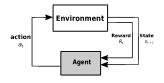
On Pure-Exploration in (Episodic) Markov Decision Processes

based on joint works with Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent and Michal Valko

RL Theory Seminar @ICML July 24th, 2021

Rewards maximization versus pure exploration

RL setup: an agent interacts with an environement (MDP)



Several Performance measures:

- 1 the agent should adopt a good behavior
 - → maximize the total rewards (regret minimization)
 - \rightarrow use as much as possible an ε -optimal policy (*PAC-MDP*)
- 2 the agent should *learn* a good behavior, regarless of rewards gathered during learning
 - → Pure Exploration

Setting: Episodic Markov Decision Process

Episodic MDP: MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r, H, s_1)$ for

- ullet (finite) state space ${\cal S}$, action space ${\cal A}$
- horizon H, initial state s_1
- (inhomogeneous) transition kernel $P = (p_h(s'|s, a))_{(s,a,s',h) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times [H]}$
- (inhomogeneous) reward function $r = (r_h(s, a))_{(s,a,h) \in \mathcal{S} \times \mathcal{A} \times [H]}$

Value of a policy $\pi = (\pi_h)_{h=1}^H$, $\pi_h : \mathcal{S} \to \mathcal{A}$:

$$V_h^\pi(s;\mathcal{M}) \;\; riangleq \;\; \mathbb{E}\left[\left. \sum_{\ell=h}^H r_\ell(s_\ell,\pi_\ell(s_\ell))
ight|_{s_{\ell+1}\sim p_\ell(\cdot|s_\ell,\pi_\ell(s_\ell))}^{s_h=s}
ight]$$

Optimal policy: $\pi_{\mathcal{M}}^{\star}$ such that $V_{1}^{\pi_{\mathcal{M}}^{\star}}(s_{1};\mathcal{M}) \geq V_{1}^{\pi}(s_{1};\mathcal{M})$ for any policy π .

Sequential Learning Protocol

Adaptively collect data from the MDP by generating trajectories (episodes) \neq generative model

In each episode $t = 1, 2, \ldots$, the agent

- selects an exploration policy π^t
- generates an episode under this policy

$$(s_1^t, a_1^t, r_1^t, s_2^t, a_2^t, r_2^t, \dots, s_H^t, a_H^t, r_H^t)$$

with
$$s_1^t = s_1$$
, $a_h^t = \pi_h^t(s_h^t)$, $s_{h+1}^t \sim p_h(\cdot|s_h^t, a_h^t)$, $r_h^t = r_h(s_h^t, a_h^t)$

- can decide to stop exploration
- if decides to stop, outputs a prediction

General goal: minimize the length of the exploration phase (sample complexity) to reach an accurate prediction (ε , δ -PAC)

In each episode $t = 1, 2, \ldots$, the agent

- selects an exploration policy π^t
- generates an episode under this policy

$$(s_1^t, a_1^t, r_1^t, s_2^t, a_2^t, r_2^t, \dots, s_H^t, a_H^t, r_H^t)$$

with
$$s_1^t = s_1$$
, $a_h^t = \pi_h^t(s_h^t)$, $s_{h+1}^t \sim p_h(\cdot|s_h^t, a_h^t)$, $r_h^t = r_h(s_h^t, a_h^t)$

- can decide to stop exploration
- if decides to stop, outputs a prediction

Planning in MDPs

Prediction: output the best first action to take $(\simeq \pi_1^{\star}(s_1))$

→ problem-dependent sample complexity [Jonnson et al, 20]

In each episode $t = 1, 2, \ldots$, the agent

- ullet selects an exploration policy π^t
- generates an episode under this policy

$$(s_1^t, a_1^t, r_1^t, s_2^t, a_2^t, r_2^t, \dots, s_H^t, a_H^t, r_H^t)$$

with
$$s_1^t = s_1$$
, $a_h^t = \pi_h^t(s_h^t)$, $s_{h+1}^t \sim p_h(\cdot|s_h^t, a_h^t)$, $r_h^t = r_h(s_h^t, a_h^t)$

- can decide to stop exploration
- if decides to stop, outputs a prediction

Best Policy Identification [Fiechter, 1994], [Jin et al., 18] ...

