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The multi-armed bandit model (MAB)

K arms = K probability distributions (v, has mean pu,)

At round t, an agent
@ chooses arm A;
@ observes reward X; ~ va,

A = (A¢) is his strategy or bandit algorithm :
At+]_ — Ft(A]_,X]_, e 7At7Xt)

Goal: maximize the rewards obtained during T interactions

< minimize regret:
-
~2 (30 - )

t=1
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Modern motivation: recommendation tasks

%1 1%} V3 |20 1%

For the t-th visitor of a website,
@ recommend a movie A;

@ observe a rating X; ~ 14, (e.g. Xy € {1,...,5})

Goal: maximize the sum of ratings
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Initial motivation: clinical trials

& @ = i &

B(p)  B(u2)  B(ps)  Blua)  B(ps)
For the t-th patient in a clinical study,

@ chooses a treatment A;

@ observes a response X, © 0.1} - P(X, = 1) = 1a,

Goal: maximize the number of patient healed during the study
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Our setup: exponential family bandit model
& @ ~ i &
1%

1/91 1/92 1/93

Ve, ,- - -V, belong to a one-dimensional exponential family:
P = {vp,0 € © : vy has a density 7)(x) = exp(tx — b(0))}
e 1y can be parametrized by its mean ;1 — b(0)) : vF = Vi1(4)
For a given exponential family P, Tt
s ) i= KL, 1) = B 10 550 0)

is the KL-divergence between the distributions of mean . and 1/'.

Bernoulli case: (6 = log t£;, b(0) = log(1 + e’))

d(p, 1) = KL(B(), B(1')) = plog £ + (1 — p) log 1=5.



@ Bayesian bandits, frequentist bandits

e Index policies inspired by the Bayesian optimal solution
© Bayes-UCB

e Thompson Sampling

© Bayesian algorithms in complex bandit models
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@ Bayesian bandits, frequentist bandits
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A frequentist or a Bayesian model?

v, = (VM ..., vi) € (P)K.

@ Two probabilistic modelings

Frequentist model Bayesian model
Py UK H1, ..., ik drawn from a
unknown parameters prior distribution : i, ~ m,
iid. iid.
arm a: (Yas)s RS pha arm a: (Yas)slp HS pha

@ The regret can be computed in each case

Frequentist regret Bayesian regret
(regret) (Bayes risk)

Rr(A, 1) = Eu[S L (0 = pa)| [R7(A ™) = B[S0 (17 = 1)
= [ Rr(A p)dn(p)
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Frequentist and Bayesian algorithms

@ Two types of tools to build bandit algorithms:

Frequentist tools Bayesian tools
MLE estimators of the means Posterior distributions
Confidence Intervals 75 = L(1alXa1, -5 Xany(e))

3 :
o
of 0

o Today:
Algorithms based on Bayesian tools

for solving (frequentist) regret minimization
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Optimal algorithms for regret minimization

v, = (VM ..., vi) € (P)K.

N,(t) : number of draws of arm a up to time t

K
Ry (A, ) = (1" — pa) 2 [NL(T)]
a=1

@ [Lai and Robbins, 1985]:

.. ELINA(T)] 1
2 < = liminf =& >
Ha < p T log T = d(pa, pu*)

Definition

A bandit algorithm is asymptotically optimal if, for every pu,

- Ep[Na(T)] 1
pa < p* = limsup =& < -
’ Toeo log T d(pra, i)
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Towards optimal index policies

@ An index policy is of the form

Aip1 = argmax [,(t)
a=1..K
I,(t): index that depends on the past observations from arm a,

Ya,la R Ya,N;(t)-
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Towards optimal index policies

@ An index policy is of the form
Aip1 = argmax [,(t)
a=1..K
I,(t): index that depends on the past observations from arm a,
Ya,la R Ya,N;(t)-

o A first (bad) idea: A, = argmax, [i,(1)
a

fia(t): empirical mean of rewards from arm
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Towards optimal index policies

@ An index policy is of the form

Aip1 = argmax [,(t)
a=1..K

I,(t): index that depends on the past observations from arm a,
Ya,la R Ya,N;(t)-
o A first (bad) idea: A, 1 = argmax, [i.(1)
fi2(t): empirical mean of rewards from arm a
o A better idea: A; = argmax, UCB,(1)
UCB,(t): an upper-confidence bound on i,

