TD1 - Estimation

Exercise 1 Let $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma_0^2)$ be i.i.d Gaussian random variables for an unknown $\mu \in \mathbb{R}$ but known σ_0 .

- 1. Derive the maximum likelihood estimator $\tilde{\mu}_n$ of μ .
- 2. Using $\tilde{\mu}_n$, derive a confidence interval for μ at the confidence level 1α .

Exercise 2 A Poisson distribution with parameter $\lambda > 0$, denoted by $\mathcal{P}(\lambda)$, is a discrete distribution supported on \mathbb{N} defined as

$$\mathbb{P}_{Z\sim\mathcal{P}(\lambda)}(Z=k) = \frac{\lambda^k}{k!}e^{-\lambda}.$$

- 1. Compute the maximum likelihood estimator of λ given iid observations $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{P}(\lambda)$.
- 2. What other method(s) could you use to obtain the same estimator?
- 3. Compute its biais and its mean square error.

Exercise 3 Given iid samples $X_1 \dots, X_n$ from some distribution P in \mathbb{R} whose cdf is F, we want to estimate the function F.

- 1. What is the underlying statistical model?
- 2. Estimating the function means estimating for each $x \in \mathbb{R}$, the value of F(x). Justify that

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \le x)$$

is an unbiased estimator of this quantity. Compute its variance and mean-square error.

3. Using the central limit theorem, what is the asymptotic distribution of $\widehat{F}_n(x)$?

Exercise 4 Let (X_1, \ldots, X_n) be a *n*-sample drawn from the uniform distribution $\mathcal{U}(0, \theta)$, for an unknown parameter value $\theta > 0$.

- 1. Calculate $E_{\theta}[X_1]$ and deduce the moment estimator $\widehat{\theta}_n$ of θ .
- 2. Calculate the maximum likelihood estimator $\tilde{\theta}_n$ of θ .
- 3. Are these estimators biased?
- 4. Compare the quadratic risks of these estimators.

Exercise 5 Let $(X_1, ..., X_n)$ be a *n*-sample drawn from the uniform distribution over $[\theta - 1/2; \theta + 1/2]$, where $\theta \in \mathbb{R}$ is unknown. What is the MLE of θ ?

Exercise 6 We are given an i.i.d sample $X_1, \ldots, X_n \sim f_{\theta}$ where $\theta > 0$ is an unknown parameter, and

$$f_{\theta}(x) = \frac{2\theta^2}{x^3} \mathbb{1}_{[\theta, +\infty[}(x).$$

- 1. Show that f_{θ} is a density and find $\mathbb{E}_{\theta}[X]$.
- 2. Using the moment method find an unbiased estimator $\tilde{\theta}_n$ of θ .
- 3. Show that the MLE $\widehat{\theta}_n$ is given by $\widehat{\theta}_n = \min_i X_i$. Evaluate the bias of $\widehat{\theta}_n$.
- 4. Obtain a confidence interval for θ using $\hat{\theta}_n$ with confidence level 1α .
- 5. Using the above confidence interval, build a statistical test at level α for

$$H_0: \theta = \theta_0$$
 vs $H_1: \theta \neq \theta_0$

for $\theta_0 > 0$.

Exercise 7 (variance estimators) We let $\mathcal{P}(\mathbb{R})$ denote the set of probability distributions over \mathbb{R} . We consider the class of models $X_1, \ldots, X_n \stackrel{iid}{\sim} P$ where P belongs to the set

$$\mathcal{M} = \{P \in \mathcal{P}(\mathbb{R}) : \mathbb{E}_{Z \sim P}[Z^2] < \infty\}$$

In particular, all distributions in \mathcal{M} have a finite variance and we recall the expression of the variance of a random variable Z

$$\operatorname{Var}[Z] = \mathbb{E}[(Z - \mathbb{E}[Z])^2] = \mathbb{E}[Z] - (\mathbb{E}[Z])^2$$
.

- 1. What is the parameter of this statistical model? Is it a parametric model?
- 2. Justify that the (unadjusted) empirical variance estimate

$$\widehat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \widehat{\mu}_n)^2$$
 where $\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$

can also be recovered with the plug-in method.

- 3. Prove that this estimator satisfies $\mathbb{E}[\widehat{\sigma}_n^2] = \frac{n-1}{n}\sigma^2$.
- 4. Deduce the expression of the adjusted variance estimator $\tilde{\sigma}_n^2$, which is proportional to $\hat{\sigma}_n$ and is unbiased.
- 5. Computing the variances of these estimator can be complex if we make no further assumptions on the distributions. If we consider instead the parameteric model

$$\mathcal{M} = \{\mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\}$$

we can do it and we get $\operatorname{Var}[\widetilde{\sigma}_n^2] = \frac{2\sigma^4}{n-1}$. Deduce the variance of $\widehat{\sigma}_n^2$.

6. Which estimator has the smallest mean square error?