Prediction: output the best policy $\pi_{\mathcal{M}}^{\star} = (\pi_1^{\star}, \dots, \pi_H^{\star})$

→ UCB-VI [Azar et al., 21] + a data-dependent stopping rule [Ménard et al., 21]

In each episode $t = 1, 2, \ldots$, the agent

- selects an exploration policy π^t
- generates an episode under this policy

$$(s_1^t, a_1^t, y_1^t, s_2^t, a_2^t, y_2^t, \dots, s_H^t, a_H^t, y_H^t)$$

with
$$s_1^t = s_1$$
, $a_h^t = \pi_h^t(s_h^t)$, $s_{h+1}^t \sim p_h(\cdot|s_h^t, a_h^t)$, $r_h^t = r_h(s_h^t, a_h^t)$

- can decide to stop exploration
- if decides to stop, outputs a prediction

Reward Free Exploration [Jin et al., 20], [Wang et al. 20]

Given any reward function r, output $\pi_{\mathcal{M}}^{\star}$ for $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r)$

In each episode $t = 1, 2, \ldots$, the agent

- selects an exploration policy π^t
- generates an episode under this policy

$$(s_1^t, a_1^t, p_1^t, s_2^t, a_2^t, p_2^t, \dots, s_H^t, a_H^t, p_H^t)$$

with
$$s_1^t = s_1$$
, $a_h^t = \pi_h^t(s_h^t)$, $s_{h+1}^t \sim p_h(\cdot|s_h^t, a_h^t)$, $r_h^t = r_h(s_h^t, a_h^t)$

- can decide to stop exploration
- if decides to stop, outputs a prediction

Reward Free Exploration [Jin et al., 20], [Wang et al. 20]

Given any reward function r, output π_r^* for $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r)$

Outline

Reward Free Exploration

2 RF-Express

③ Why 1/n?

Reward-Free Exploration (RFE)

RFE algorithm

ullet exploration policy π^t : may depend on past data \mathcal{D}_{t-1}

$$\mathcal{D}_t = \mathcal{D}_{t-1} \cup \left\{ (s_1^t, a_1^t, s_2^t, a_2^t, \dots, s_H^t, a_H^t) \right\}$$

- stopping rule τ : stopping time w.r.t. $(\mathcal{D}_t)_{t\in\mathbb{N}}$
- prediction $\hat{P}=(\hat{p}_h(\cdot|s,a))_{h,s,a}$: a transition kernel that may depend on \mathcal{D}_{τ}

 $\hat{\pi}_r^{\star}$: optimal policy in the MDP (\hat{P}, r)

$(arepsilon,\delta)$ -PAC algorithm for Reward-Free Exploration

$$\mathbb{P}\left(\text{for any }r\in\mathcal{B},V_1^{\star}(\pmb{s}_1;r)-V_1^{\hat{\pi}_r^{\star}}(\pmb{s}_1;r)\leq\varepsilon\right)\geq 1-\delta$$

Assumption: uniformly bounded rewards

$$\mathcal{B} = \{ r = (r_h(s, a)) \text{ with } r_h(s, a) \in [0, 1] \}$$

Sample complexity

Lower bounds For any (ε, δ) -PAC algorithm, exists an MDP:

•
$$\mathbb{E}[\tau] = \Omega\left(\frac{SAH^3}{\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right)$$
 [Darwiche Domingues et al. 21]
• $\mathbb{E}[\tau] = \Omega\left(\frac{S^2AH^2}{\varepsilon^2}\right)$ [Jin et al. 20] (homogeneous case)

