.

First, due to its additivity property (Lemma 1.28), if we interpret I(θ) as an amount of “information”
brought by one sample, we note that the Fisher information of a n-sample is the sum of all the infor-
mation brought by individual samples. Moreover, another property is that given an observation X , any
“summary” of this observation in the form of a statistic S = s(X) has a smaller Fisher information.
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Lemma 1.30. For any statistic S = s(X) of an observationX defined on a probability space (Ω,F ,Pθ),
we have IS(θ) ≤ IX(θ).

Proof. Let’s write down the proof assuming that X takes values in a discrete space X (to avoid the
concept of conditional density). X and S = s(X) are clearly defined on the same probability space
(Ω,F ,Pθ). We can write

Pθ(X = x) = Pθ(X = x,S = s(x)) = Pθ(X = x∣S = s(x))Pθ(S = s(x))

Hence, for any x ∈ X , writing s = s(x), we have

fθ(x) = fθ(x∣s)f̃θ(s)

where we introduce fθ the density of X , f̃θ the density of S and fθ(x∣s) ∶= Pθ(X = x∣S = s). Taking
the logarithm and differentiating twice yields

∂2 log fθ(x)

∂2θ
=
∂2 log f̃θ(s)

∂2θ
+
∂2 log fθ(x∣s)

∂2θ

and in particular
∂2 log fθ(X)

∂2θ
=
∂2 log f̃θ(S)

∂2θ
+
∂2 log fθ(X ∣S)

∂2θ

Taking the expectation and using Lemma 1.26 yields

IX(θ) = IS(θ) −Eθ [
∂2 log fθ(X ∣S)

∂2θ
]

We conclude by noting that

−Eθ [
∂2 log fθ(X ∣S)

∂2θ
] = ∑

s

Pθ(S = s)

⎡
⎢
⎢
⎢
⎢
⎣

−Eθ [
∂2 logPθ(X ∣S = s)

∂2θ
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

⎤
⎥
⎥
⎥
⎥
⎦

and the term between brackets is positive as it is the Fisher information of the conditionnal distribution
of X given (S = s).

◻

From this result a good statistic S = s(X) is one that doesn’t loose information, i.e. for which
IS(θ) = IX(θ). Sufficient statistic have this property, and are defined below.

Definition 1.31. A statistic S = s(X) is called sufficient for θ is the distribution of X = (X1, . . . ,Xn)

contionally to S does not depend on θ.

We admit the following characterization.

Theorem 1.32 (Neyman-Fisher). The statistic S = s(X1, . . . ,Xn) is sufficient for θ is there exists two
positive functions g and h such that the density of X can be written

fθ(x1, . . . , xn) = g(x1, . . . , xn)h(s(x1, . . . , xn); θ) .
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1.4.4 The Kullback-Leibler divergence

We define another information theoretic quantity that is related to the likelihood (or actually rather to a
likelihood ratio) and provides some notion of “distance” (although it is not a distance in the topological
sense) between probability measures.

Definition 1.33. For two probability measure P and Q that have a densities f and g with respect to the
same probability measure ν and such that g(x) = 0⇒ f(x) = 0, we have

KL(P,Q) = EX∼P [log
f(x)

g(x)
] .

In particular, if Pθ and Pθ′ are two distributions in a regular model (actually assumption 1. in Defini-
tion 1.21 is sufficient), we can define

K(θ, θ′) ∶= KL(Pθ, Pθ′) = Eθ [log
fθ(X)

fθ′(X)
] .

Example 1.34. The KL divergence between N(µ,σ2) and N(µ′, σ2) is

K(µ,µ′) =
(µ − µ′)2

2σ2
.

The KL divergence between two Bernoulli distributions of parameters θ and θ′ is

K(θ, θ′) = θ log (
θ

θ′
) + (1 − θ) log (

1 − θ

1 − θ′
) .

1.5 The Cramer-Rao lower bound

The Fisher information defined in the previous section enables us (in the case of uni-dimensional esti-
mation) to solve the following question: what is the minimal variance of an unbiased estimator? We
consider this question for regular models.

Theorem 1.35. Assume the statistical model is regular. Let ĝ be an estimator of g(θ) ∈ R where g is
differentiable. We assume that ĝ = h(X) is such that Eθ[ĝn] = g(θ) (unbiased estimator) and

∂

∂θ
∫ h(x)fθ(x)dν(x) = ∫ h(x) (

∂

∂θ
fθ(x))dν(x)

Then, for all θ ∈ Θ,

Varθ[ĝ] ≥
(g′(θ))2

I(θ)
.

Proof. The idea of the proof is to differentiate g(θ) = Eθ[h(X)] and introduce the score. Using one of
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the assumptions, we can write

g′(θ) =
∂

∂θ
∫
S
h(x)fθ(x)dν(x) = ∫

S
h(x) (

∂

∂θ
fθ(x))dν(x)

= ∫
S
h(x) (

∂

∂θ
log fθ(x)) fθ(x)dν(x)

(a)
= ∫

S
(h(x) −Eθ[h(X)]) (

∂

∂θ
log fθ(x)) fθ(x)dν(x) +Eθ[h(X)]∫

S
(
∂

∂θ
log fθ(x)) fθ(x)dν(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

(b)
= ∫

S
(h(x) −Eθ[h(X)]) (

∂

∂θ
log fθ(x) −Eθ [

∂

∂θ
log fθ(X)]) fθ(x)dν(x)

where both (a) and (b) use that the expected score is zero by Lemma 1.24.
Now we assume that Eθ[h2(X)] < ∞ (otherwise, the inequality in Theorem 1.35 is trivially true).

Then we can use the Cauchy-Schwarz inequality to get

∣g′(θ)∣ ≤

√

Eθ [(h(x) −Eθ[h(X)])
2
]

¿
Á
ÁÀEθ [(

∂

∂θ
log fθ(x) −Eθ [

∂

∂θ
log fθ(X)])

2

]

≤
√

Varθ[h(X)]

√

Varθ [
∂

∂θ
log fθ(X)]

≤
√

Varθ[h(X)]
√
I(θ)

where the last step uses the definition of the Fisher information.

◻

An unbiased estimator that achieves the Cramer-Rao lower bound for all values of θ ∈ Θ is called
efficient (or uniformly efficient). The example below show that there exists efficient estimators.

Exercise 1.36. Verify that in the Bernoulli model X1, . . .Xn
iid
∼ B(p) the MLE is an efficient estimator.

1.6 Exponential families

Actually, the reason why in the Bernoulli model we can find an efficient estimator comes from the fact
that the set of Bernoulli distributions is a particular example of exponential family. We define exponential
families below, and we will see several of their properties in this class.

Definition 1.37. An exponential family is a set of probability distibutions on some set X defined as

P = {Pθ, θ ∈ Θ ∶ Pθ has a density fθ(x) = h(x) exp (a(θ)⊺T (x) − b(θ)) wrt to ν}

where ν is a reference measure (common to all distributions), h ∶ X → R+ is a positive function, a ∶ Θ→
Rd, b ∶ Θ→ R and T ∶ X → Rd are some functions and u⊺v = ∑di=1 uivi is the scalar product in Rd.

T (x) ∈ Rd is called the canonical statistic and d is the dimension of the exponential family. In a
one-dimensional exponential family, the density can simply be expressed

fθ(x) = h(x) exp (a(θ)T (x) − b(θ)) .
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Exercise 1.38. Justify that family of Bernoulli distribution P = {B(p), p ∈ (0,1)} form an exponential
family (of dimension 1).

Actually, we can prove that efficient estimator can only exist in some exponential families, and for a
particular parameter to estimate. There are therefore not so much common. In the next chapter, we will
define an asymptotic notion of efficiency, which can be easier to attain.



Chapter 2

Asymptotic properties of estimators

In this chapter, we focus on the n-sample case, in which X = (X1, . . . ,Xn)
iid
∼ Pθ. For each n, given an

estimator ĝn = h(X1, . . . ,Xn) of a certain parameter of interest g(θ), we are interested in studying the
sequence of estimators (ĝn)n when the sample size n grows large. As the ĝn are random variables, we
first recap the different notion of convergences, as well as some important results.

