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The multi-armed bandit model (MAB)

K arms = K probability distributions (νa has mean µa)

ν1 ν2 ν3 ν4 ν5

At round t, an agent

chooses arm At

observes reward Xt ∼ νAt

A = (At) is his strategy or bandit algorithm :

At+1 = Ft(A1,X1, . . . ,At ,Xt)

Goal: maximize the rewards obtained during T interactions
⇔ minimize regret:

E

[
T (max

a
µa)−

T∑
t=1

Xt

]
= E

[
T∑
t=1

(µ∗ − µAt )

]
Emilie Kaufmann Bayesian index policies



Modern motivation: recommendation tasks

ν1 ν2 ν3 ν4 ν5

For the t-th visitor of a website,

recommend a movie At

observe a rating Xt ∼ νAt (e.g. Xt ∈ {1, . . . , 5})

Goal: maximize the sum of ratings
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Initial motivation: clinical trials

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

For the t-th patient in a clinical study,

chooses a treatment At

observes a response Xt ∈ {0, 1} : P(Xt = 1) = µAt

Goal: maximize the number of patient healed during the study

Emilie Kaufmann Bayesian index policies



Our setup: exponential family bandit model

νθ1 νθ2 νθ3 νθ4 νθ5

νθ1 , . . . , νθK belong to a one-dimensional exponential family:

P = {νθ, θ ∈ Θ : νθ has a density fθ(x) = exp(θx − b(θ))}

νθ can be parametrized by its mean µ = ḃ(θ) : νµ := νḃ−1(µ)

For a given exponential family P,

dP(µ, µ′) := KL(νµ, νµ
′
) = EX∼νµ

[
log

dνµ

dνµ′
(X )

]
is the KL-divergence between the distributions of mean µ and µ′.

Bernoulli case: (θ = log µ
1−µ , b(θ) = log(1 + eθ) )

d(µ, µ′) = KL(B(µ),B(µ′)) = µ log µ
µ′ + (1− µ) log 1−µ

1−µ′ .
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A frequentist or a Bayesian model?

νµ = (νµ1 , . . . , νµK ) ∈ (P)K .

Two probabilistic modelings

Frequentist model Bayesian model
µ1, . . . , µK µ1, . . . , µK drawn from a

unknown parameters prior distribution : µa ∼ πa

arm a: (Ya,s)s
i.i.d.∼ νµa arm a: (Ya,s)s |µ

i.i.d.∼ νµa

The regret can be computed in each case

Frequentist regret Bayesian regret
(regret) (Bayes risk)

RT (A,µ)= Eµ

[∑T
t=1 (µ∗ − µAt )

]
RT (A, π)= Eµ∼π

[∑T
t=1 (µ∗ − µAt )

]
=
∫
RT (A,µ)dπ(µ)
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Frequentist and Bayesian algorithms

Two types of tools to build bandit algorithms:

Frequentist tools Bayesian tools

MLE estimators of the means Posterior distributions
Confidence Intervals πta = L(µa|Xa,1, . . . ,Xa,Na(t))

0

1

9 3 448 18 21

0

1

6 3 451 5 34

Today:
Algorithms based on Bayesian tools

for solving (frequentist) regret minimization
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Optimal algorithms for regret minimization

νµ = (νµ1 , . . . , νµK ) ∈ (P)K .

Na(t) : number of draws of arm a up to time t

RT (A,µ) =
K∑

a=1

(µ∗ − µa)Eµ[Na(T )]

[Lai and Robbins, 1985]:

µa < µ∗ ⇒ lim inf
T→∞

Eµ[Na(T )]

logT
≥ 1

d(µa, µ∗)

Definition

A bandit algorithm is asymptotically optimal if, for every µ,

µa < µ∗ ⇒ lim sup
T→∞

Eµ[Na(T )]

logT
≤ 1

d(µa, µ∗)
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Towards optimal index policies

An index policy is of the form

At+1 = arg max
a=1...K

Ia(t)

Ia(t): index that depends on the past observations from arm a,

Ya,1, . . . ,Ya,Na(t).

