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1 Building a MAB problem

In a stochastic multi-armed bandit model, each arm is a probability distribution
and drawing an arm means observing a sample from this distribution. We will
consider only distributions supported in [0,1]. Arms can be implemented as
objects, and we give the following classes (you can create others):

armBernoulli.m armBeta.m armFinite.m armExp.m

For each object Arm belonging to one of these classes, we have the following
commands (methods):

o Arm.mean returns the mean of the arm

o Arm.play gives a sample from the arm

A multi-armed bandit model is a collection of arms:
MAB = {Armi, Arm2, ...,ArmK}

Start by completing the begining of the file ‘'mainTP2.m’ with your own multi-
armed bandit problem (i.e. choose the number of arms and the distribution of
each arm).

2 The UCB algorithm

We denote by :
e N,(t) the number of draws of arm a up to time ¢

e S,(t) the sum of rewards gathered up to time ¢



fiq(t) = f,” ((?) is therefore the empirical mean of the rewards gathered from arm

a up to time ¢. When N;(a) > 0, the UCB index associated to arm « is

alog(t)
N (t)

The a-UCB algorithm starts with an initialization phase that draws each arm
once, and for ¢ > K, chooses at time ¢ + 1 arm

Aiy1 = argmax By(a)
a€EA

1. Write a function
[rew,draws]=UCB(T,alpha,MAB)

simulating a bandit game of length T" with the UCB-« strategy: rew and
draws are respectively the sequence of the T rewards obtained and the
arms drawn.

2. Compare with the naive strategy that chooses at time ¢ the arm with
highest empirical mean fi,(t).

3. Based on many simulations, estimate the expected regret of the naive
strategy and of the UCB algorithm with several values of «.

E[Rr] = Tu* —E [Z xt]

Question 1 For a bandit problem of your choice (to specify), draw (on the same
plot) regret curves for the naive strategy and the UCB algorithm for several
values of a. Which value of « seems to be the best?

3 Complexity of a bandit problem

Lai and Robbins proved in 1985 that in a bandit problem with arms v4, ..., vg
that are parametric distributions, the regret is lower bounded, for large values
of T as

E[Rr] > (0" = ta)

logT — o KL(vg, v*)

where KL(v,v') = [log(dv(z)/dv'(z))dv(z) is the Kullback-Leibler (KL) diver-
gence between distributions v and v/. The Kullback-Leibler divergence between
two Bernoulli distribution B(z) and B(y) is given by

1—=x
1—y’

KL(B(z), B(y)) = xlogg +(1-2)log



Write a function that returns the complexity term of a multi-armed bandit
problem with Bernoulli arms. The complexity term C' is such that the optimal
regret at time T should be C x log(T).

[c]=complexity (MAB)

4 A Bayesian idea for Bernoulli bandit problems

Consider a bandit problem with K arms that are Bernoulli distributions with
means 01, ...,0k. The UCB algorithm uses confidence intervals on the unknown
mean of each arm to make its decision.

In a Bayesian view on the MAB, the 6, are no longer seen as unknown param-
eters but as (independent) random variables following a uniform distribution.
The posterior distribution on the arm a at time ¢ of the bandit game is the dis-
tribution of 6, conditional to the observations from arm a gathered up to time
t. Each sample from arm a leads to an update of this posterior distribution.

Prior distribution 6, ~U([0,1])
Posterior distribution 0,|X1,..., Xy, ) ~ Beta (Sq(t) + 1, No(t) — Sa(t) + 1)

where X7, ..., X, () are the rewards from arm a gathered up to time ¢.
Bayesian bandit algorithms choose an action based on the current posterior
distributions over the parameters of the arms,

7o (t) = Beta(S,(t) + 1, No(t) — Sq(t) + 1).
Thompson Sampling is a simple, randomized, Bayesian algorithm.
At time ¢ + 1,
e for each arm a, draw a sample 6,(t) from m,(t)

e choose
Aty1 = argmax 0,(t)

ac€Arms

e update the posterior on arm A; (posterior distributions on the other arms
are unchanged)

1. Write a function
[rew,draws]=Thompson(T,MAB)

simulating a bandit game of length 7" with Thompson Sampling (the Mat-
lab command betarnd helps drawing samples from a Beta distribution)

2. Can Thompson Sampling also be called an ‘optimistic algorithm’?

Question 2: For two different bandit problems with Bernoulli arms (that you
specify), one ’easy’ (small complexity term), and one ’difficult’ (large complexity
term), compare the regret of Thompson Sampling with that of UCB. Add Lai
and Robbins’ lower bound on your plots.



