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The multi-armed bandit model

K arms = K probability distributions:
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At round t, an agent:
@ chooses an arm A;
@ gets an observation X; ~ v4, (reward)

Adaptive sampling strategy (bandit algorithm):
At+1 — Fi’(A17 X].v L 7Ata Xt)
Possible objectives:

@ maximize rewards, E [Z;rzl Xt}

o identify the best arm a, = argmaxae[K]EXWa[X]



The multi-armed bandit model

K arms = K probability distributions:
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At round t, a doctor:
@ chooses a treatment A;
@ observes the outcome (success/failure) : P(X; = 1) = pa,

Adaptive sampling strategy (design):
At+1 = Ft(A]_, )(]_7 [P 7At7 Xt)
Possible objectives:

@ maximize rewards, E [Z;l Xt}

o identify the best arm a, = argmax,¢[]pa



The multi-armed bandit model

K arms = K probability distributions:
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At round t, a doctor:
@ chooses a treatment A;
@ observes the outcome (success/failure) : P(X; = 1) = pa,

Adaptive sampling strategy (design):
At+1 — Ft(A17 X17 s 7At7 Xt)

Possible objectives:
@ maximize the number of cured patients (treatment)
o identify the best arm a, = argmax,¢[)pa



The multi-armed bandit model

K arms = K probability distributions:
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B(p1) B(p2) B(ps3) B(pa4) B(ps)

At round t, a doctor:
@ chooses a treatment A;
@ observes the outcome (success/failure) : P(X; = 1) = pa,

Adaptive sampling strategy (design):
At+1 = Ft(A]_, )(]_7 oo 7At7 Xt)

Possible objectives:
@ maximize the number of cured patients (treatment)
o identify the best treatment (identification)



Bandits and clinical trials

Difficulties with bandit algorithms:

o efficacy takes a long time to be observed: a fully-sequential
design would lead to a very long trial
(+ the DSMB cannot meet after every patient)

e standard statistical methodology (e.g. tests) is not always
compatible with data collected adaptively

This talk:
@ learn about bandit algorithms for treatment and identification

@ ... who come up with quite strong theoretical guarantees




@ Bandit algorithms
@ Treatment: Maximizing rewards
o l|dentification: Best Arm Identification

© A bandit perspective on early-stage trials
@ MTD identification
@ A phase I/Il example



@ Bandit algorithms
@ Treatment: Maximizing rewards



® - w &
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Maximize rewards <> select arm a, as much as possible
< few allocations to sub-optimal arms a # a,

a, = argmax p, Psx = mMax p,
ac[K] ag([K]
T T T
E|> X| = E|> pa|=Txp—E Z(p*—pAt)]
t=1 t=1 t=1

— Txp, =Y (pe—pa)x EIN(T)]

reward of the aFax expected number of
oracle playing ax selections of arm a#ay



A first idea: (Don't) Follow the Leader

Select each arm once, then exploit our current knowledge:

Aty1 = argmax p,(t)
ac[K]
where

o Ny(t) =Yt , 1(As = a) is the number of selections of arm a
@ p,(t) = ﬁ(t) i1 Xs1(As = a) is the MLE estimate of p,

v
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Follow the leader can fail!l K =2, p; > p>

E[N2(T)] > (1 = p1)p2 x (T — 1)

(linear number of sub-optimal allocations)

Exploitation is not enough, we need to add some exploration
=» Exploration/Exploitation trade-off




Thompson Sampling

[Thompson, 1933] suggests the very first bandit algorithm

A Bayesian algorithm: K = 2, uniform prior distribution

(p1, p2) ~ U([0, 1]) @ U([0, 1])

At time t + 1, choose
@ arm 1 with probability f(P;)
@ arm 2 with probability 1 — f(P;)

where f is some non-decreasing function and P; is the posterior
probability that arm 1 is optimal

Pt = Pp,~Beta(51(t)+1,Fi(t)+1) <I51 > ﬁz)
pa~Beta(So(t)+1,F(t)+1)

Sa(t) / Fa(t): number of successes/failures observed on arm a up to time t



Thompson Sampling

[Thompson, 1933] suggests the very first bandit algorithm

A Bayesian algorithm: K = 2, uniform prior distribution

(p1, p2) ~ U([0, 1]) @ U([0, 1])

At time t + 1, choose
e arm 1 with probability f(P;)
@ arm 2 with probability 1 — f(P;)

where f is some non-decreasing function and P; is the posterior
probability that arm 1 is optimal

Pt = Pp,~Beta(51(t)+1,Fi(t)+1) <I51 > ﬁz)
pa~Beta(So(t)+1,F(t)+1)

Sa(t) / Fa(t): number of successes/failures observed on arm a up to time t

Remark: computing P; can be costly (especially in 1933)



Thompson Sampling

For f(x) = x, we get a simpler implementation, which can be
further extended to any prior/posterior distributions.