Example: ([Auer et al. 02|, Bernoulli case)

2 log(t)

UCB,(t) = fia(t) + No(t)
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The KL-UCB algorithm

o A UCB-type algorithm: A1 = argmax, u,(t)
@ ... associated to the right upper confidence bounds:

talt) = max {" > ia() o (a(t), ) < 28 mggbg(t) } ,

fia(t): empirical mean of rewards from arm a up to time t.
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[Cappé et al. 13]: KL-UCB satisfies, for ¢ > 5,
1 ——
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' ~WANTED!<=

Algorithms that are asymptotically optimal but also

@ more efficient in practice
@ easier to implement

o easier to generalize beyond exponential family bandits

Our answer:

Go Bayesian |



e Index policies inspired by the Bayesian optimal solution
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The Bayesian optimal solution

There exists an exact solution to Bayes risk minimization:

T

2%

t=1

argmax K, r
(Ar)

Why? The history of the game can be summarized by a posterior
matrix, that evolves in a Markov Decision Process.

= optimal policy = solution to dynamic programming equations.

Example: Bernoulli bandit model v, = (B(u1), ..., B(uk))
e sy~ U([0,1])
o 7! = Beta(#|ones observed| + 1, #|zeros observed| + 1)

1 2 12
5 1|2 |6 1]|ifx, =1
0 2 0 2
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The Bayesian optimal solution

There exists an exact solution to Bayes risk minimization:

T

Sox

t=1

argmax K, r
(Ar)

Why? The history of the game can be summarized by a posterior
matrix, that evolves in a Markov Decision Process.

= optimal policy = solution to dynamic programming equations.
Example: Bernoulli bandit model v, = (B(u1), ..., B(uk))

e sy~ U([0,1])

o 7! = Beta(#|ones observed| + 1, #|zeros observed| + 1)

12 12
5 12 (6 1|iFx, =1
0 2 0 2

INTRACTABLE !



Gittins' solution

[Gittins 79]: the solution of the discounted MAB,

o0
argmax Egr E X,
(At) t=1

is an index policy:

Apy1 = argmax G, (7h).
a=1..K
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Gittins' solution

[Gittins 79]: the solution of the discounted MAB,

o0

Z (,1t71Xt

t=1

argmax E,r
(Ar)

is an index policy:

Apy1 = argmax G, (7h).
a=1..K

In the undiscounted case: the Finite-Horizon Gittins algorithm

Air1 = argmax G(7h, T —t).

a=1...

G(p,r)=inf{AeR: V;\k(p, r) =0}, with

> (Ve A)]

t=1

V;(Pa r)= sup E_.q

Yt ~ ok
osr<r YiTY

“price worth paying for playing arm p ~ p for at most r rounds”
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The FH-Gittins algorithm

FH-Gittins...

@ does NOT coincide with the optimal solution of the
undiscounted MAB ([Berry, Fristedt 1985]) but it is
conjectured to be a good approximation

Dynamic Programming solutior|
- - - FH-Gittins algorithm

o displays good performance in terms of regret as well !
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The FH-Gittins algorithm

FH-Gittins...

@ does NOT coincide with the optimal solution of the
undiscounted MAB ([Berry, Fristedt 1985]) but it is
conjectured to be a good approximation

Dynamic Programming solutior|
- - - FH-Gittins algorithm

o displays good performance in terms of regret as well !

INDICES ARE HARD TO COMPUTE...



Approximating the FH-Gittins indices

e [Burnetas and Katehakis, 03]: when n is large,

(. n) = max { > a(e). () (2a(0). ) < o (1, ) |

@ [Lai, 87]: the index policy associated to

I(t) = max {q > fia(t), Na(t)d (Pa(t), q) < log (NQT(t))}

is a good approximation of the Bayesian solution for large T.
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Approximating the FH-Gittins indices

e [Burnetas and Katehakis, 03]: when n is large,

(. n) = max { > a(e). () (2a(0). ) < o (1, ) |

@ [Lai, 87]: the index policy associated to

I(t) = max {q > fia(t), Na(t)d (Pa(t), q) < log (NQT(t))}

is a good approximation of the Bayesian solution for large T.