2.1 Refresher: Convergence of random variables

Definition 2.1. Let Z1, Z2, . . . be a sequence of random variable and let Z be another random variable.
Let Fn denote the CDF of Zn and let F denote the cdf of Z.

1. Zn converges to Z in probability if, for every ε > 0, limn→∞ P(∣Zn −Z ∣ > ε) = 0.

We write Zn
P
Ð→ Z.

2. Zn converges to Z in distribution if, limn→∞ Fn(t) = F (t) for all t for which F is continuous.

We write Zn ↝ Z.

3. Zn converges to Z almost surely if P (limn→∞Zn = Z) = 1. We write Zn
a.s.
Ð→ Z.

4. Zn converges to Z in quadratic mean if limn→∞E [(Zn −Z)2] = 0. We write Zn
L2

Ð→ Z.

In statistics, the first two notions are the most common, and we will mostly discuss them in the
following. The definitions above were all given for real-values random variables, but can be extended to
the multi-dimensional setting. For the convergence in probability, the distance between Zn and Z and
Rd can no longer be measured with the absolute value, but given any distance d on Rd (for example the

Euclidian distance), we define Zn
P
Ð→ Z is for all ε > 0, limn→∞ P (d(Zn, Z) > ε) = 0.

The convergence in distribution in Rd can still be characterized by the cdf, but in this case, the cdf is
a multi-variate function and we should have, for all z = (z1, . . . , zd) in which F is continuous,

lim
n→∞

P (Z1
n ≤ z1, . . . , Z

d
n ≤ zd) = P(Z1

≤ z1, . . . , Z
d
≤ zd) = 0.

Example 2.2. Zn ∼ N(0, 1
n). Justify that Zn converges to 0 (the random variable that is constant and

equal to zero) in distribution and in probability.

17
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2.1.1 Properties

The following relationship between the different convergence notions are useful.

Lemma 2.3. 1. Xn
P
Ð→X implies that Xn ↝X

2. Xn
P
Ð→ c where c is a constant if and only if Xn ↝X

3. Xn
L2

Ð→X implies that Xn
P
Ð→X

We note that (a) and (c) are not equivalences. In particular, beyond the case of convergence to
constants, the convergence in distribution does not imply the convergence in probability. A (contrived)
counter-example is the following: take any symmetric distribution Y , that is a distribution for which Y
and −Y have the same distribution (for example, a centered Gaussian distribution). Define Zn = Y for
all n and Z = −Y . As the cdf and Zn and that of Z are equal, we have in particular Zn ↝ Z. However,
P (∣Zn −Z ∣ > ε) = P (∣2Y ∣ > ε) does not converge to zero for every ε (unless Y = 0 a.s.).

Lemma 2.4 (continuous mapping). Let g ∶ X → R be a continuous function. Then

● If Xn
P
Ð→X then g(Xn)

P
Ð→ g(X)

● If Xn ↝X then g(Xn) ↝ g(X)

Lemma 2.5 (Slutsky lemma). If Xn ↝ X and Yn
P
Ð→ c where c is a constant, then, for any continuous

function g,
g(Xn, Yn) ↝ g(X, c) .

In particular

● Xn + Yn ↝X + c

● XnYn ↝ cX

Slutsky’s lemma is a consequence of the fact that as a couple of random variables (Xn, Yn) converges
in distribution to (X, c) (and the fact that the continuous mapping lemma also apply to multi-variate
random variables).

2.1.2 Two fundamental theorems

We recall here the two fundamental theorems in statistics: the law of large numbers and the central limit
theorem. Given an iid sequence Zi, they provide some convergence results for the empirical average

Ẑn =
1

n

n

∑
i=1

Zi.

Theorem 2.6 (Law of large numbers). If (Zi)i∈N is an iid sequence with E[Z1] < ∞, we have

1

n

n

∑
i=1

Zi
P
Ð→ E[Z1]
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Actually, a stronger version of this result (called the strong law of large numbers) holds under the
same assumptions, in which the convergence in probability is replaced by an almost sure convergence.

Theorem 2.7 (Central limit theorem). If (Zi)i∈N is an iid sequence with E[Z2
1 ] < ∞, letting µ = E[Z1]

and σ2 = Var[Z1], we have
√

n

σ2
(Ẑn − µ) ↝ N(0,1)

Under the hypotheses of the central limit theorem, Ẑn can be written

Zn = µ +

√
σ2

n
Yn

where Yn ↝ N(0,1). Therefore, informally, the distribution of Ẑn is close to N (µ, σ
2

n ), a Gaussian
distribution whose variance decays to zero and is therefore more and more concentrated around µ. We
may write Ẑn ≈ N (µ, σ

2

n ) and talk about the asymptotic distribution of Ẑn.

2.2 Consistency and asymptotic normality

Definition 2.8. An estimator ĝn of g(θ) is consistent if for every θ ∈ Θ, ĝn
P
Ð→ g(θ).

Consistency of estimators will often follow from the law of large numbers. When we further have an
almost sure convergence, that is when ĝn

a.s.
Ð→ g(θ), we shall say that ĝn is strongly consistent.

Lemma 2.3 and Lemma 2.4 also yield the following properties:

● If the quadratic risk Rθ(ĝn) goes to zero when n goes to infinity, ĝn is consistent.

● If θ̂n is a consistent estimator of θ and g is a continuous mapping, then ĝn = g(θ̂n) is a consistent
estimator of g(θ).

Example 2.9. Justify that the empirical mean and empirical variance defined in the previous chapter are
consistent estimators.

Given a consistent estimator ĝn, we may be interested in how fast ĝn − g(θ) converges to zero. To
do so, we will look at the limit distribution of (some re-normalization) of this random variable.

If we take the example of the empirical µ̂n = 1
n ∑

n
i=1Xi estimator of the common mean µ of some n

sample (X1, . . . ,Xn) that has variance σ2, the Central Limit Theorem tells us that
√
n (µ̂n − µ) ↝ N(0, σ2

)

Here, the limit distribution is Gaussian, and the convergence speed is
√
n. Due to the generality of the

Central Limit Theorem, we expect this Gaussian limit behavior to be a general pattern for estimators,
hence the definition of asymptotic normality.

Definition 2.10. An estimator is ĝn of g(θ) is asymptotically normal is it satisfies, for all θ ∈ Θ,
√
n (ĝn − g(θ)) ↝ N(0, σ2

θ)

where σ2
θ is called the asymptotic variance.
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It is worth mentioning that there exists estimators that are have a limiting distribution, but are not
asymptotically normal. It means that they satisfy something like

g(n) (ĝn − g(θ)) ↝ Z

where g(n) is some convergence speed (that can be different than
√
n) and Z is some fixed distribution

(that is not necessarily Gaussian).

Example 2.11. As studied in exercise, in the model X1, . . . ,Xn
iid
∼ U([0, θ]), the moment estimator is

θ̂n =
2
n ∑

n
i=1Xi while the MLE is θ̃n = maxi=1..nXi.

Using the Central Limit Theorem (and the continuous mapping lemma), we can show that

√
n (θ̂n − θ) ↝ N (0,

θ2

3
)

hence the moment estimator is asymptotically normal with asymptotic variance σθ = θ2

3 .
On the other hand, we computed the distribution of θ̃n in exercise, showing that

P (θ̃n ≤ x) = {
1 if x ≥ θ

xn

θn1[0,θ](x) else.

Hence we have, for all u > 0,

P (θ − θ̃n ≥ u) = (1 −
u

θ
)
n

1[0,θ](u)

and finally, for all t > 0,

P (n (θ − θ̃n) ≥ t) = (1 −
t

nθ
)
n

1[0,nθ](t)

The limit of the right-hand side when n goes to infinity is equal to e−
t
θ = P (Z > t) where Z is an

exponential distribution with parameter 1/θ. Finally, one can write

n (θ − θ̃n) ↝ E (θ
−1) .

This provide another argument for using the MLE over the moment estimator in this particular case, as
its asymptotic convergence is faster.

In Section 2.4, we will actually see that for regular models, the MLE is asymptotically Gaussian. The
reason for this different behavior stems from the fact that the model considered here is not regular: one
can indeed see that all the possible densities do not have the same support.

Comparing asymptotically normal estimators Between two asymptotically normal estimator, the
one with smallest asymptotic variance σ2

θ is the one that converges “faster” to the parameter g(θ). This
can be measured by the fact that, if we build asymptotic confidence intervals for g(θ) of level 1 − α,
using the estimator with smallest asymptotic variance will yield the smallest confidence region.