Algorithms

RF-RL-EXPLORE	$ au = ilde{O}\left(rac{H^5S^2A}{arepsilon^2}\log\left(rac{1}{\delta} ight) + rac{H^7S^2A}{arepsilon}\log^3(rac{1}{\delta}) ight)$
[Jin et al. 20]	
RF-UCRL	$ au = ilde{O}\left(rac{H^4SA}{arepsilon^2}\left(\log\left(rac{1}{\delta} ight) + S ight) ight)$, w.h.p.
[Kaufmann et al. 21]	
RF-Express	$ au = ilde{O}\left(rac{H^3SA}{arepsilon^2}\left(\log\left(rac{1}{\delta} ight) + S ight) ight)$, w.h.p.
[Ménard et al. 21]	

Remark: changing the set $\mathcal B$ of candidate reward functions leads to a different scaling of the sample complexity

e.g. finite set \mathcal{B} [Zhang et al. 20], total bounded reward [Zhang et al. 21]

Outline

Reward Free Exploration

2 RF-Express

3 Why 1/n?

Estimate of the transition kernel

Number of visits:

$$n_h^t(s,a) = \sum_{k=1}^t \mathbb{1}_{\{(s_h^k,a_h^k)=(s,a)\}} \quad n_h^t(s,a,s') = \sum_{k=1}^t \mathbb{1}_{\{(s_h^k,a_h^k,s_{h+1}^k)=(s,a,s')\}}$$

Empirical transitions: $\hat{P}^t = (\hat{p}_h^t(s'|s,a))_{h,s,a,s'}$

$$\hat{\rho}_h^t(s'|s,a) = \begin{cases} \frac{n_h^t(s,a,s')}{n_h^t(s,a)} & \text{if } n_h^t(s,a) > 0\\ \frac{1}{S} & \text{else} \end{cases}$$

RF-Express

RF-Express

• exploration policy: π^{t+1} is the greedy policy w.r.t. W_h^t :

$$\forall s \in \mathcal{S}, \forall h \in [H], \quad \pi_h^{t+1}(s) = rg \max_{a \in \mathcal{A}} W_h^t(s, a)$$

stopping rule:

$$\tau = \inf \left\{ t \in \mathbb{N} : 3e\sqrt{\max_{a} W_1^t(s_1, a)} + \max_{a} W_1^t(s_1, a) \leq \varepsilon/2 \right\}$$

• **prediction:** output the empirical transition kernel $\hat{P} = \hat{P}^{\tau}$

where

$$W_{h}^{t}(s, a) = \min \left[H, 15H^{2} \frac{\beta(n_{h}^{t}(s, a), \delta)}{n_{h}^{t}(s, a)} + \left(1 + \frac{1}{H}\right) \sum_{s'} \hat{p}_{h}^{t}(s'|s, a) \max_{a'} W_{h+1}^{t}(s', a') \right]$$
with $\beta(n, \delta) = \log(3SAH/\delta) + S\log(8e(n+1))$.

Theoretical guarantees

Theorem

For $\delta \in (0,1)$, $\varepsilon \in (0,1]$, RF-Express is (ε,δ) -PAC for RFE. Moreover, RF-Express stops after τ episodes where, with probability at least $1-\delta$,

$$au \leq rac{ extit{H}^3 extit{SA}}{arepsilon^2} \left(\log \left(rac{3 extit{SAH}}{\delta}
ight) + S
ight) extit{C}_1 + 1$$

and where $C_1 \triangleq 5587e^6 \log (e^{18} (\log(3SAH/\delta) + S) H^3 SA/\varepsilon)^2$.

