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1 Building a MAB problem

In a stochastic multi-armed bandit model, each arm is a probability distribution
and drawing an arm means observing a sample from this distribution. We will
consider only distributions supported in [0, 1]. Arms can be implemented as
objects, and we give the following classes (you can create others):

armBernoulli.m armBeta.m armFinite.m armExp.m

For each object Arm belonging to one of these classes, we have the following
commands (methods):

• Arm.mean returns the mean of the arm

• Arm.play gives a sample from the arm

A multi-armed bandit model is a collection of arms:

MAB = {Arm1, Arm2, ...,ArmK}

Start by completing the begining of the �le 'mainTP2.m' with your own multi-
armed bandit problem (i.e. choose the number of arms and the distribution of
each arm).

2 The UCB algorithm

We denote by :

• Na(t) the number of draws of arm a up to time t

• Sa(t) the sum of rewards gathered up to time t
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µ̂a(t) =
Sa(t)
Na(t)

is therefore the empirical mean of the rewards gathered from arm

a up to time t. When Nt(a) > 0, the UCB index associated to arm a is

Bt(a) = µ̂a(t) +

√
α log(t)

Na(t)

The α-UCB algorithm starts with an initialization phase that draws each arm
once, and for t ≥ K, chooses at time t+ 1 arm

At+1 = argmax
a∈A

Bt(a)

1. Write a function

[rew,draws]=UCB(T,alpha,MAB)

simulating a bandit game of length T with the UCB-α strategy: rew and
draws are respectively the sequence of the T rewards obtained and the
arms drawn.

2. Compare with the naive strategy that chooses at time t the arm with
highest empirical mean µ̂a(t).

3. Based on many simulations, estimate the expected regret of the naive
strategy and of the UCB algorithm with several values of α.

E[RT ] = Tµ∗ − E

[
T∑

t=1

xt

]

Question 1 For a bandit problem of your choice (to specify), draw (on the same
plot) regret curves for the naive strategy and the UCB algorithm for several
values of α. Which value of α seems to be the best?

3 Complexity of a bandit problem

Lai and Robbins proved in 1985 that in a bandit problem with arms ν1, . . . , νK
that are parametric distributions, the regret is lower bounded, for large values
of T as

E[RT ]

log T
≥

∑
a6=a∗

(µ∗ − µa)

KL(νa, ν∗)
,

where KL(ν, ν′) =
∫
log(dν(x)/dν′(x))dν(x) is the Kullback-Leibler (KL) diver-

gence between distributions ν and ν′. The Kullback-Leibler divergence between
two Bernoulli distribution B(x) and B(y) is given by

KL(B(x),B(y)) = x log
x

y
+ (1− x) log 1− x

1− y
.
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Write a function that returns the complexity term of a multi-armed bandit
problem with Bernoulli arms. The complexity term C is such that the optimal
regret at time T should be C × log(T ).

[c]=complexity(MAB)

4 A Bayesian idea for Bernoulli bandit problems

Consider a bandit problem with K arms that are Bernoulli distributions with
means θ1, . . . , θK . The UCB algorithm uses con�dence intervals on the unknown
mean of each arm to make its decision.

In a Bayesian view on the MAB, the θa are no longer seen as unknown param-
eters but as (independent) random variables following a uniform distribution.
The posterior distribution on the arm a at time t of the bandit game is the dis-
tribution of θa conditional to the observations from arm a gathered up to time
t. Each sample from arm a leads to an update of this posterior distribution.

Prior distribution θa ∼ U([0, 1])
Posterior distribution θa|X1, ..., XNa(t) ∼ Beta (Sa(t) + 1, Na(t)− Sa(t) + 1)

where X1, ..., XNa(t) are the rewards from arm a gathered up to time t.
Bayesian bandit algorithms choose an action based on the current posterior
distributions over the parameters of the arms,

πa(t) = Beta(Sa(t) + 1, Na(t)− Sa(t) + 1).

Thompson Sampling is a simple, randomized, Bayesian algorithm.
At time t+ 1,

• for each arm a, draw a sample θa(t) from πa(t)

• choose
At+1 = argmax

a∈Arms
θa(t)

• update the posterior on arm At (posterior distributions on the other arms
are unchanged)

1. Write a function

[rew,draws]=Thompson(T,MAB)

simulating a bandit game of length T with Thompson Sampling (the Mat-
lab command betarnd helps drawing samples from a Beta distribution)

2. Can Thompson Sampling also be called an `optimistic algorithm'?

Question 2: For two di�erent bandit problems with Bernoulli arms (that you
specify), one 'easy' (small complexity term), and one 'di�cult' (large complexity
term), compare the regret of Thompson Sampling with that of UCB. Add Lai
and Robbins' lower bound on your plots.
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