If two asymptotically normal estimators ĝn and g̃n have respective asymptotic variances σ2
θ and σ̃2

θ

and that σ2
θ ≤ σ̃

2
θ for all θ ∈ Θ (with at least one strict inequality), we say that ĝn is asymptotically more

efficient than g̃n.
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Remark 2.12. Asymptotic normality is a stronger notion than consistency. Indeed, any asymptotically
normal estimator is also consistent by the following argument. Fix ε > 0. We have

P (∣ĝn − g(θ)∣ > ε) = P (
√
n∣ĝn − g(θ)∣ > ε

√
n) .

For all α > 0, there exists n0 such that n larger than n0 implies ε
√
n ≥ Φ−1(1 − α/4) where Φ is the

standard normal cdf. For n ≥ n0, it therefore holds that

P (∣ĝn − g(θ)∣ > ε) ≤ P (
√
n∣ĝn − g(θ)∣ > Φ−1

(1 − α/4)) Ð→
n→∞

PZ∼N(0,1) (Z > Φ−1
(1 − α/4)) =

α

2
.

Hence, for anyα > 0, for n large enough, P (∣ĝn − g(θ)∣ > ε) ≤ α. It follows that limn→∞ P (∣ĝn − g(θ)∣ > ε) =

0 and ĝn
P
Ð→ g(θ).

2.3 The Delta method

We now present a useful tool to compute asymptotic distributions of some transformation of an asymp-
totically normal estimator: the so-called Delta method. This result implies that under some mild condi-
tions, if θ̂n is an asymptotically normal estimator of θ, then g(θ̂n) is an asymptotically normal estimator
of g(θ̂n).

Theorem 2.13. Suppose that for some sequence of random variance (Zn),
√
n(Zn − µ) ↝ N(0, σ2

)

and that g is a differentiable function such that g′(µ) ≠ 0. Then
√
n(g(Zn) − g(µ)) ↝ N (0, (g′(µ))2σ2) .

In other words,

Zn ≈ N (µ,
σ2

n
) implies that g(Zn) ≈ N (g(µ), (g′(µ))2σ

2

n
) .

Proof. The proof follows from using a Taylor expansion around µ. As g is differentiable, we have that
for all n, there exists µn in (Zn, µ) (if Zn < µ) or in (µ,Zn) (if Zn ≥ µ) such that

g(Zn) = g(µ) + g
′
(µn)(Zn − µ)

hence
√
n∣g(Zn) − g(µ)∣ = g

′
(µn)

√
n(Zn − µ) .

As ∣µn−µ∣ ≤ ∣Zn−µ∣ and Zn
P
Ð→ µ (by the same argument used in Remark 2.12), we have that µn

P
Ð→ µ.

If we assume g′ to be continuous1, it follows from Lemma 2.4 that g′(µn)
P
Ð→ g′(µ).

By assumption, we also have that
√
n(Zn − µ) ↝ Z where Z ∼ N(0,1). It follows from Slutsky’s

lemma (Lemma 2.5) that
√
n∣g(Zn) − g(µ)∣ ↝ g′(µ)Z

whose distribution is N(0, (g′(µ))2σ2).
1A slightly more complicated proof can also be given when g is not continuous, see e.g. [Rivoirard and Stoltz, 2009]
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◻

There exists also a multi-variate version of the Delta method, stated below.

Theorem 2.14. Let Zn = (Zn,1, . . . , Zn,d) be a sequence of random vectors in Rd such that

√
n(Zn − µ) ↝ N(0,Σ)

where µ ∈ Rd and Σ ∈ Rd×d is the covariance matrix. Let g ∶ Rd → R be a differentiable function and let
∇g(z) = (

∂g
∂z1

(z), . . . , ∂g∂zd (z))
⊺ be its gradient. If all the components of ∇g(µ) are non-zero, then

√
n (g(Zn) − g(µ)) ↝ N (0, (∇g(µ))⊺ Σ (∇g(µ)))

2.4 Asymptotic properties of the Maximum Likelihood Estimator

Given an iid sample X1, . . . ,Xn ∼ Pθ, we recall that the maximum likelihood estimator of the parameter
θ is defined

θ̂n ∈ argmax
θ∈Θ

L(X1, . . . ,Xn; θ).

Despite its implicit definition, as the maximizer of some function, we will see that this estimator enjoys
strong asymptotic performance guarantees, when the model satisfies some assumptions. In particular,
we will assume that the model is identifiable, that is

∀(θ, θ′) ∈ Θ, Pθ = Pθ′ if and only if θ = θ′.

2.4.1 Rationale

First, let us try to understand why the MLE is a good estimator. Let us denote by θ⋆ the true parameter
from which the data is generated. The maximum likelihood can be rewritten as follows, introducing
artificially the likelihood under θ⋆. Indeed, one can write

θ̂n ∈ argmax
θ∈Θ

fθ(X1) . . . fθ(Xn)

fθ⋆(X1) . . . fθ⋆(Xn)

θ̂n ∈ argmin
θ∈Θ

fθ⋆(X1) . . . fθ⋆(Xn)

fθ(X1) . . . fθ(Xn)

θ̂n ∈ argmin
θ∈Θ

log
fθ⋆(X1) . . . fθ⋆(Xn)

fθ(X1) . . . fθ(Xn)

θ̂n ∈ argmin
θ∈Θ

n

∑
i=1

log(
fθ⋆(Xi)

fθ(Xi)
)

θ̂n ∈ argmin
θ∈Θ

1

n

n

∑
i=1

log(
fθ⋆(Xi)

fθ(Xi)
)

Hence, θ̂n can be rewritten as the minimizer of some empirical average. Introducing the notation

Mn(θ, θ⋆) =
1

n

n

∑
i=1

log(
fθ⋆(Xi)

fθ(Xi)
)
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we know by the law of large number that, for all θ ∈ Θ,

Mn(θ, θ⋆)
P
Ð→ Eθ⋆ [log(

fθ⋆(X1)

fθ(X1)
)] = KL (Pθ⋆ , Pθ) (2.1)

where KL(P,P ′) is the KL divergence between distributions, introduced in Definition 1.33. The KL
divergence is not a distance but it still satisfies the following important property: KL(P,P ′) = 0 if an
only if P = P ′. In particular, KL(Pθ⋆ , Pθ) = 0 if and only if Pθ⋆ = Pθ, i.e. θ = θ⋆ as the model is
identifiable. Thus we have

argmin
θ∈Θ

KL (Pθ⋆ , Pθ) = θ⋆.

Hence, our hope is to prove that, under the model Pθ⋆ ,

θ̂n = argmin
θ∈Θ

Mn(θ, θ⋆)
P
Ð→ argmin

θ∈Θ
KL (Pθ⋆ , Pθ) = θ⋆

This will require slightly more sophisticated arguments than the convergence of the objective function
to minimize given in (2.1). We present them in the next section for more general M -estimators, that are
also expressed as minimizer of empirical averages.

2.4.2 Consistency of M-estimators

A M-estimator is any estimator defined as a minimizer of some empirical average:

θ̂n = argmin
θ∈Θ

Mn(θ) with Mn(θ) =
1

n

n

∑
i=1

mθ(Xi)

Letting M(θ) = E[mθ(X1)], if this expectation is finite we have Mn(θ)
P
Ð→ M(θ) for all θ ∈ Θ, and

we hope that θ̂n, a minimizer of Mn(θ), converges to θ0 = argmin
θ∈Θ

M(θ).

Example 2.15. In supervised learning, we observe iid pairs of the form (Xi, Yi) coming from some
unknown distribution P on X × Y where X is the feature space, often Rd and label space which is
either finite (classification) or continuous (regression). The goal is to produce a predictor f̂n ∶ X → Y ,
which is a data-dependent function mapping the feature to the label. Due to the generic empirical risk
minimization principle, many predictor can be expressed as M -estimators.

Given a class of function F , and some loss function L ∶ Y × Y → R+, we can define

f̂n ∈ argmin
f∈F

1

n

n

∑
i=1

L(f(Xi), Yi).

