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The multi-armed bandit model

K arms = K probability distributions:

ν1 ν2 ν3 ν4 ν5

At round t, an agent:

chooses an arm At

gets an observation Xt ∼ νAt (reward)

Adaptive sampling strategy (bandit algorithm):

At+1 = Ft(A1,X1, . . . ,At ,Xt).

Possible objectives:

maximize rewards, E
[∑T

t=1 Xt

]
identify the best arm a? = argmaxa∈[K ]EX∼νa [X ]
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Bandits and clinical trials

Difficulties with bandit algorithms:

efficacy takes a long time to be observed: a fully-sequential
design would lead to a very long trial
(+ the DSMB cannot meet after every patient)

standard statistical methodology (e.g. tests) is not always
compatible with data collected adaptively

This talk:

learn about bandit algorithms for treatment and identification

... who come up with quite strong theoretical guarantees
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Outline

1 Bandit algorithms
Treatment: Maximizing rewards
Identification: Best Arm Identification

2 A bandit perspective on early-stage trials
MTD identification
A phase I/II example
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Objective

B(p1) B(p2) B(p3) B(p4) B(p5)

Maximize rewards ↔ select arm a? as much as possible
↔ few allocations to sub-optimal arms a 6= a?

a? = arg max
a∈[K ]

pa p? = max
a∈[K ]

pa

E

[
T∑
t=1

Xt

]
= E

[
T∑
t=1

pAt

]
= T × p? − E

[
T∑
t=1

(p? − pAt )

]
= T × p?︸ ︷︷ ︸

reward of the
oracle playing a?

−
∑
a 6=a?

(p? − pa)× E[Na(T )]︸ ︷︷ ︸
expected number of

selections of arm a 6=a?
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A first idea: (Don’t) Follow the Leader

Select each arm once, then exploit our current knowledge:

At+1 = arg max
a∈[K ]

p̂a(t)

where

Na(t) =
∑t

s=1 1(As = a) is the number of selections of arm a

p̂a(t) = 1
Na(t)

∑t
s=1 Xs1(As = a) is the MLE estimate of pa

Follow the leader can fail! K = 2, p1 > p2

E[N2(T )] ≥ (1− p1)p2 × (T − 1)

(linear number of sub-optimal allocations)

Exploitation is not enough, we need to add some exploration

Ü Exploration/Exploitation trade-off
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Thompson Sampling

[Thompson, 1933] suggests the very first bandit algorithm

A Bayesian algorithm: K = 2, uniform prior distribution

(p1, p2) ∼ U([0, 1])⊗ U([0, 1])

At time t + 1, choose

arm 1 with probability f (Pt)

arm 2 with probability 1− f (Pt)

where f is some non-decreasing function and Pt is the posterior
probability that arm 1 is optimal

Pt = Pp̃1∼Beta(S1(t)+1,F1(t)+1)
p̃2∼Beta(S2(t)+1,F2(t)+1)

(
p̃1 ≥ p̃2

)
Sa(t) / Fa(t): number of successes/failures observed on arm a up to time t

Remark: computing Pt can be costly (especially in 1933)



9/30

Thompson Sampling

[Thompson, 1933] suggests the very first bandit algorithm

A Bayesian algorithm: K = 2, uniform prior distribution

(p1, p2) ∼ U([0, 1])⊗ U([0, 1])

At time t + 1, choose

arm 1 with probability f (Pt)

arm 2 with probability 1− f (Pt)

where f is some non-decreasing function and Pt is the posterior
probability that arm 1 is optimal

Pt = Pp̃1∼Beta(S1(t)+1,F1(t)+1)
p̃2∼Beta(S2(t)+1,F2(t)+1)

(
p̃1 ≥ p̃2

)
Sa(t) / Fa(t): number of successes/failures observed on arm a up to time t

Remark: computing Pt can be costly (especially in 1933)



10/30

Thompson Sampling

For f (x) = x , we get a simpler implementation, which can be
further extended to any prior/posterior distributions.

