TD3 - Asymptotic properties of estimators

Exercise 1 We are given two asymptotically normal estimators of the same parameter $\theta \in \Theta \subseteq \mathbb{R}$, denoted by $\widehat{\theta}_n^1$ and $\widehat{\theta}_n^2$, which satisfy, for all $\theta \in \Theta$,

$$\sqrt{n} \left(\widehat{\theta}_n^1 - \theta \right) \quad \rightsquigarrow \quad \mathcal{N}(0, \sigma_1^2)$$
$$\sqrt{n} \left(\widehat{\theta}_n^2 - \theta \right) \quad \rightsquigarrow \quad \mathcal{N}(0, \sigma_2^2)$$

where $\sigma_1^2 < \sigma_2^2$.

- 1. Using each estimator, derive an asymptotic confidence interval on θ of level 0.95.
- 2. For any $\varepsilon > 0$, how many samples *n* are needed to get a precision ε on θ with the estimator $\hat{\theta}_n^2$, with probability $\simeq 0.95$?
- 3. What fraction of this sample size is needed if we choose to use instead the estimator $\widehat{\theta}_n^1$?

Exercise 2 We are given an i.i.d sample $X_1, \ldots, X_n \sim f_{\theta}$ where $\theta > 0$ is an unknown parameter and

$$f_{\theta}(x) = \frac{1}{2}\theta^3 x^2 \exp(-\theta x); \quad x > 0.$$

Denote μ, σ^2 to be the mean and variance of f_{θ} respectively.

- 1. Show that $\mu = 3/\theta$ and $\sigma^2 = 3/\theta^2$.
- 2. Find the Cramer Rao bound for μ and show that the estimator $\widehat{\mu}_n = \frac{1}{n} \sum_i X_i$ achieves this bound.
- 3. Now we consider the estimator $\widehat{\sigma}_n^2 = \frac{\widehat{\mu}_n^2}{3}$ of σ^2 .
 - (a) Compute the bias of $\widehat{\sigma}_n^2$ and conclude that it is asymptotically unbiased.
 - (b) Show that $\hat{\sigma}_n^2$ is a consistent estimator of σ^2 .
 - (c) Show that $\hat{\sigma}_n^2$ is asymptotically efficient.

Exercise 3 In a clinical trials involving two treatments, we observe the outcome of treatment 1 (a placebo) on a pool of n_1 patients. For $i \in \{1, ..., n_1\}$, we record $X_i = 1$ if the treatment is a success for patient $i, X_i = 0$ is it is a failure. The outcome of treatment 2 (the new drug) is observed on a pool of n_2 patients, with $Y_i \in \{0, 1\}$ indicating success of failure for patient $j \in \{1, ..., n_2\}$.

We assume that all the X_i and Y_j are independent and that $X_i \sim \mathcal{B}(p_1)$ and $Y_j \sim \mathcal{B}(p_2)$ where p_1 and p_2 are the probability of efficacy of treatment 1 and 2, respectively. We are interested in estimating the treatment effect $\phi := p_2 - p_1$.

1. Find the MLE estimator \hat{p} of the parameter $p = (p_1, p_2)$ in $[0, 1]^2$.

- 2. Deduce a consistent estimator of ϕ , denoted by $\widehat{\phi}$. Compute its variance.
- 3. Compute the Fisher information of the observation, $I^{Z}((p_{1}, p_{2}))$, where $Z = (X_{1}, \ldots, X_{n_{1}}, Y_{1}, \ldots, Y_{n_{2}})$.

In the rest of the exercise, we assume that $n_1 = n_2 = n$.

- 4. Give the limiting distribution of \widehat{p} when n goes to infinity.
- 5. Using the multi-variate Delta method, find the asymptotic distribution of $\widehat{\phi}$.
- 6. Using this estimator, we want to construct a test of the hypothesis

$$H_0: (\phi = 0)$$
 against $H_1: (\phi > 0)$.

We propose to use the test statistic

$$T_n = \frac{\widehat{p}_{2,n} - \widehat{p}_{1,n}}{\sqrt{\frac{\widehat{p}_{1,n}(1 - \widehat{p}_{1,n})}{n} + \frac{\widehat{p}_{2,n}(1 - \widehat{p}_{2,n})}{n}}}$$

- (a) Find the (asymptotic) type I error α of this test.
- (b) Give an (asymptotic) upper bound on its type II error β for an alternative with an effect size $\phi = \varepsilon$, for $\varepsilon > 0$ (that is when $p_2 = p_1 + \varepsilon$).
- (c) How should we choose n to garantee $\alpha = 0.05$, and power $1 \beta = 0.80$ when $\varepsilon = 0.2$.