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Sequential allocation : some examples

Clinical trial

K possible treatments (with unknown effect)

Which treatment should be allocated to each patient based on
their effect on previous patients ?

Movie recommendation

K different movies

Which movie should be recommended to each user, based on
the ratings given by previous (similar) users ?
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The “bandit” framework

One-armed bandit
= slot machine (or arm)

Multi-armed bandit : several arms.
Drawing arm a ⇔ observing a sample
from a distribution νa, with mean µa

Best arm a∗ = argmaxa µa

Which arm should be drawn
based on the previous
observed outcomes ?
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Bandit model (more formal)

A multi-armed bandit model is a set of K arms where

Each arm a is a probability distribution νa of mean µa

Drawing arm a is observing a realization of νa

Arms are assumed to be independent

At round t, an agent

chooses arm At , and observes Xt ∼ νAt

(At) is his strategy or bandit algorithm, such that

At+1 = Ft(A1,X1, . . . ,At ,Xt)

Global objective : Learn which arm(s) have highest mean(s)

µ∗ = max
a

µa a∗ = argmaxa µa
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Objective 1 : Regret minimization

Samples are seen as rewards.

The agent ajusts (At) to

maximize the (expected) sum of rewards accumulated,

E

[
T∑
t=1

Xt

]

or equivalently minimize his regret :

RT = E

[
Tµ∗ −

T∑
t=1

Xt

]

⇒ exploration/exploitation tradeoff
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Objective 2 : Best arm identification

The agent has to identify the best arm a∗. (no loss when
drawing “bad” arms)

To do so, he

uses a sampling strategy (At)

stops sampling the arms at some (random) time τ

recommends an arm âτ

His goal :

Fixed-budget setting Fixed-confidence setting

τ = T minimize E[τ ]
minimize P(âτ 6= a∗) P(âτ 6= a∗) ≤ δ

⇒ optimal exploration
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Comparison on the medical trials example

The doctor :

chooses treatment At to give to patient t

observes whether the patient is cured : Xt ∼ B(µAt )

He can ajust his strategy (At) so as to

Regret minimization Best arm identification

Maximize the number of patients Identify the best treatment
cured among T patients with probability at least 1− δ

(to always give this one later)

Emilie Kaufmann (Inria) The information complexity of sequential resource allocation



Outline

1 Regret minimization

2 m best arms identification
Lower bound on the sample complexity
An optimal algorithm ?

3 The complexity of A/B Testing
The Gaussian case
The Bernoulli case
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A parametric assumption on the arms

ν1, . . . , νK belong to a one-dimensional exponential family :

Pλ,Θ,b = {νθ, θ ∈ Θ : νθ has density fθ(x) = exp(θx−b(θ)) w .r .t. λ}
Example : Gaussian, Bernoulli, Poisson distributions...

νk = νθk can also be parametrized by its mean µk = ḃ(θk).

Notation : Kullback-Leibler divergence

KL(p, q) = EX∼p

[
log

dp

dq
(X )

]
For a given exponential family P, we denote by

dP(µ, µ′) := KL(νḃ−1(µ), νḃ−1(µ′))

the KL divergence between the distributions of mean µ and µ′.

Example : Bernoulli distributions

d(µ, µ′) = KL(B(µ),B(µ′)) = µ log
µ

µ′
+ (1− µ) log

1− µ
1− µ′

.
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Outline

1 Regret minimization

2 m best arms identification
Lower bound on the sample complexity
An optimal algorithm ?

3 The complexity of A/B Testing
The Gaussian case
The Bernoulli case
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Optimal algorithms for regret minimization

ν = νθ = (νθ1 , . . . , νθK ) ∈M = (P)K .