Thompson Sampling

Πt : posterior distribution on (p1, . . . , pK ) after t rounds
At round t + 1:

draw a posterior sample (p̃1(t), . . . , p̃K (t)) ∼ Πt

select arm At+1 = arg maxa∈[K ] p̃a(t)

“act optimally in a possible model sampled from the posterior”
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Thompson Sampling

Thompson Sampling was rediscovered in the 2010s for its very
good empirical performance, but little was known in theory.

[Scott, 2010, Chapelle and Li, 2011]

Theorem [Kaufmann et al., 2012, Agrawal and Goyal, 2013]

For every a 6= a?, for every ε > 0,

E[Na(T )] ≤ (1 + ε)
log(T )

kl(pa, p?)
+ o (log(T ))

with kl(p, q) = p log p
q + (1− p) log 1−p

1−q the binary relative entropy.

TS achieves the optimal allocation! (at least asymptotically)

[Lai and Robbins, 1985] : lim inf
T→∞

E[Na(T )]

log(T )
≥ 1

kl(pa, p?)
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Thompson Sampling for Identification?

What if we want to select arms with Thompson Sampling and
propose a guess for the best arm, BT at time T?

Possible ideas:

1 BT = arg maxa p̂a(T ) (empirical best arm)

2 BT = arg maxa Na(T ) (arm selected the most)

3 BT = Aτ where τ is a random index in {1, . . . ,T}

Under ®,

E[p? − pBT
] =

∑
a 6=a?

(p? − pa)
E[Na(T )]

T
= O

(
log(T )

T

)

⇒ P (BT 6= a?) = O

(
log(T )

T

)
Ü the error probability can actually decay much faster...
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The fixed budget setting

Goal: propose an arm BT which minimizes P (BT 6= a?)

State-of-the-art bandit algorithms are based on eliminations.

Successive Rejects [Audibert et al., 2010]

K − 1 stages

at the end of each stage, discard∗ one arm

BT is the last surviving arm

Sequential Halving [Karnin et al., 2013]

dlog2(K )e stages

at the end of each stage, discard∗ half of the arms

BT is the last surviving arm

∗ remove arm(s) whose empirical mean(s) are the smallest
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Fixed budget algorithms

Illustration of the allocation for T = 500,K = 5

56

56

56

56

56 14

14

14

14

23

23

23

47

47

1
2
3
4
5

Stage 1 2 43

84

84

33

33

33

33

33

55

55

55

1
2
3
4
5

Stage 1 2 3

Successive Rejects Sequential Halving

Theorem [Audibert et al., 2010, Karnin et al., 2013]

Both algorithms satisfy, for all p = (p1, . . . , pK ),

P (BT 6= a?) ≤ CK exp

(
− C × T

H(p) log(K )

)
, with H(p) =

∑
a 6=a?

1

(p? − pa)2

Ü error decays exponentially with a near-optimal exponent



16/30

Outline

1 Bandit algorithms
Treatment: Maximizing rewards
Identification: Best Arm Identification

2 A bandit perspective on early-stage trials
MTD identification
A phase I/II example



17/30

The four phases of clinical trials

Early stage trials are about finding the right dose
(or combinations of doses) of a given treatment.
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Sequential dose-finding protocol

Dose 1 Dose 2 · · · Dose K

toxicity probability p1 p2 · · · pK
efficacy probability eff1 eff2 · · · effK

After selecting a dose Dt ∈ {1, . . . ,K} (“arm”) for patient t,

observe whether un-desired side effects occur: Xt ∼ B(pDt )

P(Xt = 1|Dt = a) = pa P(Xt = 0|Dt = a) = 1− pa

observe whether the dose is efficient: Yt ∼ B(effDt )
(in phase I/II designs only)

Depending on the context the optimal dose can have a different
definition, but the treatment versus identification dilemma remains.
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Adapting Thompson Sampling

Given toxicity and efficacy probabilities

p = (p1, . . . , pK )

eff = (eff1, . . . , effK )

define an optimal dose a? = OPT (p, eff ).