ASYMPTOTIC OPTIMALITY ?
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© Bayes-UCB
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The Bayes-UCB algorithm

7l the posterior distribution over p, at the end of round t.

Algorithm: Bayes-UCB

1 t
Al = SRR (1 B ag>)

where Q(«, p) is the quantile of order « of the distribution p.

Bernoulli reward with uniform prior:
o 0 "L 1([0,1]) = Beta(1,1)
o w5 = Beta(Sa(t) + 1, Na(t) — Sa(t) + 1)
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Bayes-UCB in practice

| o |

(U 4

. . ’
2 4 46 107 40

Emilie Kaufmann Bayesian index policies




v UMK are such that p, € 7 (J open interval)

T=7)® - @7y is such that
o 70 has a density h, with respect to the Lebesgue measure
o VueJ, hy(u)>0

@ The posterior distribution depends on two sufficient statistics:

[ —
Ty = ﬂ-avNa(t)vﬁa(t)

An important rewriting of the posterior

@) = Jre b (v)du
Ta,n,x = fj e~ "W h,(u)du
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o Bayes-UCB rewrites

1
Atr1 = arggnax Q <1 - t(Iogt)C’Wa’Na(t)’ﬂa(t))

Extra assumption

Bounds on the means of the arms are known: there exists p~, u™
in J such that for all a, /1, < [0, 0]

v
Theorem

Let 7i,(t) = (fia(t) V u~) A ut. The index policy

1
Aii1 = argmax Q (1 = m, Wa,Na(t),pa(t))

a

with parameter ¢ > 7 is such that, for all ¢ > 0,

E[N(T)] < d(ljm l0g(T) + Oc(v/Tog(T)).

v
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A key element: Posterior bounds

_ [re o, (u)du
S e—ndlu) hy(u)du*

Recall that 7, 5 «(Z)

Bounds on the tail of the posterior distribution
The exists constants A, B, C such that, for all a, for all n € N* and

(x,v) € [, ut]?,
Q@ ifv>x Anle "V < Wa,n,x([V,M+[) < By/ne nd(x,v)

Q if v<x, manx([v,ut]) >1/(Cy/n+1)
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A key element: Posterior bounds

Q ifv>x, Anle "0 <y ([v, wt[) < By/ne dY)
@ if v < x, manx([V, w*]) = 1/(Cy/A+1)

Example of use:

- 1
{m > qu(t)} = {”L/vl(t),m(t)([ﬂl’m) = Tlogt t}

1 1 Ae—M(6)d* (i (6).01) 1
T S et (U <=t
Cy/Ni(t)+1 ~ tlogtt Ny (t) tlogtt

Atlog€ t
C S Ny(t)dH(fa(t), p1) > | ( )}’
{ 1(t)d™ (A (t), p1) = log N (2)

for t large enough.
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An interesting by-product of our analysis

@ We managed to handle alternative exploration rates !
Index policy: KL-UCB-HT

ufl () = max{q > Aa(t) : Na(£)d (a(1), x) < log (W)}

Index policy: KL-UCB™

The index policy associated to the indices ut"" () and uZ (t)
satisfy, for all € > 0,

1+e€
E[Na(T)] < a0 log(T) + Oc(/log(T)).
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@ Thompson Sampling
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Thompson Sampling

(wk, .., m) ) posterior distribution on (y1, .., k) at round t.

Algorithm: Thompson Sampling

Thompson Sampling is a randomized Bayesian algorithm:

Va e {1.K}, 0,(t) ~ )
Aty1 = argmax, 0,(t)

“Draw each arm according to its posterior probability
of being optimal”

@ the first bandit algorithm, proposed by [Thompson 1933]
@ good empirical performance in complex model

o first logarithmic regret bound in 2012
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Thompson Sampling is asymptotically optimal

For all € > 0,

E[N.(T)] < (1+ )

0y 8T + ouellog(T)).