A first (bad) idea: At+1 = arg maxa µ̂a(t)

µ̂a(t): empirical mean of rewards from arm a

A better idea: At+1 = arg maxa UCBa(t)

UCBa(t): an upper-confidence bound on µa

Example: ([Auer et al. 02], Bernoulli case)

UCBa(t) = µ̂a(t) +

√
2 log(t)

Na(t)
.
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The KL-UCB algorithm

A UCB-type algorithm: At+1 = arg maxa ua(t)
... associated to the right upper confidence bounds:

ua(t) = max

{
q ≥ µ̂a(t) : d (µ̂a(t), x) ≤ log(t) + c log log(t)

Na(t)

}
,

µ̂a(t): empirical mean of rewards from arm a up to time t.

q
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a
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d(µ
a
(t),q)

[Cappé et al. 13]: KL-UCB satisfies, for c ≥ 5,

Eµ[Na(T )] ≤ 1

d(µa, µ∗)
logT + O(

√
log(T )).
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Algorithms that are asymptotically optimal but also

more efficient in practice

easier to implement

easier to generalize beyond exponential family bandits

Our answer:

Go Bayesian !
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The Bayesian optimal solution

There exists an exact solution to Bayes risk minimization:

arg max
(At)

Eµ∼π

[
T∑
t=1

Xt

]
.

Why? The history of the game can be summarized by a posterior
matrix, that evolves in a Markov Decision Process.
⇒ optimal policy = solution to dynamic programming equations.

Example: Bernoulli bandit model νµ = (B(µ1), . . . ,B(µK ))

µa ∼ U([0, 1])

πta = Beta(#|ones observed|+ 1,#|zeros observed|+ 1)1 2
5 1
0 2

 At=2−→

1 2
6 1
0 2

 if Xt = 1

INTRACTABLE !
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Gittins’ solution

[Gittins 79]: the solution of the discounted MAB,

arg max
(At)

Eµ∼π

[ ∞∑
t=1

αt−1Xt

]
is an index policy:

At+1 = argmax
a=1...K

Gα(πta).

In the undiscounted case: the Finite-Horizon Gittins algorithm

At+1 = argmax
a=1...K

G (πta,T − t).

G (p, r) = inf{λ ∈ R : V ∗λ (p, r) = 0}, with

V ∗λ (p, r) = sup
0≤τ≤r

E
Yt

i.i.d∼ νµ
µ∼π

[
τ∑

t=1

(Yt − λ)

]
“price worth paying for playing arm µ ∼ p for at most r rounds”
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The FH-Gittins algorithm

FH-Gittins...

does NOT coincide with the optimal solution of the
undiscounted MAB ([Berry, Fristedt 1985]) but it is
conjectured to be a good approximation
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Dynamic Programming solution

FH−Gittins algorithm

displays good performance in terms of regret as well !

INDICES ARE HARD TO COMPUTE...
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Dynamic Programming solution

FH−Gittins algorithm

displays good performance in terms of regret as well !

INDICES ARE HARD TO COMPUTE...
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Approximating the FH-Gittins indices

[Burnetas and Katehakis, 03]: when n is large,

G (πta, n) ' max

{
q ≥ µ̂a(t),Na(t)d (µ̂a(t), q) ≤ log

(
n

Na(t)

)}

[Lai, 87]: the index policy associated to

Ia(t) = max

{
q ≥ µ̂a(t),Na(t)d (µ̂a(t), q) ≤ log

(
T

Na(t)

)}

is a good approximation of the Bayesian solution for large T .

ASYMPTOTIC OPTIMALITY ?
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The Bayes-UCB algorithm

πta the posterior distribution over µa at the end of round t.

Algorithm: Bayes-UCB [K., Cappé, Garivier 2012]

At+1 = argmax
a

Q

(
1− 1

t(log t)c
, πta

)
where Q(α, p) is the quantile of order α of the distribution p.