Na(t) : number of draws of arm a up to time t

RT (ν) =
K∑

a=1

(µ∗ − µa)Eν [Na(T )]

consistent algorithm : ∀ν ∈M, ∀α ∈]0, 1[, RT (ν) = o(Tα)
[Lai and Robbins 1985] : every consistent algorithm satisfies

µa < µ∗ ⇒ lim inf
T→∞

Eν [Na(T )]

logT
≥ 1

d(µa, µ∗)

Definition

A bandit algorithm is asymptotically optimal if, for every ν ∈M,

µa < µ∗ ⇒ lim sup
T→∞

Eν [Na(T )]

logT
≤ 1

d(µa, µ∗)
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Towards asymptotically optimal algorithms

A UCB-type algorithm chooses at time t + 1

At+1 = arg max
a

UCBa(t)

where UCBa(t) is some upper confidence bound on µa.

Examples for binary bandits (Bernoulli distributions)

UCB1 [Auer et al. 02] uses Hoeffding bounds :

UCBa(t) =
Sa(t)

Na(t)
+

√
2 log(t)

Na(t)
.

Sa(t) : sum of rewards from arm a up to time t

Eν [Na(T )] ≤ K1

2(µ∗ − µa)2
logT + K2, with K1 > 1.
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KL-UCB : an asymptotically optimal algorithm

KL-UCB [Cappé et al. 2013] uses the index :

ua(t) = argmax
x> Sa(t)

Na(t)

{
d

(
Sa(t)

Na(t)
, x

)
≤ log(t) + c log log(t)

Na(t)

}
,

where d(p, q) = KL (B(p),B(q)) = p log
(
p
q

)
+ (1− p) log

(
1−p
1−q

)
.
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KL-UCB in action
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KL-UCB in action
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The information complexity of regret minimization

Letting

κR(ν) := inf
A consistent

lim inf
T→∞

RT (ν)

log(T )
,

we showed that

κR(ν) =
K∑

a=1

(µ∗ − µa)

d(µa, µ∗)
.

Remarks :

an asymptotic notion of optimality

still worth fighting for more efficient algorithms
(e.g. Bayesian algorithms)
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Outline

1 Regret minimization

2 m best arms identification
Lower bound on the sample complexity
An optimal algorithm ?

3 The complexity of A/B Testing
The Gaussian case
The Bernoulli case
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m best arms identification (fixed-confidence setting)

ν = (νθ1 , . . . , νθK ) ∈M = (P)K such that µ[m] > µ[m+1].

Parameters and notation :

m a fixed number of arms

δ ∈]0, 1[ a risk parameter

S∗m the set of m arms with highest means

The agent’s strategy : A = (At , τ, Ŝ)

sampling rule : At arm chosen at time t

stopping rule : at time τ he stops sampling the arms

recommendation rule : a guess Ŝ for the m best arms

His goal :

∀ν ∈M : µ[m] > µ[m+1], Pν(Ŝ = S∗m) ≥ 1− δ
(the algorithm is δ-PAC on M)

The sample complexity Eν [τ ] is small
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Towards the complexity of best-arm identification

The literature presents δ-PAC algorithm such that

Eν [τ ] ≤ CH(ν) log(1/δ)

[Even-Dar et al. 06], [Kalyanakrishnan et al.12]
but no lower bound on Eν [τ ].

⇒ No notion of optimal algorithm

We propose

Ü a lower bound on Eν [τ ]

Ü new algorithms (close to) reaching the lower bound
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A general lower bound

ν ∈M such that µ1 ≥ · · · ≥ µm > µm+1 ≥ · · · ≥ µK .

Theorem [K.,Cappé, Garivier 14]

Any algorithm that is δ-PAC on M satisfies, for all δ ∈]0, 1[,

Eν [τ ] ≥

(
m∑

a=1

1

d(µa, µm+1)
+

K∑
a=m+1

1

d(µa, µm)

)
log

(
1

2.4δ

)
.

First lower bound for m > 1

Involves information-theoretic quantities

E[τ ] =
K∑

a=1

E[Na(τ)]
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Behind the lower bound : changes of distribution

Lemma [K., Cappé, Garivier 2014]

ν = (ν1, ν2, . . . , νK ), ν ′ = (ν ′1, ν
′
2, . . . , ν

′
K ) two bandit models.