In this general (non-parametric) setting, the “parameter” is a function f (possible predictor), and we
have mf((Xi, Yi)) = L(f(Xi), Yi). We hope that f̂n converges to f0 ∈ argmin

f∈F
M(f) where M(f) =

E(X,Y )∼P [L(f(X), Y )], that is to a predictor that minimizes the risk associated to the loss function L.
Sometimes, the class of function F can be described by a small set of parameters (e.g. a set of linear

functions) and the regressor obtained by ridge regression can be defined as f̂n(x) = θ̂⊺nx for x ∈ Rd
where

θ̂n = argmin
θ∈Rd∶∥θ∥2≤C

1

n

n

∑
i=1

(Yi − θ
⊺Xi)

2 .

In this case we hope that θ̂n is close to θ0 ∈ argmin
θ∈Rd,∥θ∥≤C

E(X,Y )∼P [(Y − θ⊺X)2].
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To establish the convergence of θ̂n to θ0, we need two properties. The first one is a property of the
minimizer θ0, which has to be a strict local minima, and the second is about the convergence fromMn(θ)
to M(θ), which needs to be uniform.

Theorem 2.16. Let θ̂n = argmin
θ∈Θ

Mn(θ) and θ0 = argmin
θ∈Θ

M(θ). For Θ ⊆ Rd, let d a distance on Rd.

Assume that the following two properties hold:

1. For all ε > 0, supd(θ,θ0)≥εM(θ) >M(θ0).

2. supθ∈Θ ∣Mn(θ) −M(θ)∣
P
Ð→ 0.

Then θ̂n
P
Ð→ θ0.

Proof. From assumption 1., for every ε > 0, there exists ηε such d(θ, θ0) ≥ ε implies that M(θ) ≥

M(θ0) + ηε. One can write

P (d(θ̂n, θ0) ≥ ε) ≤ P (M(θ̂n) ≥M(θ0) + ηε)

= P (ηε ≤M(θ̂n) −M(θ0))

= P (ηε ≤M(θ̂n) −Mn(θ̂n) +Mn(θ̂n) −Mn(θ0) +Mn(θ0) −M(θ0))

As θ̂n is a minimizer of Mn, we have Mn(θ̂n) −Mn(θ0) ≤ 0 and

P (d(θ̂n, θ0) ≥ ε) ≤ P (ηε ≤M(θ̂n) −Mn(θ̂n) +Mn(θ0) −M(θ0))

≤ P(ηε ≤ 2 sup
θ∈Θ

∣Mn(θ) −M(θ)∣)

= P(sup
θ∈Θ

∣Mn(θ) −M(θ)∣ ≥
ηε
2
) ,

and the right-hand side tends to zero by assumption 2., which concludes the proof.

◻

Remark 2.17. Consistency also holds if θ̂n is not an exact minimizer of Mn(θ) (which can be hard to
compute in some practical cases), as long as its approximation error converges to zero (in probability).
A sufficient condition to obtain consistency for an approximate minimizer is to further assume that

Mn(θ̂n) ≤Mn(θ0) +En

for some random variable En
P
Ð→ 0.

Application to the MLE estimator Using Theorem 2.16, we can propose some sufficient condition
for the MLE to be a consistent estimator of θ⋆ when (X1, . . . ,Xn) ∼ Pθ⋆ .

Theorem 2.18 (Consistency of the MLE). Assume that the modelM= {fθ, θ ∈ Θ} satisfies the following
properties:

1. M is identifiable, i.e., fθ = fθ′ implies θ = θ′ for all (θ, θ′) ∈ Θ.
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2. Θ is compact and for all x ∈ X , θ ↦ fθ(x) is continuous.

3. For all θ ∈ Θ, Eθ [supθ′∈Θ ∣ log fθ′(X1)∣] < ∞.

Then for all θ⋆ ∈ Θ, the MLE estimator built from a n sample X1, . . . ,Xn ∼ fθ⋆ satisfies θ̂n
P
Ð→ θ⋆

(where the convergence is under the model Pθ⋆).

For theses assumption to be satisfied in simple models such as Bernoulli and Gaussian, we would
need to restrict the set of possible values for the means (to [p0,1 − p0] for p0 > 0 in the Bernoulli case,
or to some bounded interval [a, b] in the Gaussian case). But in these two cases, the consistency of the
MLE (which coincides with the empirical means) can already easily be established directly using the law
of large number. Still a result such as Theorem 2.18 provide some generic guarantees for the MLE in
potentially more complex models, under some restriction on the parameter space.

2.4.3 Asymptotic normality of the MLE estimator

Under stronger assumptions, it is also possible to further exhibit the limiting distribution of the MLE
estimator. We start by presenting the result and a sketch of proof for the estimation of a one-dimensional
parameter θ ∈ R. Given a n sample X1, . . . ,Xn ∼ Pθ, we recall that I(θ) denotes the Fisher information
obtained from one sample X1.

Theorem 2.19. Let θ̂n be the MLE of a parameter θ ∈ R computed on a n sample X1, . . . ,Xn ∼ Pθ. If
θ̂n is consistent and if the model is regular (according to Definition 1.21) then if the Fisher information
satisfies I(θ) > 0,

√
n(θ̂n − θ) converges in distribution under Pθ towards a Gaussian distribution:

√
n(θ̂n − θ) ↝ N (0,

1

I(θ)
) .

Proof. Let `(θ) = log fθ(X1, . . . ,Xn) be a simplified notation for the log-likelihood, and let `′(θ) be its
derivative (in θ). As a minimizer of `, the MLE estimator satisfies `′(θ̂n) = 0. Using a Taylor expansion
of `′ in the true parameter θ, we can write

0 = `′(θ̂n) = `
′
(θ) + (θ̂n − θ)`

′′
(θ̃n)

for some θ̃n ∈ (θ, θ̂n) (or (θ̂n, θ)). Hence, one can write

θ̂n − θ = −
`′(θ)

`′′(θ̃n)

√
n (θ̂n − θ) =

1√
n
`′(θ)

− 1
n`

′′(θ̃n)
(2.2)

The numerator in (2.2) can be written

1
√
n
`′(θ) =

√
n(

1

n

n

∑
i=1

s(Xi, θ)) .

Using that under a regular model Eθ [s(X1; θ)] = 0 and Varθ [s(X1; θ)] = I(θ), one gets using the
Central Limit Theorem that

1
√
n
`′(θ) ↝ N (0, I(θ))
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From the consistency of θ̂n we know that θ̂n
P
Ð→ θ, from which we deduce that θ̃n

P
Ð→ θ. The

denominator of (2.2) can be written (this is the part where the proof becomes approximately correct)

−
1

n
`′′(θ̃n) =

1

n

n

∑
i=1

−(
∂2 log fθ(Xi)

∂2θ
)
θ̃n

≃
1

n

n

∑
i=1

−(
∂2 log fθ(Xi)

∂2θ
)
θ

By the law of large numbers, under the model Pθ, this empirical average converges in probability to
Eθ [−∂

2 log fθ(X1)

∂2θ
] which is equal to the Fisher information I(θ) (using Lemma 1.26).

As I(θ) ≠ 0, we can use Slutsky’s lemma to get that

√
n (θ̂n − θ) ∼

1

I(θ)
N (0, I(θ)) = N (0,

1

I(θ)
) .

◻

A useful consequence of Theorem 2.16 is that it allows us to build asymptotic confidence regions
around the MLE estimator, by replacing the (unknown) quantity I(θ) by its empirical version I(θ̂n).

Corollary 2.20. Under the assumptions of Theorem 2.19, if θ ↦ I(θ) is continuous in θ then under the
model Pθ, √

nI(θ̂n) (θ̂n − θ) ↝ N(0,1) .

Proof. Using the continuous mapping lemma and the consistency of θ̂n yields that, under Pθ, I(θ̂n)
P
Ð→

I(θ). From Theorem 2.19 we have that under Pθ,
√
nI(θ) (θ̂n − θ) ↝ N(0,1). Using Slutsky’s lemma,

√

nI(θ̂n) (θ̂n − θ) =

¿
Á
ÁÀI(θ̂n)

I(θ)
×
√
nI(θ) (θ̂n − θ)

converges in distribution to N(0,1).