Bernoulli reward with uniform prior:

π0
a

i .i .d∼ U([0, 1]) = Beta(1, 1)

πta = Beta(Sa(t) + 1,Na(t)− Sa(t) + 1)
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Bayes-UCB in practice

0

1

2 4 346 107 40
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Theory

νµ1 , . . . , νµK are such that µa ∈ J (J open interval)

Assumptions

π = π0
1 ⊗ · · · ⊗ π0

K is such that

π0
a has a density ha with respect to the Lebesgue measure

∀u ∈ J , ha(u) > 0

The posterior distribution depends on two sufficient statistics:

πta = πa,Na(t),µ̂a(t)

An important rewriting of the posterior

πa,n,x(I) =

∫
I e
−nd(x ,u)ha(u)du∫

J e−nd(x ,u)ha(u)du
.
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Theory

Bayes-UCB rewrites

At+1 = argmax
a

Q

(
1− 1

t(log t)c
, πa,Na(t),µ̂a(t)

)
Extra assumption

Bounds on the means of the arms are known: there exists µ−, µ+

in J such that for all a, µa ∈ [µ−, µ+]

Theorem

Let µa(t) = (µ̂a(t) ∨ µ−) ∧ µ+. The index policy

At+1 = argmax
a

Q

(
1− 1

t(log t)c
, πa,Na(t),µa(t)

)
with parameter c ≥ 7 is such that, for all ε > 0,

Eµ[Na(T )] ≤ 1 + ε

d(µa, µ∗)
log(T ) + Oε(

√
log(T )).
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A key element: Posterior bounds

Recall that πa,n,x(I) =
∫
I e
−nd(x,u)ha(u)du∫

J e−nd(x,u)ha(u)du
.

Bounds on the tail of the posterior distribution

The exists constants A,B,C such that, for all a, for all n ∈ N∗ and
(x , v) ∈ [µ−, µ+]2,

1 if v > x , An−1e−nd(x ,v) ≤ πa,n,x([v , µ+[) ≤ B
√
ne−nd(x ,v)

2 if v < x , πa,n,x([v , µ+[) ≥ 1/(C
√
n + 1)
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A key element: Posterior bounds

1 if v > x , An−1e−nd(x ,v) ≤ πa,n,x([v , µ+[) ≤ B
√
ne−nd(x ,v)

2 if v < x , πa,n,x([v , µ+[) ≥ 1/(C
√
n + 1)

Example of use:

{µ1 ≥ q1(t)} =

{
π1,N1(t),µ1(t)([µ1, µ

+[) ≤ 1

t logc t

}
⊂

{
1

C
√
N1(t) + 1

≤ 1

t logc t

}⋃{
Ae−N1(t)d+(µ1(t),µ1)

N1(t)
≤ 1

t logc t

}
,

⊂
{
N1(t)d+(µ̂1(t), µ1) ≥ log

(
At logc t

N1(t)

)}
,

for t large enough.
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An interesting by-product of our analysis

We managed to handle alternative exploration rates !

Index policy: KL-UCB-H+

uH,+a (t) = max

{
q ≥ µ̂a(t) : Na(t)d (µ̂a(t), x) ≤ log

(
T logc T

Na(t)

)}

Index policy: KL-UCB+

u+
a (t) = max

{
q ≥ µ̂a(t) : Na(t)d (µ̂a(t), x) ≤ log

(
t logc t

Na(t)

)}
The index policy associated to the indices uH,+a (t) and u+

a (t)
satisfy, for all ε > 0,

E[Na(T )] ≤ 1 + ε

d(µa, µ∗)
log(T ) + Oε(

√
log(T )).
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Thompson Sampling

(πta, .., π
t
K ) posterior distribution on (µ1, .., µK ) at round t.

Algorithm: Thompson Sampling

Thompson Sampling is a randomized Bayesian algorithm:

∀a ∈ {1..K}, θa(t) ∼ πta
At+1 = argmaxa θa(t)

“Draw each arm according to its posterior probability
of being optimal”

the first bandit algorithm, proposed by [Thompson 1933]

good empirical performance in complex model

first logarithmic regret bound in 2012
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Thompson Sampling is asymptotically optimal

Theorem [K.,Korda,Munos 2012],[Korda, K., Munos 2014]

For all ε > 0,

E[Na(T )] ≤ (1 + ε)
1

d(µa, µ∗)
log(T ) + oµ,ε(log(T )).