K∑
a=1

Eν [Na(τ)]KL(νa, ν
′
a) ≥ sup

E∈Fτ

kl(Pν(E),Pν′(E)).

with kl(x , y) = x log(x/y) + (1− x) log((1− x)/(1− y)).

¬ choose ν ′ such that S∗m(ν ′) 6= {1, . . . ,m} :

µ1µm µm+1 µa µK . . . .. . . . . . 

µ1µm µm+1 µK . . . . .  µm+Ɛ . . . 

a

a

S∗m(ν) = {1, · · · ,m − 1,m}

S∗m(ν ′) = {1, · · · ,m − 1, a}

 E = (Ŝ = S∗m(ν)) : Pν(E) ≥ 1− δ and Pν′(E) ≤ δ.

⇒ Eν [Na(τ)]d(µa, µm + ε) ≥ kl(δ, 1− δ) ≥ log(1/2.4δ).
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Outline

1 Regret minimization

2 m best arms identification
Lower bound on the sample complexity
An optimal algorithm ?

3 The complexity of A/B Testing
The Gaussian case
The Bernoulli case
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The KL-LUCB algorithm

Generic notation :

confidence interval (C.I.) on the mean of arm a at round t :

Ia(t) = [La(t),Ua(t)]

J(t) the set of m arms with highest empirical means

Our contribution : Introduce KL-based confidence intervals

Ua(t) = max {q ≥ µ̂a(t) : Na(t)d(µ̂a(t), q) ≤ β(t, δ)}
La(t) = min {q ≤ µ̂a(t) : Na(t)d(µ̂a(t), q) ≤ β(t, δ)}

for β(t, δ) some exploration rate.
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The KL-LUCB algorithm

At round t, the algorithm :

draws two well-chosen arms : ut and lt (in bold)

stops when C.I. for arms in J(t) and J(t)c are separated

0

1

58 118 346 330 120 72

m = 3,K = 6
Set J(t), arm lt in bold Set J(t)c , arm ut in bold
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Remark : KL-UCB versus KL-LUCB

Similar tools for a different behavior :

0

1

1289 111 22 36 19 22

KL-UCB

0

1

771 459 200 45 48 23

KL-LUCB
(m = 1)

Emilie Kaufmann (Inria) The information complexity of sequential resource allocation



Theoretical guarantees

Theorem [K.,Kalyanakrishnan 2013]

KL-LUCB using the exploration rate

β(t, δ) = log

(
k1Kt

α

δ

)
,

with α > 1 and k1 > 1 + 1
α−1 satisfies Pν(Ŝ = S∗m) ≥ 1− δ.

For α > 2,

Eν [τ ] ≤ 4αH∗ log

(
1

δ

)
+ oδ→0

(
log

1

δ

)
,

with
H∗ = min

c∈[µm+1;µm]

K∑
a=1

1

d∗(µa, c)
.
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Theoretical guarantees

Another informational quantity : Chernoff information

d∗(x , y) := d(z∗, x) = d(z∗, y),

where z∗ is defined by the equality

d(z∗, x) = d(z∗, y).
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Complexity of m best arm identification (FC)

Define the following complexity term :

κC (ν) = inf
PAC

algorithms

lim sup
δ→0

Eν [τ ]

log(1/δ)

Lower bound

κC (ν) ≥
m∑
t=1

1

d(µa, µm+1)
+

K∑
t=m+1

1

d(µa, µm)

Upper bound (for KL-LUCB)

κC (ν) ≤ 8 min
c∈[µm+1;µm]

K∑
a=1

1

d∗(µa, c)
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Outline

1 Regret minimization

2 m best arms identification
Lower bound on the sample complexity
An optimal algorithm ?