◻

Hence, if our model is regular enough, we can build asymptotic confidence intervals of level 1 − α
around the MLE estimator (and resulting tests, see the next chapter) that are of the form

⎡
⎢
⎢
⎢
⎢
⎣

θ̂n −

¿
Á
ÁÀ

1

nI(θ̂n)
qα/2; θ̂n −

¿
Á
ÁÀ

1

nI(θ̂n)
qα/2

⎤
⎥
⎥
⎥
⎥
⎦

where qα is such that PZ∼N(0,1) (Z ≤ qα) = 1 − α. We provide an example below.

Example 2.21. Consider the Poisson model X1, . . . ,Xn
iid
∼ P(λ) where we recall that

fλ(k) =
λk

k!
e−λ

for all k ∈ N. The MLE is given by λ̂n = 1
n ∑

n
i=1Xi and the Fisher information (of one sample) satisfies

I(λ) = Eλ [−
∂2

∂2λ
log fλ(X1)]
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We have

∂ log fλ(X1)

∂λ
=

X1

λ
− 1

∂ log fλ(X1)

∂λ
= −

X1

λ2

hence I(λ) = Eλ [X1

λ2
] = 1

λ as the mean of a Poisson distribution with parameter λ is λ. Applying
Corollary 2.20 yields that, under Pλ,

√
n

λ̂n
(λ̂n − λ) ↝ N(0,1) .

Now, let’s use this information to build an asymptotic confidence interval on λ. We have that

Pλ (−qα/2 ≤
√

n

λ̂n
(λ̂n − λ) ≤ qα/2) Ð→

n→∞
PZ∼N(0,1) (−qα/2 ≤ Z ≤ qα/2)

= P(Z ≤ qα/2) − P (Z ≤ −qα/2)

= P(Z ≤ qα/2) − P (Z > qα/2)

= 1 −
α

2
−
α

2
= 1 − α

Putting λ in the center of the interval, we have

Pλ
⎛

⎝
λ̂n −

√

λ̂n
n
qα/2 ≤ λ ≤ λ̂n +

√

λ̂n
n
qα/2

⎞

⎠
Ð→
n→∞

1 − α

which provides an asymptotic confidence interval of level 1 − α.

Extensions of Theorem 2.19 First, this result is also true for the estimation of a multi-dimensional
parameter θ ∈ Rd using the MLE. Under similar assumptions, we obtain that under Pθ,

√
n(θ̂n − θ) ↝ N (0, I(θ)−1)

but this time the Fisher information I(θ) is a d × d matrix, assumed to be invertible (see its definition in
Section 1.4.2).

Then, while we presented the consistency results for the general family of M-estimators, we sticked
to the MLE case for the asymptotic normality result. A counterpart of Theorem 2.19 also exists for
M-estimators, see e.g. the book [Van der Vaart, 1998].

2.5 Asymptotic efficiency

In light of the Cramer-Rao lower bound given in Chapter 1, any estimator of a parameter g(θ) ∈ R whose
limit distribution satisfies

ĝn ≈ N (g(θ),
(g′(θ))2

nI(θ)
)
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is called asymptotically efficient. The reason is that, asymptotically, is is unbiased with a variance that is
the minimal variance prescribed by the Cramer-Rao lower bound.

For estimating the parameter θ, (under appropriate regularity conditions) the MLE is an example of
asymptotically efficient estimator, as we just saw that it satisfies

ĝn ≈ N (θ,
1

nI(θ)
) .

However, we can find examples of MLE that are not efficient. Take for instance the MLE estimator of
the variance of the Gaussian distribution, which is biased. We shall see other examples in exercises.



Chapter 3

Likelihood Ratio based Testing

After some reminder about the general formalism of (parameteric) statistical test, we present an important
family of tests: likelihood ratio tests.

3.1 Statistical tests

Given a parametric model X ∼ Pθ, where θ ∈ Θ, a statistical test is an answer about some question about
the unknown parameter θ of the form: does θ belong to a certain subset Θ0 ⊂ Θ? Given two disjoint
subsets Θ0 and Θ1 (that do not have to form a partition of Θ), a testing problem is characterized by two
hypotheses:

H0 ∶ (θ ∈ Θ0) against H1 ∶ (θ ∈ Θ1).

When Θi is reduced to a singleton, i.e. Hi = (θ = θ0), the hypothesis to test is called simple, otherwise it
is called composite. H0 is called the null hypothesis and H1 the alternative hypothese. As we shall see,
they play different roles.

A test can be formalized as a decision functionD ∶ X → {0,1}, where (D(X) = 1) means that given
the observed data X ∈ X we tend to reject H0 and claim that H1 holds instead and (D(X) = 0) means
that we do not reject H0. Hence (D(X) = 0) is not to be interpreted as a decision thatH0 is true, rather
that the observation X is still compatible withH0 being true.

The statistical guarantees that we can offer for a test are expressed in terms of type I error and type
II error (or power).

● The type I error, denoted by α is often the primary concern of the statistician. It is defined for
θ ∈ Θ0 as

α(θ) = Pθ (D(X) = 1) .

A small type I error means that the probability to rejectH0 when it is actually true is small.

● The type II error at a given alternative θ ∈ Θ1 is denoted by

β(θ) = Pθ (D(X) = 0)

and measure the probability to not detect that H1 in this alternative. Conversly, the power (in the
alternative θ ∈ H1) is the probability to detect thatH1 holds, i.e. 1 − β(θ).

29
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In a statistical testing problem, we usually require to control the type I error for any possible θ ∈ Θ0

and define the level of significance of the test to be α = supθ∈Θ0
α(θ). Then, subject to this type I error

control, we seek to provide guarantees on the type II error, or on the power, at least for θ in some part of
the alternative.

In the (common) particular case whereX = (X1, . . . ,Xn)
iid
∼ Pθ is a n samples, we can also consider

the asymptotic quality of a test, when the sample size n goes large. In that case, indexing the test by its
sample size, that is writing Dn instead of D, we define an asymptotic test of level α to be such that, for
all θ ∈ Θ0,

lim
n→∞

Pθ (Dn(X1, . . . ,Xn) = 1) ≤ α.

Similarly, one can look at the asymptotic type II error or power of a test.

Example and methodology Tests are often based on some test statistic, denoted by T = t(X) ∈ R (Tn
in the n-sample case) and reject the null hypothesis when T belongs to some rejection region R ⊆ R
(which typically depends on the desired significance level α we seek). We write

D(X) = 1 (T ∈ R) .

The test statistic is chosen so that its distribution (or its asymptotic distribution) under the null hypothesis
(that is, for all θ ∈ Θ0) is known. We use this knowledge to find a rejection regionRα such that

∀θ ∈ Θ0, Pθ (T ∈ Rα) ≤ α

and our test at level α is Dα(X) = 1 (T ∈ Rα). For power computation, it can be useful to also know
the distribution of the test statistic under the alternative. In the n-sample setting, the power will typically
increase with the sample size, and it is common to select the sample size so as to guarantee a minimal
power in some part of the alternative.

Example 3.1. We illustrate the testing methodology on a simple example: X1, . . . ,Xn is a n sample
from a N(µ,1) distribution and we are testing the hypothesis

H0 ∶ (µ = µ0) against H1 ∶ (µ = µ1)

for two distinct values µ0 < µ1.
The test is about the parameter µ so it is quite natural to base our test on an estimator of this

parameter: we take the maximum likelihood estimator, which is the empirical mean µ̂n = 1
n ∑

n
i=1Xi. In

order to calibrate the test, we should know the distribution (or asymptotic distribution) of this estimator
(or some transformation of it) under H0. In this simple Gaussian setting, µ̂n also follows a Gaussian
distribution: µ̂n ∼ N (µ0,

1
n
). A natural test statistic is

Tn =
√
n (µ̂n − µ0)

as under H0, Tn ∼ N(0,1). Note that we also know the distribution of Tn under H1. Indeed by writing
Tn =

√
n(µ1 − µ0) +

√
n (µ̂n − µ1) we have that underH1, Tn ∼ N (

√
n(µ1 − µ0),1).