Outline

Reward Free Exploration

2 RF-Express

3 Why 1/n?

Notation

Q-Values

$$Q_h^{\pi}(s,a) := r_h(s,a) + p_h V_{h+1}^{\pi}(s,a)$$

 $Q_h^{\star}(s,a) := r_h(s,a) + p_h V_{h+1}^{\star}(s,a)$

with the notation $p_h f(s, a) = \mathbb{E}_{s' \sim p_h(\cdot | s, a)} E[f(s')]$

The Bellman equations can be expressed as

$$V_h^\pi(s) = Q_h^\pi(s,\pi(s))$$
 and $V_h^\star(s) = \max_{a \in \mathcal{A}} Q_h^\star(s,a)$

Empirical values:

- $\hat{V}_h^{t,\pi}(s;r)$ values in the empirical MDP $(\mathcal{S},\mathcal{A},\hat{P}^t,r)$
- $\hat{Q}_h^{t,\pi}(s;r)$ Q-values in the empirical MDP $(\mathcal{S},\mathcal{A},\hat{P}^t,r)$

Upper bounding the error

Sufficient condition

A sufficient condition to be (ε, δ) -PAC for RFE is to have accurate estimates of the value function for all π and r:

$$\mathbb{P}\left(\forall \pi, \forall r, \ |\hat{V}_1^{\tau,\pi}(s_1;r) - V_1^{\pi}(s_1;r)| \leq \varepsilon/2\right) \geq 1 - \delta.$$

Proof.

$$\begin{split} V_{1}^{\star}(s_{1};r) - V_{1}^{\hat{\pi}_{r}^{\star}}(s_{1};r) &= V_{1}^{\pi_{r}^{\star}}(s_{1};r) - \hat{V}_{1}^{t,\pi_{r}^{\star}}(s_{1};r) + \underbrace{\hat{V}_{1}^{t,\pi_{r}^{\star}}(s_{1};r) - \hat{V}_{1}^{t,\hat{\pi}_{r}^{\star}}(s_{1};r)}_{\leq 0} \\ &+ \hat{V}_{1}^{t,\hat{\pi}_{r}^{\star}}(s_{1};r) - V_{1}^{\hat{\pi}_{r}^{\star}}(s_{1};r). \end{split}$$

Rationale for the stopping rule: Introducing the estimation error

$$\hat{e}_h^{t,\pi}(s,a;r) := |\hat{Q}_h^{t,\pi}(s,a;r) - Q_h^{\pi}(s,a;r)|,$$

we want to stop when $\max_{\pi,r} \hat{e}_1^{t,\pi}(s,\pi(s_1);r) \leq \varepsilon/2$.

Upper bounding the error

Lemma

With probability at least $1-\delta$, for any episode t, policy π , and reward function r,

$$\hat{e}_1^{t,\pi}(s_1,\pi_1(s_1);r) \leq 3e\sqrt{\max_{a \in \mathcal{A}} W_1^t(s_1,a)} + \max_{a \in \mathcal{A}} W_1^t(s_1,a).$$

- \rightarrow data-dependent upper bound, independent of π and r
- → justifies the stopping rule

$$au = \inf \left\{ t \in \mathbb{N} : 3e\sqrt{\max_{a} W_1^t(s_1, a)} + \max_{a} W_1^t(s_1, a) \leq arepsilon/2
ight\}$$

 \rightarrow note that the bound on $\hat{e}_h^{t,\pi}(s,a;r)$ is only valid for h=1

$$\hat{e}_h^{t,\pi}(s,a;r) := \left| \hat{Q}_h^{t,\pi}(s,a;r) - Q_h^{\pi}(s,a;r) \right|$$

Writing the Bellman equations

$$\hat{Q}_{h}^{t,\pi}(s,a;r) = r_{h}(s,a) + \hat{p}_{h}^{t} \hat{V}_{h+1}^{t,\pi}(s,a)$$

and $Q_{h}^{\pi}(s,a;r) = r_{h}(s,a) + p_{h} V_{h+1}^{\pi}(s,a)$.