3 The complexity of A/B Testing
The Gaussian case
The Bernoulli case
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Motivation : A/B Testing
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Two possible goals

The agent’s goal is to design a strategy A = ((At), τ, âτ ) satisfying

Fixed-confidence setting Fixed-budget setting

Pν(âτ 6= a∗) ≤ δ τ = t

Eν [τ ] as small pt(ν) := Pν(ât 6= a∗)
as possible as small as possible

An algorithm using uniform sampling is

Fixed-confidence setting Fixed-budget setting

a sequential test of a test of
(µ1 > µ2) against (µ1 < µ2) (µ1 > µ2) against (µ1 < µ2)

with probability of error based on (t/2) samples
uniformly bounded by δ

[Siegmund 85] : sequential tests can save samples !
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Two complexity terms

M a class of bandit models. A = ((At), τ, âτ ) is...

Fixed-confidence setting Fixed-budget setting
δ-PAC on M if ∀ν ∈M, consistent on M if ∀ν ∈M,

Pν(âτ 6= a∗) ≤ δ pt(ν) := Pν(âτ 6= a∗m) −→
t→∞

0

Two complexities :

κC(ν) = inf
A PAC

lim sup
δ→0

Eν [τ ]
log(1/δ) κB(ν) = inf

A cons.

(
lim sup
t→∞

− 1
t log pt(ν)

)−1

for a probability of error ≤ δ for a probability of error ≤ δ,
Eν [τ ] ' κC (ν) log 1

δ budget t ' κB(ν) log 1
δ

In all our examples, âτ = argmaxa µ̂a(τ) (empirical best arm)
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Lower bounds in the two-armed case

From the previous Lemma...

A is δ-PAC. ν = (ν1, ν2),ν ′ = (ν ′1, ν
′
2) : µ1 > µ2 and µ′1 < µ′2.

Eν [N1(τ)]KL(ν1, ν
′
1) + Eν [N2(τ)]KL(ν2, ν

′
2) ≥ log

(
1

2.4δ

)
.

previously,

μ2 μ1+εμ1

µ′1 = µ1

µ′2 = µ1 + ε

a new change of distribution :

μ2 μ1μ* μ*+ε

µ′1 = µ∗

µ′2 = µ∗ + ε

choosing µ∗ : d(µ1, µ∗) = d(µ2, µ∗) := d∗(µ1, µ2) :

d∗(µ1, µ2)Eν [τ ] ≥ log

(
1

2.4δ

)
.
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Lower bounds in the two-armed case

Exponential families bandit models :
M =

{
ν ∈ (P)2 : µ1 6= µ2}

Fixed-confidence setting Fixed-budget setting

any δ-PAC algorithm satisfies any consistent algorithm satisfies

Eν [τ ] ≥ 1
d∗(µ1,µ2) log

(
1

2δ

)
lim sup
t→∞

− 1
t log pt(ν) ≤ d∗(µ1, µ2)

Gaussian bandit models, with σ1, σ2 known :

M =
{
ν =

(
N
(
µ1, σ

2
1

)
,N
(
µ2, σ

2
2

))
: (µ1, µ2) ∈ R2, µ1 6= µ2

}
,

Eν [τ ] ≥ 2(σ1+σ2)2

(µ1−µ2)2 log
(

1
2δ

)
lim sup
t→∞

− 1
t log pt(ν) ≤ (µ1−µ2)2

2(σ1+σ2)2
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Lower bound on the sample complexity
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Fixed-budget setting

M =
{
ν =

(
N
(
µ1, σ

2
1

)
,N
(
µ2, σ

2
2

))
: (µ1, µ2) ∈ R2, µ1 6= µ2

}
From the lower bound :

κB(ν) ≥ 2(σ1 + σ2)2

(µ1 − µ2)2

A strategy allocating t1 =
⌈

σ1
σ1+σ2

t
⌉

samples to arm 1 and

t2 = t − t1 samples to arm 1 satisfies

lim inf
t→∞

−1

t
log pt(ν) ≥ (µ1 − µ2)2

2(σ1 + σ2)2

κB(ν) =
2(σ1 + σ2)2

(µ1 − µ2)2
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Fixed-confidence setting : algorithm