Given these observations, we expect Tn to take values close to zero when H0 is true, and very large
values when H1 is true. This motivates a simple rejection region R = [t,+∞[ for some threshold t,
hence the resulting test is Dn(X) = 1(Tn > t). Now we calibrate the threshold in order to guarantee
the desired type I error:

Pθ0(Dn(X) = 1) = Pθ0(Tn > t) = α



3.2. LIKELIHOOD-RATIO TESTS 31

if we choose t = qα, the 1 − α quantile of the standard normal distribution: PZ∼N(0,1)(Z ≤ qα) = 1 − α.
The type II error is

Pθ1(Dn(X) = 0) = Pθ1(Tn ≤ qα) = Φ(−
√
n(µ1 − µ0) + qα) = 1 −Φ(

√
n(µ1 − µ0) − qα)

where Φ is the standard Gaussian cdf.
In order to guarantee a desired type II error β (additionally to the type I error which is already

guaranteed for any sample size n), we can choose the sample size n to satisfy

√
n(µ1 − µ0) − qα = qβ, i.e. n =

(qα + qβ)
2

(µ1 − µ0)
2
.

As we see in this example, finding good estimator and their distribution (or asymptotic distribution)
underH0 andH1 is a very important first step in order to choose a test statistic and calibrate a test.

3.2 Likelihood-Ratio Tests

Given two hypotheses
H0 ∶ (θ ∈ Θ0) against H1 ∶ (θ ∈ Θ1).

the idea of a likelihood ratio test is to compare the likelihood of the observation L(X; θ) for parameters
θ that come from Θ0 and from Θ1.

A Likelihood-Ratio Test (LRT) rejectH0 for large enough values of the test statistic

Λ(X) =
supθ∈Θ1

L(X; θ)

supθ∈Θ0
L(X; θ)

or equivalently for large values of the log-likelihood ratio

log Λ(X) = log(
supθ∈Θ1

L(X; θ)

supθ∈Θ0
L(X; θ)

) .

More precisely, a LRT is of the form D(X) = 1(Λ(X) > t) for some threshold t > 1 or D(X) =

1(log Λ(X) > u) for some u > 0. The idea of the test is to reject H0 when parameters in Θ1 are
significantly more likely that parameters in Θ0.

Remark 3.2. LRT are often used in settings where Θ1 = Θ/Θ0 where Θ is the entire set of possible
parameters. In that case, one of the suprema will be equal to L(X, θ̂MLE). In particular, the likelihood-
ratio test will rejectH0 is the MLE belong to Θ1 and satisfies

L(X; θ̂MLE)

supθ∈Θ0
L(X; θ)

≥ t

for some well chosen threshold t.

Computational aspects In full generality, the computation of the likelihood ratio can be challenging,
as unlike in the MLE case, we are required to solve at least one constrained optimization problem.
In particular, when the hypotheses are composites (i.e. when neither Θ0 nor Θ1 are reduced to one
element) the LRT is sometimes called the Generalized Likelihood Ratio Test (GLRT), the LRT being
reserved to the simpler setting of testing two simple hypotheses where 1) the computation of the statistic
is straightforward and 2) we have strong optimality guarantees, as will be explained in the next section.
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Calibration of a LRT To use a LR test in practise, we need to find a threshold tα such that if we define

D(X) = 1(
supθ∈Θ1

L(X; θ)

supθ∈Θ0
L(X; θ)

> tα)

the test has a type I error smaller than α for all θ ∈ Θ0. This can be done case by case using arguments that
are specific to the distribution at hand, but in Section 3.5 we will present a general result for calibrating
(asymptotically) a GLRT.

Example 3.3. Let’s go back to the simple setting of Example 3.1. Letting fµ be the density of aN(µ,1)
distribution, the log-likelihood ratio in this case is

log
∏
n
i=1 fµ1(Xi)

∏
n
i=1 fµ0(Xi)

=
n

∑
i=1

[−
(Xi − µ1)

2

2
+

(Xi − µ0)
2

2
]

=
1

2

n

∑
i=1

(µ1 − µ0)(2Xi − µ0 − µ1)

= (µ1 − µ0) [nµ̂n − n
µ0 + µ1

2
] .

Hence, we see that log Λ(X) > u is equivalent to

µ̂n >
µ0 + µ1

2
+

u

n(µ1 − µ0)
.

Hence the LRT is of the form Dn(X) = 1(µ̂n > x) for some threshold x. We remark that we this test is
exactly the one proposed in Example 3.1, where we chose

x = µ0 +
qα
√
n

to guarantee a type I error α.

3.3 The Neyman-Pearson lemma

The result of this section is a first motivation for the use of LR tests: in some simple settings, LRT can
be better than other tests, according to the following definition.

Definition 3.4. Let α ∈ [0,1]. A statistical test D is called Uniformly More Powerful at level α (denoted
by UMP(α)) if

1. the test D is of level α, i.e., ∑θ∈Θ0
Pθ(D(X) = 1) = α

2. For all other test D′ that is of level α, ∀θ ∈ Θ1, Pθ(D(X) = 1) ≥ Pθ(D′(X) = 1).

The Neyman-Pearson lemma shows that for testing two simple hypotheses

H0 ∶ (θ = θ0) against H1 ∶ (θ = θ1)

where θ0 and θ1 are two distinct points of Θ, likelihood ratio tests, that have the simple form

Dt(X) = 1(
f1(X)

f0(X)
> t) (3.1)

can be UMP(α). Such simple likelihood-ratio tests are sometimes called Neyman-Pearson tests, due to
the following result.
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Theorem 3.5 (Neyman-Pearson lemma). For α ∈ (0,1), if there exists a treshold tα > 1 such that the
likelihood ratio test Dtα as defined in (3.1) satisfies Pθ0(Dtα(X) = 1) = α, then this test is UPP(α).

Proof. To ease the notation we denote by D(X) = 1 (
fθ1(X)

fθ0(X)
> tα) a LR test satisfying Pθ0(D(X) =

1) = α and we let D′ we another test satisfying Pθ0(D′(X) = 1) ≤ α. In particular, we have

Pθ0(D(X) = 1) − Pθ0(D
′
(X) = 1) ≥ 0 ⇔ Eθ0[D(X) −D′

(X)] ≥ 0 .

Our goal is to prove that

Pθ1(D(X) = 1) − Pθ1(D
′
(X) = 1) ≥ 0 ⇔ Eθ1[D(X) −D′

(X)] ≥ 0 .

The proof consists in relating the expectation of D(X)−D′(X) under θ1 to that under θ0. To do so,
we introduce the function

g(x) = (D(x) −D′
(x))(fθ1(x) − tαfθ0(x))

and we prove that this function is always non-negative by considering four cases:

1. If fθ0(x) = fθ1(x) = 0, then g(x) = 0.

2. If fθ0(x) = 0 and fθ1(x) > 0, then the value of the likelihood ratio f1(x)
f0(x)

is infinite, and as the
threshold tα is finite, we have D(x) = 1, which leads to D(x) − D′(x) ≥ 0 for any D′ and
g(x) = (D(x) −D′(x))fθ1(x) ≥ 0.

3. If fθ0(x) > 0 and fθ1(x) − tαfθ0(x) > 0, by definition of D, D(x) = 1 hence D(x) −D′(x) ≥ 0
for any D′ and g(x) ≥ 0.

4. If fθ0(x) > 0 and fθ1(x) − tαfθ0(x) < 0, by definition of D, D(x) = 0 hence D(x) −D′(x) ≤ 0
for any D′ and g(x) ≥ 0.

We deduce that

Eθ1[D(X) −D′
(X)] − tαEθ0[D(X) −D′

(X)] = ∫
X
g(x)dν(x) ≥ 0

hence Eθ1[D(X) −D(X ′)] ≥ tαEθ0[D(X) −D′(X)] ≥ 0, which concludes the proof.

◻

The statement of Theorem 3.5 suggests that for a given α ∈ (0,1), there does not always exist a LR
test that has a type I error exactly equal to α. This has to be nuanced a bit.

For continuous distributions, that is when fθ0 is a density with respect to the Lebesgue measure, there
is actually no such issue: it is always possible to find tα such that

Pθ0 (f1(X) > tαf0(X)) = α.