Thompson Sampling

Πt : posterior distribution on (p, eff ) after t rounds
At round t + 1:

sample
(
p̃(t), ẽff (t)

)
∼ Πt

Dt+1 = OPT
(
p̃(t), ẽff (t)

)
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Maximum Tolerated Dose

Given a threshold θ, the Maximum Tolerated Dose is

MTD(p) = arg min
a∈[K ]

|pa − θ|

Context: phase I trials in oncology, assuming increasing efficacy
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Choosing a prior

Parametric assumption: given two parameters β0, β1 ∈ R,

pa(β0, β1) =
1

1 + e−β0−β1ua

ua: effective dose (some carefully chosen parameter)

Ü enforces increasing toxicities

Bayesian model: (β0, β1) ∼ π, e.g.

β0 ∼ N (0, 100) and β1 ∼ Exp(1).

Ü the posterior distribution πt on (β0, β1) can be sampled from
using, e.g. Hamiltonian Monte-Carlo methods
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Illustration of the posterior update

source: Marie-Karelle Riviere (PhD thesis)
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Thompson Sampling versus the CRM

Thompson Sampling

(
β̃0(t), β̃1(t)

)
∼ πt ,

DTS
t+1 ∈ arg min

a∈[K ]

∣∣∣θ − pa
(
β̃0(t), β̃1(t)

)∣∣∣
Continual Reassesment Method (CRM) [O’Quingley et al., 1990]

β̂i (t) =

∫
R
βidπt(β0, β1) (posterior mean)

DCRM
t+1 ∈ arg min

a∈[K ]

∣∣∣θ − pa
(
β̂0(t), β̂1(t)

)∣∣∣
Ü compared to the existing CRM, TS is adding exploration
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Empirical performance

Too much exploration may be un-ethical Ü two variants of TS
restricting the set of doses that can be chosen

T = 36 patients , K = 6 doses , θ = 0.3

% of recommendation (left) and allocation (right)
(average over 2000 repetitions)

[Aziz et al., 2021]
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A two-dimensional structured bandit

For certain agents, a plateau of efficacy is observed, which
motivates the search of the Minimal Effective Dose (MED)

MED (p, eff ) = min

{
a ∈ [K ] : effa = max

`:p`≤θ
eff`

}
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Choosing a prior

Toxicity: pa(β0, β1) = 1

1+e−[β0+β1ua]

β0 ∼ N (0, 100), β1 ∼ Exp(1)

Efficacy: τ indicates the beginning of the plateau

effa(γ0, γ1, τ) =
1

1 + e−[γ0+γ1(va1(a<τ)+vτ1(a≥τ))]

γ0 ∼ N (0, 100), γ1 ∼ Exp(1), τ ∼ (1/K , . . . , 1/K ).

Thompson Sampling(
β̃0(t), β̃1(t), γ̃0(t), γ̃1(t), τ̃(t)

)
∼ πt ,

DTS
t+1 ∈ MED

(
β̃0(t), β̃1(t), γ̃0(t), γ̃1(t), τ̃(t)

)
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Results

Competitive results wrt. the state-of the art MTA-RA algorithm
[Riviere et al., 2017]

T = 60 patients, K = 6 doses, θ = 0.35

% of recommendation (left) and allocation (right)
(average over 2000 repetitions)

[Aziz et al., 2021]
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Conclusion

Thompson Sampling is a flexible design that can be used

whenever there is a proper notion of optimal dose/treatment

whenever there is a posterior that can be sampled from

But its strong theoretical guarantees only hold for simple (e.g.
product) priors and large sample sizes...

Insights from the bandit literature:

we need exploration (do we always? )

it is not possible to be optimal for treatment and identification
at the same time (but are existing designs good trade-offs? )
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The Bandit Book

by [Lattimore and Szepesvari, 2019]

http://downloads.tor-lattimore.com/book.pdf
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Details on the variants of Thompson Sampling

TS(ε) outputs a dose that belongs to the set{
a ∈ [K ] :

∣∣∣pa(β̂0(t), β̂1(t))− pMTD(β̂0(t),β̂1(t))(β̂0(t), β̂1(t))
∣∣∣ ≤ ε}

(ε = 0.05)

TS A outputs a dose that belongs to the set{
a ∈ [K ] : P(β0,β1)∼πt

(
pa(β0, β1) > pMTD(β0,β1)(β0, β1)

)
≤ c1

}
(c1 = 0.8)
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