TD1 - Estimation

Exercise 1 Let \(X_1, \ldots, X_n \sim N(\mu, \sigma_0^2) \) be i.i.d Gaussian random variables for an unknown \(\mu \in \mathbb{R} \) but known \(\sigma_0 \).

1. Derive the maximum likelihood estimator \(\tilde{\mu}_n \) of \(\mu \).
2. Using \(\tilde{\mu}_n \), derive a confidence interval for \(\mu \) at the confidence level \(1 - \alpha \).

Exercise 2 A Poisson distribution with parameter \(\lambda > 0 \), denoted by \(P(\lambda) \), is a discrete distribution supported on \(\mathbb{N} \) defined as

\[
P_{Z \sim P(\lambda)}(Z = k) = \frac{\lambda^k}{k!} e^{-\lambda}.
\]

1. Compute the maximum likelihood estimator of \(\lambda \) given iid observations \(X_1, \ldots, X_n \) iid \(\sim P(\lambda) \).
2. What other method(s) could you use to obtain the same estimator?
3. Compute its bias and its mean square error.

Exercise 3 Given iid samples \(X_1, \ldots, X_n \) from some distribution \(P \) in \(\mathbb{R} \) whose cdf is \(F \), we want to estimate the function \(F(x) \).

1. What is the underlying statistical model?
2. Estimating the function means estimating for each \(x \in \mathbb{R} \), the value of \(F(x) \). Justify that

\[
\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(X_i \leq x)
\]

is an unbiased estimator of this quantity. Compute its variance and mean-square error.
3. Using the central limit theorem, what is the asymptotic distribution of \(\hat{F}_n(x) \)?

Exercise 4 Let \((X_1, \ldots, X_n) \) be a \(n \)-sample drawn from the uniform distribution \(\mathcal{U}(0, \theta) \), for an unknown parameter value \(\theta > 0 \).

1. Calculate \(E_\theta[X_1] \) and deduce the moment estimator \(\tilde{\theta}_n \) of \(\theta \).
2. Calculate the maximum likelihood estimator \(\hat{\theta}_n \) of \(\theta \).
3. Are these estimators biased?
4. Compare the quadratic risks of these estimators.
Exercise 5 Let \((X_1, \ldots, X_n)\) be a \(n\)-sample drawn from the uniform distribution over \([\theta - 1/2; \theta + 1/2]\), where \(\theta \in \mathbb{R}\) is unknown. What is the MLE of \(\theta\)?

Exercise 6 We are given an i.i.d sample \(X_1, \ldots, X_n \sim f_\theta\) where \(\theta > 0\) is an unknown parameter, and

\[
f_\theta(x) = \frac{2\theta^2}{x^3} I_{[\theta, +\infty]}(x).
\]

1. Show that \(f_\theta\) is a density and find \(E_\theta[X]\).
2. Using the moment method find an unbiased estimator \(\tilde{\theta}_n\) of \(\theta\).
3. Show that the MLE \(\hat{\theta}_n\) is given by \(\hat{\theta}_n = \min_i X_i\). Evaluate the bias of \(\hat{\theta}_n\).
4. Obtain a confidence interval for \(\theta\) using \(\hat{\theta}_n\) with confidence level \(1 - \alpha\).
5. Using the above confidence interval, build a statistical test at level \(\alpha\) for \(H_0: \theta = \theta_0\) vs \(H_1: \theta \neq \theta_0\) for \(\theta_0 > 0\).

Exercise 7 (variance estimators) We let \(\mathcal{P}(\mathbb{R})\) denote the set of probability distributions over \(\mathbb{R}\). We consider the class of models \(X_1, \ldots, X_n \overset{iid}{\sim} P\) where \(P\) belongs to the set

\[
\mathcal{M} = \{P \in \mathcal{P}(\mathbb{R}) : E_{Z \sim P}[Z^2] < \infty\}
\]

In particular, all distributions in \(\mathcal{M}\) have a finite variance and we recall the expression of the variance of a random variable \(Z\)

\[
\]

1. What is the parameter of this statistical model? Is it a parametric model?
2. Justify that the (unadjusted) empirical variance estimate

\[
\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu}_n)^2 \quad \text{where} \quad \hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i
\]

can also be recovered with the plug-in method.
3. Prove that this estimator satisfies \(E[\hat{\sigma}_n^2] = \frac{n-1}{n} \sigma^2\).
4. Deduce the expression of the adjusted variance estimator \(\tilde{\sigma}_n^2\), which is proportional to \(\hat{\sigma}_n^2\) and is unbiased.
5. Computing the variances of these estimator can be complex if we make no further assumptions on the distributions. If we consider instead the parametric model

\[
\mathcal{M} = \{N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\}
\]

we can do it and we get \(\text{Var}[\hat{\sigma}_n^2] = \frac{2\sigma^4}{n-1}\). Deduce the variance of \(\tilde{\sigma}_n^2\).
6. Which estimator has the smallest mean square error?