the reward cancel and one obtains

$$\begin{split} \hat{e}_h^{t,\pi}(s,a;r) &\leq \left| (\hat{p}_h^t - p_h) V_{h+1}^\pi(s,a) \right| + \hat{p}_h^t |\hat{V}_{h+1}^{t,\pi} - V_{h+1}^\pi|(s,a) \\ &= \underbrace{\left| (\hat{p}_h^t - p_h) V_{h+1}^\pi(s,a) \right|}_{\text{upper bound bound this using an empirical Bernstein inequality}} + \hat{p}_h^t \pi_{h+1} \hat{e}_{h+1}^{t,\pi}(s,a;r). \end{split}$$

with the notation $\pi_{h+1}g(s) = g(s, \pi_{h+1}(s))$

On the event $\mathcal{E} = \left\{ \mathrm{KL}\left(\hat{p}_h^{\,t}(s,a), p_h(s,a)\right) \leq \frac{\beta(n_h^t(s,a),\delta)}{n_h^t(s,a)} \right\}$, we prove

$$\hat{e}_{h}^{t,\pi}(s,a;r) \leq \underbrace{3\sqrt{\frac{\operatorname{Var}_{\hat{\rho}_{h}^{t}}(\hat{V}_{h+1}^{t,\pi})(s,a;r)}{H^{2}}\left(\frac{H^{2}\beta(n_{h}^{t}(s,a),\delta)}{n_{h}^{t}(s,a)} \wedge 1\right)}_{(*)} + 15H^{2}\frac{\beta(n_{h}^{t}(s,a),\delta)}{n_{h}^{t}(s,a)}$$

$$\underbrace{\left(1 + \frac{1}{H}\right)\hat{\rho}_{h}^{t}\pi_{h+1}\hat{e}_{h+1}^{t,\pi}(s,a;r)}.$$

Challenge: the empirical variance term depends on the *unobserved* reward function

→ (*) cannot be computed by an algorithm

On the event $\mathcal{E} = \left\{ \mathrm{KL}\left(\hat{p}_h^{\,t}(s,a), p_h(s,a)\right) \leq rac{\beta(n_h^t(s,a),\delta)}{n_h^t(s,a)} \right\}$, we prove

$$\hat{e}_{h}^{t,\pi}(s,a;r) \leq \underbrace{3\sqrt{\frac{\operatorname{Var}_{\hat{\rho}_{h}^{t}}(\hat{V}_{h+1}^{t,\pi})(s,a;r)}{H^{2}}\left(\frac{H^{2}\beta(n_{h}^{t}(s,a),\delta)}{n_{h}^{t}(s,a)} \wedge 1\right)}_{(*)} + 15H^{2}\frac{\beta(n_{h}^{t}(s,a),\delta)}{n_{h}^{t}(s,a)}$$

$$\underbrace{\left(1 + \frac{1}{H}\right)\hat{\rho}_{h}^{t}\pi_{h+1}\hat{e}_{h+1}^{t,\pi}(s,a;r).}$$

Challenge: the empirical variance term depends on the *unobserved* reward function

→ (*) cannot be computed by an algorithm

Solution: splitting the bonus

$$\hat{e}_h^{t,\pi}(s,a;r) \leq Y_h^{t,\pi}(s,a;r) + W_h^{t,\pi}(s,a)$$

where

$$Y_{h}^{t,\pi}(s,a;r) = 3\sqrt{\frac{\operatorname{Var}_{\hat{\rho}_{h}^{t}}(\hat{V}_{h+1}^{t,\pi})(s,a;r)}{H^{2}}\left(\frac{H^{2}\beta(n_{h}^{t}(s,a),\delta)}{n_{h}^{t}(s,a)} \wedge 1\right) + \left(1 + \frac{1}{H}\right)\hat{\rho}_{h}^{t}\pi_{h+1}Y_{h+1}^{t,\pi}(s,a;r)}$$

$$W_{h}^{t,\pi}(s,a) = \min\left(H, 15H^{2}\frac{\beta(n_{h}^{t}(s,a),\delta)}{n_{h}^{t}(s,a)} + \left(1 + \frac{1}{H}\right)\hat{\rho}_{h}^{t}\pi_{h+1}W_{h+1}^{t,\pi}(s,a)\right) \leq W_{h}^{t}(s,a).$$