The α-Elimination algorithm with exploration rate β(t, δ)

Ü chooses At in order to keep a proportion N1(t)/t ' α
i.e. At = 2 if and only if dαte = dα(t + 1)e

Ü if µ̂a(t) is the empirical mean of rewards obtained from a up
to time t, σ2

t (α) = σ2
1/dαte+ σ2

2/(t − dαte),

τ = inf

{
t ∈ N : |µ̂1(t)− µ̂2(t)| >

√
2σ2

t (α)β(t, δ)

}
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Fixed-confidence setting : results

From the lower bound :

Eν [τ ] ≥ 2(σ1 + σ2)2

(µ1 − µ2)2
log

(
1

2δ

)
Theorem

With α =
σ1

σ1 + σ2
and β(t, δ) = log

t

δ
+ 2 log log(6t),

α-Elimination is δ-PAC and

∀ε > 0, Eν [τ ] ≤ (1 + ε)
2(σ1 + σ2)2

(µ1 − µ2)2
log

(
1

2δ

)
+ oε
δ→0

(
log

1

δ

)

κC (ν) =
2(σ1 + σ2)2

(µ1 − µ2)2
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Lower bounds for Bernoulli bandit models

M = {ν = (B(µ1),B(µ2)) : (µ1, µ2) ∈]0; 1[2, µ1 6= µ2},

From the lower bounds,

κC (ν) ≥ 1

d∗(µ1, µ2)
and κB(ν) ≥ 1

d∗(µ1, µ2)
.

d∗(x , y) = d(x , z∗) = d(y , z∗) d∗(x , y) = d(z∗, x) = d(z∗, y)
with z∗ defined by with z∗ defined by
d(x , z∗) = d(y , z∗) d(z∗, x) = d(z∗, y)

(Chernoff information)

For Bernoulli distributions,

d∗(µ1, µ2) > d∗(µ1, µ2)
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Fixed-budget setting

There exists α(ν) such that a strategy allocating t1 = dα(ν)te
samples to arm 1 and t2 = t − t1 samples to arm 2 satisfies

pt(ν) ≤ exp(−td∗(µ1, µ2)).

κB(ν) =
1

d∗(µ1, µ2)

Remarks :

the optimal strategy not implementable in practice

using uniform sampling is very close to optimal

Consequence :

κC (ν) > κB(ν)
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Fixed-confidence setting

Another lower bound

A δ-PAC algorithm using uniform sampling satisfy

Eν [τ ] ≥ 1

I∗(µ1, µ2)
log

(
1

2.4δ

)
with

I∗(µ1, µ2) =
d
(
µ1,

µ1+µ2
2

)
+ d

(
µ2,

µ1+µ2
2

)
2

.

Remark : I∗(µ1, µ2) is very close to d∗(µ1, µ2) !

⇒ in practice, use uniform sampling ?

The algorithm using uniform sampling and

τ = inf
{
t ∈ N∗ : |µ̂1(t)− µ̂2(t)| > log

( t
δ

)}
is δ-PAC but not optimal : E[τ ]

log(1/δ) '
2

(µ1−µ2)2 > 1
I∗(µ1,µ2) .
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The SGLRT algorithm

The stopping rule

τ = inf
{
t ∈ N∗ : tI∗(µ̂1(t), µ̂2(t)) > log

( t
δ

)}
corresponds to a Sequential Generalized Likelihood Ratio Test.

lim sup
δ→0

Eν [τ ]

log(1/δ)
≤ 1

I ∗(µ1, µ2)

SGLRT : optimal among strategies using uniform sampling
(hence, close to optimal)
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Conclusion

the complexity of regret minimization is well-understood
⇒ complexity term involving Kullback-Leibler divergence

Chernoff information appears as a relevant complexity
measure for best arm identification among two arms

complexity terms for the fixed-budget and fixed-confidence
settings can be different !

Remaining questions

A/B Testing : for which classes of distributions is uniform
sampling a good idea ?

the complexity of m best arm identification, m > 1
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