Thompson Sampling

M¢: posterior distribution on (p1, ..., pk) after t rounds
At round t + 1:

@ draw a posterior sample (p1(t),. .., Pk (t)) ~ M

o select arm A1 = arg max,¢(k] Pa(t)

“act optimally in a possible model sampled from the posterior”
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Thompson Sampling

Thompson Sampling was rediscovered in the 2010s for its very
good empirical performance, but little was known in theory.
[Scott, 2010, Chapelle and Li, 2011]

Theorem

For every a # ay, for every € > 0,

BIN(T)] < (14 6) 150+ o og(T)

with kl(p, q) = plog +(1-p) Iog p the binary relative entropy.

v

@ TS achieves the optimal allocation! (at least asymptotically)

N,(T 1
[Lai and Robbins, 1985] : I|m|nf E[Ns(T)] >
T—oo log(T) ~ kl(pa. ps)



@ Bandit algorithms

@ |dentification: Best Arm ldentification



Thompson Sampling for ldentification?

What if we want to select arms with Thompson Sampling and
propose a guess for the best arm, Bt at time 77 J

Possible ideas:
@ By = argmax, p,(T) (empirical best arm)
@ By = argmax, N,(T) (arm selected the most)
© Bt = A; where 7 is a random index in {1,..., T}

Under @,
E[Na(T)] log(T)
Elp. — pg;] = > (px— pa)——F— =0 (T)
aF#ay
= P(Br#a) = O <'°gg)>

=» the error probability can actually decay much faster...



The fixed budget setting

Goal: propose an arm Bt which minimizes P (Bt # ay) ]

State-of-the-art bandit algorithms are based on eliminations.

Successive Rejects

@ K — 1 stages
@ at the end of each stage, discard™ one arm

@ By is the last surviving arm

Sequential Halving

o [logy(K)] stages
@ at the end of each stage, discard® half of the arms

@ Bt is the last surviving arm

* remove arm(s) whose empirical mean(s) are the smallest



Fixed budget algorithms

Illustration of the allocation for T =500, K =5

Stage 1 Stage 1 2

y 11 133 55 84
2EYEE 285 BE Ea
SE B 333 55
488 ¥ 48

5 B8l 55

Successive Rejects Sequential Halving

Both algorithms satisfy, for all p = (p1, ..., pk),

P(Br # a,) < Ckexp (—HLTK)) with H(p) =3 ﬁ

(p) log( 2 (e

=» error decays exponentially with a near-optimal exponent



© A bandit perspective on early-stage trials



The four phases of clinical trials

Phase | Phase IV
Focus on safety Focus on Compares the Treatment is approved
and the proper effectiveness new tr to and ilable. Long-term

dose. and side effects. existing treatment. effects are observed.
15 to 50 patients Less than 100 patients Hundreds of people Thousands of people

Early stage trials are about finding the right dose
(or combinations of doses) of a given treatment.

17/30



Sequential dose-finding protocol

Dose 1 | Dose 2 | --- | Dose K
toxicity probability p1 P2 e PK
efficacy probability | eff; eff eff

After selecting a dose D; « {1,... K} (“arm") for patient t,

@ observe whether un-desired side effects occur: X; ~ B(pp,)
]P’(XtZIIDtZQ):pa IP’(Xt=0|Dt=a)=1—pa

@ observe whether the dose is efficient: Y; ~ B(effp,)
(in phase I/l designs only)

Depending on the context the optimal dose can have a different
definition, but the treatment versus identification dilemma remains.




Adapting Thompson Sampling

Given toxicity and efficacy probabilities

P = (plv"'vpK)
eff = (effl,...,effK)

define an optimal dose a, = OPT (p, eff).

Thompson Sampling

M¢: posterior distribution on (p, eff) after t rounds
At round t + 1:

@ sample (ﬁ(t),éﬁ(ﬂ) ~ Ty

o Desy = OPT (p(t), eff (1))




© A bandit perspective on early-stage trials
@ MTD identification



Maximum Tolerated Dose

Given a threshold @, the Maximum Tolerated Dose is

MTD(p) = argmin |p, — 0|
a€[K]

Toxicity
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Context: phase | trials in oncology, assuming increasing efficacy



Choosing a prior

Parametric assumption: given two parameters [y, f1 € R,

1

pa(Po, f1) = 14 e—FoBits

u,: effective dose (some carefully chosen parameter)
=» enforces increasing toxicities

Bayesian model: (o, f1) ~ 7, e.g.
Bo ~ N(0,100) and f; ~ Exp(1).