Indeed, letting E(t) = (f1(X) > tf0(X)), one can justify that t↦ P(E(t)) is continuous, non-increasing
and satisfies P(E(0)) = 1 and limt→∞ P(E(t)) = 0. By the intermediate value theorem, for any α ∈

(0,1), there exists tα such that P(E(tα)) = α.
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For discrete distribution however, it is not always possible to exactly match some level α with a LR
test. We can looke at a simple example to understand what happens: if we collect Bernoulli samples
X1, . . . ,Xn

iid
∼ B(θ) and we want to test H0 ∶ (θ = θ0) and H1 ∶ (θ = θ1) for θ0 < θ1, we can prove that

a LR test is of the form Dn(X) = 1 (T (X) > t) where T (X) = ∑
n
i=1Xi follows a binomial distribution

B(n,µ0) under H0. As T (X) only takes integer values in {0,1, . . . , n}, there are only n + 1 possible
values of Pθ0(Dn(X) = 1), hence not all α ∈ (0,1) can be exactly attained. For example if θ0 = 0.6
and n = 10 we can show that Pθ0(T (X) > 7) ≃ 0.167 while Pθ0(T (X) > 8) ≃ 0.046, hence there is no
threshold that provides a type I error exactly equal to α = 0.05. In that case, it is common to choose the
threshold giving the largest type I error that is smaller than α, that is t = 8 in this example.

Remark 3.6 (randomized test). For discrete distributions, it is actually possible to exactly match a
type I error α by considering the broader class of randomized tests. A randomized test is a mapping
D̃ ∶ X → [0,1] and D̃(X) = γ with γ ∈ (0,1) leads to rejectingH0 with probability γ. More concretely,
the actual decision D to rejectH0 or not reject it from the randomized test D̃ can be written

D(X) = 1(U ≤ D̃(X))

where U ∼ U([0,1]) is a uniform random variable that is independent from X .
A randomized Likelihood Ratio test can be defined by a threshold t and a parameter γ ∈ [0,1) as

follows:

D̃t,γ(X) = 1 if
L(X; θ1)

L(X; θ0)
> t

D̃t,γ(X) = γ if
L(X; θ1)

L(X; θ0)
= t

D̃t,γ(X) = 0 if
L(X; θ1)

L(X; θ0)
< t

The type I error of this randomized test is

Pθ0(Dt,γ(X) = 1) = Pθ0 (
L(X; θ1)

L(X; θ0)
> t) + γPθ0 (

L(X; θ1)

L(X; θ0)
= t) .

Hence in the discrete setting by choosing tα = inf{t ∶ Pθ0 (
L(X;θ1)
L(X;θ0)

> t) ≤ α} and

γα =
α − Pθ0 (

L(X;θ1)
L(X;θ0)

> tα)

Pθ0 (
L(X;θ1)
L(X;θ0)

= tα)

we end up with a test that has exactly a type I error α (and will have a larger power than when setting
γ = 0).

By considering the more general class of randomized LRT, we can have a stronger version of Theo-
rem 3.5 saying that for any α ∈ (0,1) there exists a (possibly randomized) LRT with level α and that any
other test of level α has a smaller power.
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3.4 Particular forms of the Neyman-Person test

We already mentioned two examples (Gaussian and Bernoulli distribution) for which the Neyman-
Pearson test ends up having a simple form. First, we explain that this properties can be extended to
exponential families. We recall that a family of distributions Pθ forms an exponential families if their
densities with respect to some common reference measure ν is of the form

fθ(x) = h(x) exp (T (x)a(θ) − b(θ)) .

Proposition 3.7. In an exponential family of the above form with a(θ0) < a(θ1), the LR test for testing

H0 ∶ (θ = θ0) against H1 ∶ (θ = θ1)

based on an n sample X1, . . . ,Xn from fθ takes the form Dn(X) = 1 (∑
n
i=1 T (Xi) > t) where T is the

canonical statistic of the exponential family.

Proof. The likelihood ratio can be written as follows:

Λ(X) =
∏
n
i=1 h(Xi) exp(T (Xi)a(θ1) − b(θ1))

∏
n
i=1 h(Xi) exp(T (Xi)a(θ0) − b(θ0))

=
exp(∑ni=1 T (Xi)a(θ0) − nb(θ0))

∑
n
i=1 T (Xi)a(θ1) − nb(θ1))

= exp((a(θ1) − a(θ0))
n

∑
i=1

T (Xi) − n(b(θ1) − b(θ0)))

Hence log Λ(X) > u is equivalent to

(a(θ1) − a(θ0))
n

∑
i=1

T (Xi) − n(b(θ1) − b(θ0)) > u .

As a(θ1) − a(θ0) > 0 this is in turn equivalent to

n

∑
i=1

T (Xi) >
u + n(b(θ1) − b(θ0))

a(θ1) − a(θ0)
.

◻

This property extends to any family of distribution that possesses a sufficient statistic (see Sec-
tion 1.4.3). Recall that the density of a n samples X1, . . . ,Xn under such a distribution can be expressed
as follows:

fθ(x1, . . . , xn) = g(x1, . . . , xn)h(S(x1, . . . , xn); θ) .

In that case Λ(X) =
h(S(X);θ1)
h(S(X);θ0)

and the LR is of the form

Dn(X) = 1(S(X1, . . . ,Xn) ∈ R)

where the rejct region is of the formR = {s ∈ Y ∶
h(s;θ1)
h(s;θ0)

> t} for some t > 0 and S ∶ X n → Y .
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3.5 Testing composite hypotheses

Simple hypotheses are quite restrictive. As a first step towards generalization, a more useful test is to
check whether the value of the parameter θ is larger than some reference value. This corresponds to a
case in whichH0 is a simple hypothesis, whileH1 is composite.

H0 ∶ (θ = θ0) against H1 ∶ (θ > θ0) (3.2)

Such a test could be useful to access the efficacy of a new treatment in a setting where the average
efficacy of the standard of care (θ0) is considered known.

Back to our Gaussian example In Example 3.1, we studied a LR test for testing

H0 ∶ (µ = µ0) against H1 ∶ (µ = µ1) (3.3)

based on iid observations X1, . . . ,Xn from N(θ,1), when µ0 < µ1. This test is given by

Dn(X) = 1(µ̂n > µ0 +
qα
√
n
)

and has type I error α. As this test does not depend on µ1, it is also a valid test for

H0 ∶ (µ = µ0) against H1 ∶ (µ > µ0) . (3.4)

The type I error is still α (as H0 is the same). Now consider any other possible test D′
n for (3.4). For

any µ1 > µ0, the Neyman-Pearson lemma applied to the test (3.3) tells us that Pµ1(Dn(X) = 1) ≥

Pµ1(D′
n(X) = 1). It follows that the test Dn is UMP(α) for (3.4).

In this simple example, one could investigate what a (Generalized) Likelihood Ratio would be for
the composite hypothesis testing problem (3.4). The log-likelihood ratio is given by

log Λ(X) = sup
µ∶µ>µ0

log
L(X1, . . . ,Xn;µ)

L(X1, . . . ,Xn, µ0)

and the same computations as in Example 3.3 further yield

log Λ(X) = sup
µ∶µ>µ0

(µ − µ0) (nµ̂n − n
µ0 + µ

2
)

To compute this constrained maximization, one can consider two cases: either the MLE µ̂n is larger than
µ0 and the supremum is attained for µ = µ̂n, or µ̂n ≤ µ0 in which case for all µ > µ0, µ̂n −

µ0+µ
2 ≤ 0 and

the function to maximize is always negative, and maximal at µ = µ0, where it is zero. We obtain

log Λ(X) =
n

2
(µ̂n − µ0)

21(µ̂n ≥ µ0) .

And log Λ(X) > u is equivalent to

µ̂n > µ0 +

√
2u

n
,

which is (again) the same form as the previous test. This provides an example of composite hypothesis
testing problem in which the LRT is optimal, in that when calibrated to get a type I error α, it is UMP(α).
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3.5.1 Testing complementary hypotheses

For composite hypotheses, Likelihood Ratio Tests are more common when the two hypotheses that are
tested are complementary, that is when we have Θ1 ∶ Θ/Θ0 and we are therefore testing

H0 ∶ (θ ∈ Θ0) against H1 ∶ (θ ∈ Θ/Θ0) . (3.5)

In this context, the likehood ratio as we defined it should be written

Λ(X) =
supθ∈Θ/Θ0

L(X; θ)

supθ∈Θ0
L(X; θ)

.