This results holds:

for Bernoulli bandits, with a uniform prior

for exponential family bandits, with the Jeffrey’s prior
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A key ingredient in the proof

Proposition

There exists constants b = b(µ) ∈ (0, 1) and Cb <∞ such that
∞∑
t=1

P
(
N1(t) ≤ tb

)
≤ Cb.

{
N1(t) ≤ tb

}
= {there exists a time range of length at least t1−b−1

with no draw of arm 1 }
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Numerical experiments

Short horizon, T = 1000 (average over N = 10000 runs)
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Numerical experiments

Long horizon, T = 20000 (average over N = 50000 runs)

10 arms bandit problem
µ = [0.1 0.05 0.05 0.05 0.02 0.02 0.02 0.01 0.01 0.01]
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Contextual linear bandit models

At time t, a set of ’contexts’ Dt ⊂ Rd is revealed.

= characteristics of the items to recommend

The model:

if the context xt ∈ Dt is selected

a reward rt = xTt θ + εt is received

θ = underlying preference vector

Bayesian model: (with Gaussian prior)

rt = xTt θ + εt , θ ∼ N
(
0, κ2Id

)
, εt ∼ N

(
0, σ2

)
.

Explicit posterior: p(θ|x1, r1, . . . , xt , rt) = N
(
θ̂(t),Σt

)
.

{
θ̂(t) = (B(t))−1XT

t Yt with B(t) = σ2

κ2 Id +
∑t

s=1 xsx
T
s

Σt = σ2(B(t))−1.
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Contextual linear bandit models

Bayes-UCB

xt+1 = argmax
x∈Dt+1

Q(1− e−f (t),L(xT θ|x1, r1, . . . , xt , rt))

= argmax
x∈Dt+1

xT θ̂(t) + ||x ||ΣtQ(1− e−f (t),N (0, 1))

Thompson Sampling

θ̃(t) ∼ N
(
θ̂(t),Σt

)
,

xt+1 = argmax
x∈Dt+1

xT θ̃(t).
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Theoretical guarantees

Bayesian guarantees: (|Dt | ≤ K )

Eθ∼N (0,κ2)

[
T∑
t=1

(
max
x∈Dt

xT θ − xTt θ

)]
= Oκ2,σ2

(√
dT log(K )

)
for Bayes-UCB [K. 2014], TS [Russo, Van Roy 2013]

Frequentist guarantees: [Agrawal, Goyal, 2013]

With κ = v = σ
√

9d log(T 2), for TS based on the model

θ ∼ N (0, κ2), εt ∼ N (0, v2),

Eθ

[
T∑
t=1

(
max
x∈Dt

xT θ − xTt θ

)]
= Oκ2,σ2

(
d
√

T log(K )
)

Open questions: choice of prior? optimal dependency in d?
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Beyond Gaussian prior...

A sparsity-inducing prior (spike-and-slab)

∀a = 1, . . . ,K , θa ∼ εδ0 + (1− ε)N (0, κ2) .
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Bayes-UCB, d = 10, K = 20, θ = [1, 1, 0, . . . , 0]

Wanted: Good MCMC sampler for experiments in large dimension
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Thompson Sampling in combinatorial bandit models

Arms are edges on a graph

M is a set of possible configurations (subsets of edges)

The agent chooses mt ∈M at time t and observe a
realization of all arms in mt (semi-bandit)

Goal: play as much as possible the best configuration m∗ ∈M

TS: sample the weights on all edges from a posterior distribution,
choose the best configuration in this sampled weighted graph
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Conclusion

Several index policies inspired by the Bayesian MAB:

FH-Gittins, based on the finite-horizon Gittins indices

KL-UCB+and KL-UCB-H+, two variants of KL-UCB using an
alternative exploration rate, inspired by the Bayesian solution

Bayes-UCB, based on posterior quantiles

Thompson Sampling, based on posterior samples

... evaluated in terms of (frequentist) regret:

good empirical performance

(almost) all are asymptotically optimal in simple models

Bayes-UCB and TS are easier to implement than KL-UCB in
simple models, and can be easily used in more complex models
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