=» the posterior distribution 7 on (o, 1) can be sampled from
using, e.g. Hamiltonian Monte-Carlo methods



lllustration of the posterior update
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source: Marie-Karelle Riviere (PhD thesis)



Thompson Sampling versus the CRM

(Bo(), Ba(8)) ~ e,

D[} € agge[rF(]in ‘9 — Pa (Bo(t)’ﬁl(t))‘

Continual Reassesment Method (CRM)

ﬁi(t)z/R,B,-dm(,Bo,ﬁl) (posterior mean)

DERM € arg min ‘9 — Pa <5Ao(t);31(t))’
a€[K]

=» compared to the existing CRM, TS is adding exploration

24/30



Empirical performance

Too much exploration may be un-ethical =¥ two variants of TS
restricting the set of doses that can be chosen

T = 36 patients , K = 6 doses , # = 0.3

Sc. 5: Tox prob  0.10 0.25 0.40 0.50 0.65 0.75/0.10 0.25 0.40 0.50 0.65 0.75
343 B0 206308242 15351 08 | - - - - -
oM 18 BT P06 01 00 5;;(2 i)é‘i g,x@gft%x éﬁz ey

TS 43 507 394 54 o1 o1 |08 2 B0 B S G
O s makser 02 00 |00 5 S0 50 d
A 20 50836470 1611|500 g8 (189 ai0) 62 (0.

Independent TS 24.3 32.6 214 14.6 54 1.6 (1(9):‘5‘) (%g) (1(9):(1)) (196_'1(; (172_5) (150_'5‘;

% of recommendation (left) and allocation (right)
(average over 2000 repetitions)

[Aziz et al., 2021]



© A bandit perspective on early-stage trials

@ A phase I/Il example



A two-dimensional structured bandit

For certain agents, a plateau of efficacy is observed, which
motivates the search of the Minimal Effective Dose (MED)
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MED (p, eff) = min {a € [K] :eff; = max effg}
CL:py<6



Choosing a prior

Toxicity: pa(5o, /1) = MTlowlua]

/80 ~ N(O? 100)? /81 ~ Exp(l)

Efficacy: 7 indicates the beginning of the plateau

1
- 1 4 e—[otn(val(a<r)+vr1(a>7))]

eﬁa(707 1, T)

’VONN(Oa 100)7 " NEXP(]')’ TN(]'/K771/K)

Thompson Sampling

(Bo®): Ba(8), Fo(t) 51(8), 7()) ~ s,

D?; € MED (Bo(t)aBl(t)a%(t)ﬁl(t)ﬁ(t»




Competitive results wrt. the state-of the art MTA-RA algorithm
[Riviere et al., 2017]

T = 60 patients, K = 6 doses, # = 0.35

Table 4: Results for MED identification (part 1/3).

Algorithm E-Stop Recommended Allocated
1 2 3 4 5 6 1 2 3 4 5 6
Sc. 1: Tox prob 0.01 0.05 0.15 02 045 06| 001 005 0.5 02 045 06

Sc. 1: Eff prob 01 035 06 06 06 06| 01 035 06 06 06 06

71 142 379 249 129 25
MTA-RA 04 04 70 349 291 74 08 | 3'g) (139) 244) (188) (13.6) (49)

107 7207 "357 239 73 09
TSA 09 03 96 94261 35 02| (W h'o (130 (4l G @7

% of recommendation (left) and allocation (right)
(average over 2000 repetitions)

[Aziz et al., 2021]



Conclusion

Thompson Sampling is a flexible design that can be used
@ whenever there is a proper notion of optimal dose/treatment
@ whenever there is a posterior that can be sampled from

But its strong theoretical guarantees only hold for simple (e.g.
product) priors and large sample sizes...

Insights from the bandit literature:
@ we need exploration (do we always?)

@ it is not possible to be optimal for treatment and identification
at the same time (but are existing designs good trade-offs?)
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Bandit
Algorithms

TOR LATTIMORE
CSABA SZEPESVARI

The Bandit Book
by [Lattimore and Szepesvari, 2019]
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http://downloads.tor-lattimore.com/book.pdf

Details on the variants of Thompson Sampling

TS(e) outputs a dose that belongs to the set

{ae [K] :

pa(Bo(t), A1 (t)) — pMTD(,éo(t),Bl(f))(Bo(t)’Bl(t))‘ < 6}

(e =0.05)

TS_A outputs a dose that belongs to the set

{3 € [K] - P(gy,p1)m: (Pa(Bos B1) > Prrrp(so,61)(B0s B1)) < Cl}

(Cl = 08)
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