But for hypotheses of the form (3.5) it is actually more common to define

Λ̃(X) =
supθ∈ΘL(X; θ)

supθ∈Θ0
L(X; θ)

=
L(X; θ̂MLE)

supθ∈Θ0
L(X; θ)

.

First, from a computational perspective, the latter is preferable as it only features one constrained opti-
mization problem. Then, it can be observed that for any threshold t > 1,

Λ(X) > t ⇔ Λ̃(X) > t

so the decision associated to comparing these two statistic to a threshold is the same. To justify this fact,
we can observe that Λ(X) > 1 or Λ̃(X) > 1 if an only if the MLE estimator θ̂MLE belongs to Θ/Θ0, and
in that case Λ(X) = Λ̃(X).

A testing problem for which the expression of the likelihood ratio is particularly simple is

H0 ∶ (θ = θ0) against H1 ∶ (θ ≠ θ0) (3.6)

for which we have

Λ̃(X) =
L(X, θ̂MLE)

L(X,θ0)

As we see in that case there is no constrained optimization problem to be solved at all. Compared to
the testing problem (3.2), the testing problem (3.6) is called two-sided (as the parameter in the null
hypothesis have alternative parameters on both sides).

For a two-sided test, there is intuitively no hope to derive a uniformly more powerful test of level α:
it is always possible to increase the power on one side of the alternative at the cost of decreasing it on
the other side. For example the UMP(α) test that we derived in the previous Gaussian example for (3.4)
has a very low power for any µ < µ0 (as it rejects the null only when µ̂n is significantly larger than µ0).
Conversely, rejecting when µ̂n < µ0 −

qα√
n

would yield a good power for µ < µ0 but a very small power

for µ > µ0. We would certainly prefer rejecting for ∣µ̂n − µ0∣ >
qα/2
√
n

which yields reasonable power on
both sides of the alternative... but is not uniformly better than the two tests previously mentioned.

3.5.2 Optimality properties

Based on the previous example, one could hope that when UMP(α) exist, they are likelihood ratio tests.
Sadly, there is no general result saying this. However, there exists some tests that are UMP(α) for
particular hypothesis testing problems, under some conditions on the likelihood (and in some cases,
those may coincide with LRTs, but there is no general rule about that). We present an example below.
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Definition 3.8. A family of distribution {Pθ, θ ∈ Θ} is a monotonic density ratio family if there exists a
statistic T (x) such that

∀θ < θ′,
fθ′(x)

fθ(x)
= g(T (x))

for some non-decreasing function g (that may depend on θ and θ′).

Theorem 3.9 (Lehmann’s theorem). Let θ1 ≥ θ0. Consider the composite hypothesis testing

H0 ∶ (θ ≤ θ0) against H1 ∶ (θ > θ1)

based on a n-sample X1, . . . ,Xn whose (joint) distribution Pθ belongs to a monotonic density ratio
family with statistic T (x). Then the test given by Dn(X) = 1 (T (X1, . . . ,Xn) > t) is UMP(α) where
α = supθ≤θ0 Pθ(Dn(X) = 1).

Example 3.10. The computations of Example 3.3 shows that the Gaussian n-sample model (with a fixed
variance) is a monotonic density ratio family, with the statistic T (x1, . . . , xn) =

1
n ∑

n
i=1Xi. The same

holds for exponential families, if θ ↦ a(θ) is increasing (see the proof of Proposition 3.7).

3.5.3 Asymptotic calibration of a Likelihood-Ratio Test

Even if there are no general optimality properties (expressed with the UMP(α) property introduced in
this chapter), we show below a general result providing a way to calibrate a Generalized Likelihood
Ratio test using asymptotic considerations. This results holds for particular forms of testing problems
that generalize the two-sided test

H0 ∶ (θ = θ0) against H1 ∶ (θ ≠ θ0)

to possibly higher dimension of the parameter space.

Theorem 3.11 (Wilk’s theorem). Consider a n-samples X1, . . . ,Xn ∼ Pθ coming from a parame-
teric model {Pθ, θ ∈ Θ}. Assume that Θ0 defines a linear sub-hypothesis of Θ with dim(Θ) = p and
dim(Θ0) = q. Assume that the MLE estimator satisfy the conditions of Theorem 2.19 to be asymptoti-
cally normal. Then, for any θ ∈ Θ0,

2 log Λ̃(X1, . . . ,Xn) ↝ χ2
(p − q)

Hence the test Dn(X) = 1 (2 log Λ̃(X1, . . . ,Xn) > tα) with tα equal to the 1 − α quantile of the chi-
square distribution with p − q degrees of freedom is asymptotically of level α.

The notion of “linear sub-hypothesis” is a bit vague. It means that Θ0 puts some constraints on the
parameters (θ1, . . . , θp) ∈ Θ, and that these constraints are linear (or actually affine). Here are a few
examples of such constraints:

● a subset (say m) of the p variable are set to fixed values: the dimension of Θ0 is q = p −m

● a subset of the variables are equal: θ1 = θ2 = ⋅ ⋅ ⋅ = θm: the dimension of Θ0 is q = p −m + 1

A particular two-dimensional example of interest is the two sample test

H0 ∶ (θ1 = θ2) against H1 ∶ (θ1 ≠ θ2)

when we collect data from two distributions Pθ1 and Pθ2 . In that case dim(Θ0) = 1 while dim(Θ) = 2.
We will discuss such examples in exercises.
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3.6 Wald Test versus LRT

Is the LRT better than other tests? In the composite setting, this question is complicated, as there are no
strong optimality property for the LRT. In many cases, it actually ends up being close to tests that we
could have derived using another approaches.

From the first part of this course, another (asymptotic) approach to testing seems natural: start from
a good estimator of the parameter θ involved in the testing problem, prove its asymptotic normality, and
use a Gaussian distributed test statistic. This is known as performing a Wald test. Its definition in the
uni-dimensional setting is the following.

Definition 3.12. Consider testing

H0 ∶ (θ = θ0) against H1 ∶ (θ ≠ θ0)

Assume that θ̂ is asymptotically normal, that is, for θ = θ0,

(θ̂n − θ0)

ŝen
↝N(0,1)

Then Wald test of level α if Dn(X) = 1(∣Wn∣ > qα/2) where

Wn =
(θ̂n − θ0)

ŝen

When θ̂n is the MLE and under appropriate regularity assumption, we saw in Chapter 2 (see Corol-
lary 2.20) that underH0,

√

nI(θ̂n) (θ̂n − θ0) ↝ N(0,1)

where I(θ) is the Fisher information, so our standard deviation is ŝen =
√

I(θ̂n)−1
n .

For this particular case, we can argue that the Wald test and the LRT test are actually close, by
proposing an approximation of the log-likelihood ratio. Using a Taylor expansion in θ̂n, we have

log Λ̃(X) = logL(X; θ̂n) − logL(X; θ0) ≃ −
∂`(X; θ̂n)

∂θ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

(θ̂n − θ0) −
1

2

∂2`(X; θ̂n)

∂2θ
(θ̂n − θ0)

2

2 log Λ̃(X) ≃ −
1

n

∂2`(X; θ̂n)

∂2θ
(
√
n(θ̂n − θ0))

2

2 log Λ̃(X) ≃ I(θ0) (
√
n(θ̂n − θ0))

2

2 log Λ̃(X) ≃
I(θ0)

I(θ̂n)
W 2
n

where the last but one step uses the law of large number and the definition of the Fisher information + the
consistency of θ̂n. Despite their closeness in the asymptotic regime, for moderate values of the sample
size, the LRT and the Wald test could still give different results, and both can be worth trying.
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The multi-dimensional setting We did not spend much time on the multi-dimensional setting in Chap-
ter 2, but when θ ∈ Rd, the MLE estimator can also be asymptotically normal, where the convergence is
towards a multi-variate Gaussian (recall that in that case the Fisher information is a d × d matrix). One
can use this result to propose tests for

H0 ∶ (Aθ = Aθ0) against H1 ∶ (Aθ ≠ Aθ0)

for some θ0 ∈ Rd and some matrix A ∈ Rr×p such that rg(A) = r, also called a Wald test. The proposed
test relies on using the multi-variate Delta-method to get the asymptotic distribution of Aθ̂n. Its general
expression is beyond the scope of this course, but we provided an example in Exercise 3 of TD3.
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