Using notably a Bellman equation for the variance, we prove

$$Y_1^{t,\pi}(s_1,\pi_1(s_1);r) \leq 3e\sqrt{W_1^{t,\pi}(s_1,\pi_1(s_1))}$$

$$\Rightarrow \hat{e}_{1}^{t,\pi}(s,\pi_{1}(s);r) \leq 3e\sqrt{\max_{a}W_{1}^{t}(s_{1},a)} + \max_{a}W_{1}^{t}(s,a)$$

Sample complexity: how do we get rid of an H?

By definition of the stopping rule, for any $t < \tau$,

$$\varepsilon \leq 3e\sqrt{W_1^t(s_1,\pi_1^{t+1}(s_1))} + W_1^t(s_1,\pi_1^{t+1}(s_1)).$$

Summing these inequalities yields

$$\tau\varepsilon \leq 3e\sqrt{\tau \sum_{t=0}^{\tau-1} W_1^t(s_1, \pi_1^{t+1}(s_1))} + \sum_{t=0}^{\tau-1} W_1^t(s_1, \pi_1^{t+1}(s_1)).$$

A careful sum of the bonuses (w.h.p.)

$$(*) \leq CH^{2} \sum_{t=0}^{\tau-1} \sum_{h=1}^{H} \sum_{s,a} p_{h}^{t+1}(s,a) \frac{\beta(\overline{n}_{h}^{t}(s,a),\delta)}{\overline{n}_{h}^{t}(s,a) \vee 1}$$
$$\simeq C'H^{3} SA \log(\tau)\beta(\tau,\delta)$$

Is 1/n any good in practice?

RF-Express (1/n bonuses) versus RF-UCRL ($1/\sqrt{n}$) in a grid-world environment with 15 rooms and 25 states per room

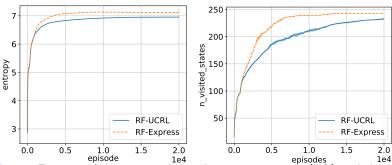


Figure: Entropy of the empirical distribution over states (left) and the number of visited states (right) versus number of episodes. Horizon H=30, average over 4 runs.

Conclusion

- We got rid of an H in the sample complexity of reward-free exploration algorithms an optimal algorithm
- ... which showcases 1/n bonuses

Open questions:

- Can (a variant of) RF-Express attain a horizon-free sample complexity under the total bounded reward assumption?
- What are the practical benefits of using 1/n bonuses instead of $1/\sqrt{n}$?

see, Domingues et al., Density-Based Bonuses on Learned Representations for RFE in Deep Reinforcement Learning @ Unsupervised RL workshop

 Optimal Best Policy Identification in a minimax and problem-dependent sense?

References

- Azar et al., Minimax Regret Bounds for Reinforcement Learning, ICML 2017
- Darwiche Domingues et al., Episodic Reinforcement Learning in Finite MDPs: Minimax Lower Bounds Revisited, ALT 2021
- Jin et al., Reward-Free Exploration for Reinforcement Learning, ICML 2020
- Jin et al., Is Q-Learning Provably Efficient?, NeurIPS 2018
- Jonsson et al., *Planning in Markov Decision Processes with Gap-Dependent Sample Complexity*, NeurlPS 2020
- Fiechter, Efficient Reinforcement Learning, COLT 1994
- Kaufmann et al., Adaptive Reward-Free Exploration, ALT 2021
- Ménard et al., Fast active learning for pure exploration in reinforcement learning, ICML 2021
- Wang et al., On reward-free reinforcement learning with linear function approximation, NeurIPS 2020
- Zhang et al., Task-agnostic exploration in reinforcement learning, NeurIPS 2020
- Zhang et al., Nearly Optimal Reward-Free Reinforcement Learning, ICML 2021