TD3 - Asymptotic properties of estimators

Exercise 1 We are given two asymptotically normal estimators of the same parameter $\theta \in \Theta \subseteq \mathbb{R}$, denoted by $\widehat{\theta}_{n}^{1}$ and $\widehat{\theta}_{n}^{2}$, which satisfy, for all $\theta \in \Theta$,

$$
\begin{aligned}
\sqrt{n}\left(\widehat{\theta}_{n}^{1}-\theta\right) & \leadsto \mathcal{N}\left(0, \sigma_{1}^{2}\right) \\
\sqrt{n}\left(\widehat{\theta}_{n}^{2}-\theta\right) & \leadsto \mathcal{N}\left(0, \sigma_{2}^{2}\right)
\end{aligned}
$$

where $\sigma_{1}^{2}<\sigma_{2}^{2}$.

1. Using each estimator, derive an asymptotic confidence interval on θ of level 0.95 .
2. For any $\varepsilon>0$, how many samples n are needed to get a precision ε on θ with the estimator $\widehat{\theta}_{n}^{2}$, with probability $\simeq 0.95$?
3. What fraction of this sample size is needed if we choose to use instead the estimator $\widehat{\theta}_{n}^{1}$?

Exercise 2 We are given an i.i.d sample $X_{1}, \ldots, X_{n} \sim f_{\theta}$ where $\theta>0$ is an unknown parameter and

$$
f_{\theta}(x)=\frac{1}{2} \theta^{3} x^{2} \exp (-\theta x) ; \quad x>0
$$

Denote μ, σ^{2} to be the mean and variance of f_{θ} respectively.

1. Show that $\mu=3 / \theta$ and $\sigma^{2}=3 / \theta^{2}$.
2. Find the Cramer Rao bound for μ and show that the estimator $\widehat{\mu}_{n}=\frac{1}{n} \sum_{i} X_{i}$ achieves this bound.
3. Now we consider the estimator $\widehat{\sigma}_{n}^{2}=\frac{\widehat{\mu}_{n}^{2}}{3}$ of σ^{2}.
(a) Compute the bias of $\widehat{\sigma}_{n}^{2}$ and conclude that it is asymptotically unbiased.
(b) Show that $\widehat{\sigma}_{n}^{2}$ is a consistent estimator of σ^{2}.
(c) Show that $\widehat{\sigma}_{n}^{2}$ is asymptotically efficient.

Exercise 3 In a clinical trials involving two treatments, we observe the outcome of treatment 1 (a placebo) on a pool of n_{1} patients. For $i \in\left\{1, \ldots, n_{1}\right\}$, we record $X_{i}=1$ if the treatment is a success for patient $i, X_{i}=0$ is it is a failure. The outcome of treatment 2 (the new drug) is observed on a pool of n_{2} patients, with $Y_{j} \in\{0,1\}$ indicating success of failure for patient $j \in\left\{1, \ldots n_{2}\right\}$.

We assume that all the X_{i} and Y_{j} are independent and that $X_{i} \sim \mathcal{B}\left(p_{1}\right)$ and $Y_{j} \sim \mathcal{B}\left(p_{2}\right)$ where p_{1} and p_{2} are the probability of efficacy of treatment 1 and 2 , respectively. We are interested in estimating the treatment effect $\phi:=p_{2}-p_{1}$.

1. Find the MLE estimator \widehat{p} of the parameter $p=\left(p_{1}, p_{2}\right)$ in $[0,1]^{2}$.
2. Deduce a consistent estimator of ϕ, denoted by $\widehat{\phi}$. Compute its variance.
3. Compute the Fisher information of the observation, $I^{Z}\left(\left(p_{1}, p_{2}\right)\right)$, where $Z=\left(X_{1}, \ldots, X_{n_{1}}, Y_{1}, \ldots, Y_{n_{2}}\right)$. In the rest of the exercise, we assume that $n_{1}=n_{2}=n$.
4. Give the limiting distribution of \widehat{p} when n goes to infinity.
5. Using the multi-variate Delta method, find the asymptotic distribution of $\widehat{\phi}$.
6. Using this estimator, we want to construct a test of the hypothesis

$$
H_{0}:(\phi=0) \text { against } H_{1}:(\phi>0) .
$$

We propose to use the test statistic

$$
T_{n}=\frac{\widehat{p}_{2, n}-\widehat{p}_{1, n}}{\sqrt{\frac{\widehat{p}_{1}, n}{}\left(1-\widehat{p}_{1, n}\right)} \frac{\widehat{p}_{2, n}\left(1-\widehat{p}_{2, n}\right)}{n}}
$$

(a) Find the (asymptotic) type I error α of this test.
(b) Give an (asymptotic) upper bound on its type II error β for an alternative with an effect size $\phi=\varepsilon$, for $\varepsilon>0$ (that is when $p_{2}=p_{1}+\varepsilon$).
(c) How should we choose n to garantee $\alpha=0.05$, and power $1-\beta=0.80$ when $\varepsilon=0.2$.