This results holds:
@ for Bernoulli bandits, with a uniform prior

o for exponential family bandits, with the Jeffrey's prior
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A key ingredient in the proof

Proposition

There exists constants b = b(p) € (0,1) and Cp, < oo such that

ip (Nl(t) < tb> < G

{Nl(t) < tb} = {there exists a time range of length at least t'~°—1
with no draw of arm 1 }
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Numerical experiments

e Short horizon, T = 1000 (average over N = 10000 runs)

—— KLUCB
- = = KLUCB"
- = KLUCB-H"

Bayes UCB
‘Thompson Samplin
—— FH-Gitiins

0 100 200 300 400 500 600 700 80 900 1000 ° 00200 300 400 500 600

p1 =02, up = 0.25 pi1 = 0.85, jip = 0.95
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Numerical experiments

e Long horizon, T = 20000 (average over N = 50000 runs)

KLUCB KLUGBplus KLUGBHplus BayesUCB Thompson

o0 0] 0 oof o)

e 0] 100 eof o)

0 0ol o ol o)

20 2] 1 20| 20|

o) 0] 100 oof oo)

o) ) ) o0l o)

&) &) @ ool ool

o 4 ® a0l |

=) =) = 2| 2|
S K [ X K
fime ot time ot me et fime ot time

10 arms bandit problem
= [0.1 0.05 0.05 0.05 0.02 0.02 0.02 0.01 0.01 0.01]
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© Bayesian algorithms in complex bandit models
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Contextual linear bandit models

At time t, a set of 'contexts’ D; C R is revealed.
= characteristics of the items to recommend

The model:
@ if the context x; € D; is selected
@ areward ry = xtTG + €; is received

0 = underlying preference vector

Bayesian model: (with Gaussian prior)

re=x]0+e, 6 ~ N (0, /\'QId) : e~ N (0,02) )
Explicit posterior: p(0|xi,r1,...,x¢,re) =N <é(t), Zt>.

At) = (B(t) XY, with B(t) = Gly+ S xsx]

Y. = o%(B(t))L



Contextual linear bandit models

e Bayes-UCB
xer1 = argmax Q(1 — e*f(t),E(XTH\xl, Flyoeoy Xty tt))
XED4 41
= argmax x 7 0(t) + [|x||5, Q1 — e~ T A/(0,1))
XED4 41

@ Thompson Sampling

0(t) ~ N (é(t), zt) ,

Xep1 = argmax x! ().
XED¢t 41
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Theoretical guarantees

Bayesian guarantees: (|7;| < K)

T

Epn0.2) [Z (rréanxTH - xtTH)] = 0202 <\/dTIog(K)>
t—1 Vot

for Bayes-UCB [K. 2014], TS [Russo, Van Roy 2013]

Frequentist guarantees: [Agrawal, Goyal, 2013]
With » = v = o.,/9d log( T7), for TS based on the model

0 NN(O,Hz), €t NN(Oa V2)v

T
Eg [Z ()r(réapfxTH - xf@)] = 022 <d\/ TIog(K))
t=1

Open questions: choice of prior? optimal dependency in d?
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Beyond Gaussian prior...

@ A sparsity-inducing prior (spike-and-slab)
Va=1,...,K, 0.~ ef+(1—eN(0,r?).

"r | == Gaussian Prior
= Sparse Prior

=== Oracle

Bayes-UCB, d =10, K =20, #=[1,1,0,...,0]
Wanted: Good MCMC sampler for experiments in large dimension
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Thompson Sampling in combinatorial bandit models

@ Arms are edges on a graph
@ M is a set of possible configurations (subsets of edges)

@ The agent chooses m; € M at time t and observe a
realization of all arms in m; (semi-bandit)

@ Goal: play as much as possible the best configuration m* € M

TS: sample the weights on all edges from a posterior distribution,
choose the best configuration in this sampled weighted graph
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Conclusion

Several index policies inspired by the Bayesian MAB:

FH-Gittins, based on the finite-horizon Gittins indices

e KL-UCB and KL-UCB-H", two variants of KL-UCB using an
alternative exploration rate, inspired by the Bayesian solution

Bayes-UCB, based on posterior quantiles

@ Thompson Sampling, based on posterior samples

. evaluated in terms of (frequentist) regret:
@ good empirical performance

o (almost) all are asymptotically optimal in simple models

Bayes-UCB and TS are easier to implement than KL-UCB in
simple models, and can be easily used in more complex models
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