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Rewards maximization versus pure exploration

RL setup: an agent interacts with an environement (MDP)

Environment

action Reward| |State
Re Sis
a

Agent [

Several Performance measures:

@ the agent should adopt a good behavior

=» maximize the total rewards (regret minimization)
=» use as much as possible an e-optimal policy (PAC-MDP)

@ the agent should /earn a good behavior, regarless of rewards
gathered during learning

=» Pure Exploration



Setting: Episodic Markov Decision Process

Episodic MDP: MDP M = (S, A, P,r,H, s) for
o (finite) state space S, action space A
@ horizon H, initial state s;
e (inhomogeneous) transition kernel
P = (pn(s'ls, @) (s,a,s',h)eSx AxSx[H]
@ (inhomogeneous) reward function
r = (rn(s, a))(s,a,h)eSxAx[H]

Value of a policy 7 = (7)1, , mh: S = A:

H
V,T(s; M é [Z rg Sy, Trg(Sg)
{=h

Sp=Ss
se+1~pe(:|se,me(se))

Optimal policy: 77, such that
VM (s1; M) > V[ (s1; M) for any policy . J




Sequential Learning Protocol

Adaptively collect data from the MDP by generating trajectories
(episodes) # generative model

In each episode t =1,2,..., the agent
@ selects an exploration policy 7!

@ generates an episode under this policy
t t t .t t t t t t
(51, 31, r1752, 32, r2, e 7SH7 aH, rH)

Hhoof t bt ot toat) ,t _ t ot
with s = s1, a, = 7;,(sp), Shyy ~ Pa(‘[sh, ak), rh = rh(shs ap)
@ can decide to stop exploration

@ if decides to stop, outputs a prediction

General goal: minimize the length of the exploration phase
(sample complexity) to reach an accurate prediction (e, §-PAC)



What is the prediction?

In each episode t =1,2,..., the agent
@ selects an exploration policy 7!

@ generates an episode under this policy
t t t .t .t _t t t t
(517 ai, 1,590,432, ;- --5,54,4y, rH)

R t __ t _ _t(ct t t Lt t __ t t
with sy = sy, a}, = mp,(sp), Spyy ~ Ph(-lsh, ah), ry = ra(sy, ap)
@ can decide to stop exploration

@ if decides to stop, outputs a prediction

Planning in MDPs

Prediction: output the best first action to take (=~ 77 (s1))

=> problem-dependent sample complexity [Jonnson et al, 20]

o
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What is the prediction?

In each episode t =1,2,..., the agent
@ selects an exploration policy 7t

@ generates an episode under this policy
t t t .t t t t t t
(517 31, r1,$2, 32, r2, e 7SH7 aH, rH)

R t __ t _ bt t t Lt t __ t Lt
with s = s1, aj, = ;,(sp), Shyy ~ Pa(‘lsh, ak), rh = rh(shs ap)
@ can decide to stop exploration

@ if decides to stop, outputs a prediction

Best Policy Identification

Prediction: output the best policy 7}, = (77, ..., 7})

=» UCB-VI [Azar et al., 21] + a data-dependent stopping rule [Ménard et al., 21]



What is the prediction?

In each episode t =1,2,..., the agent
@ selects an exploration policy 7!

@ generates an episode under this policy
t _t t .t t t
(51;31aﬁ{752a32;/2{a coo 75HaaH7%)
with s; = s1, a} = m;,(s4). Spya ~ Pa(*h, ah): T ==ntsh-a))

@ can decide to stop exploration

o if decides to stop, outputs a prediction

Reward Free Exploration

Given any reward function r, output 7%, for M = (S, A, P, r)




What is the prediction?

In each episode t =1,2,..., the agent
@ selects an exploration policy 7!

@ generates an episode under this policy
t _t t _t t t
(517317%352’327/2{a e 7SHaaHv%I/)
R t __ t __ t(t t t Lt — -
with s; = s1, a = m;,(sh), Spy1 ~ Pa(*sh, ah): T =ntsh-a))

@ can decide to stop exploration

@ if decides to stop, outputs a prediction

Reward Free Exploration

Given any reward function r, output 7} for M = (S, A, P, r)




@ Reward Free Exploration



Reward-Free Exploration (RFE)

RFE algorithm

e exploration policy 7wt: may depend on past data D;_1
t oot ot ot t ot
Dy =Dt 1 U {(Sla d1,52,4d2, .-, 50, aH)}

@ stopping rule 7 : stopping time w.r.t. (D¢)ten
o prediction P = (py(-|s,3))...: a transition kernel that may

depend on D,

7. optimal policy in the MDP (IS, r)

(€, 8)-PAC algorithm for Reward-Free Exploration

P(for any r € B, V{*(s1; r) — Vf’*(sl;r) Sa) >1-9§

Assumption: uniformly bounded rewards
B = {r = (ru(s,a)) with ry(s,a) € [0,1]}




Sample complexity

Lower bounds For any (e, d)-PAC algorithm, exists an MDP:

) E[T] =0 (%ZH—?) |0g (%)) [Darwiche Domingues et al. 21]
° E[T] =Q <52$H2> [Jin et al. 20] (homogeneous case)
Algorithms
RF-RL-EXPLORE | 7 = (ijﬁ log (1) + H'S*A |og3(%))
[Jin et al. 20]
RF-UCRL =0 ("3 (log (}) +5) ), whp.
[Kaufmann et al. 21]
RF-Express =0 ( 25A (Iog (%) + 5)) w.h.p.
[Ménard et al. 21]

Remark: changing the set B of candidate reward functions leads

to a different scaling of the sample complexity
e.g. finite set B [Zhang et al. 20], total bounded reward [Zhang et al. 21]



© RF-Express



Estimate of the transition kernel

Number of visits:

. t
nlt7(5’ a) N Z ]l{(sf,;’az):(sva)} nft"(s’ a, SI) = Z ]l{(sﬁ,aﬁ,5;5+1)=(s,a,s/)}
k=1 p
Empirical transitions: P* = (p{(s'ls, a))hs.a.s

M(sas) o
pi(s'ls. a) = { n(eay  fMh(s,a) >0

else

(=



RF-Express

o exploration policy: 7' is the greedy policy w.r.t. W :

Vs € S,Yh € [H], wL™(s) = argmax W(s, a)
acA

@ stopping rule:

T =inf {t € N: 3e, /max W{(s1, a) + max W (s1,a) < 6/2}
a a

e prediction: output the empirical transition kernel pP=pT

where
t

Wi (s, a) = min|H, 15H2w+(1 + %) Zﬁht(s'|s, a) max Wi (s, a')]
h\=> s/ a

with 3(n,d) = log(3SAH/J) + Slog(8e(n + 1)).



Theoretical guarantees

Theorem

For 6 € (0,1), € € (0, 1], RF-Express is (g, 0)-PAC for RFE.
Moreover, RF-Express stops after 7 episodes where, with
probability at least 1 — §,

3
T< HfA (Iog(?’sﬂ)—i-S) G+1
€ 0

and where C; £ 5587¢° log (e (log(3SAH/5) + S) H3SA/5)2.




© Why1/n?



Notation

QIT(Sv a) = rh(sa a) =+ Ph Vi:r—l-l(sa a)
QZ(Sv a) = I’h(S, a) =+ Ph ViTJrl(sa a)

with the notation ppf(s,a) = Egp,(.js,a)E[f(S')]

The Bellman equations can be expressed as
Vi (s) = Qi(s,m(s)) and  Vj(s) = max Qi(s, a)
a

Empirical values:
o V57 (s; r) values in the empirical MDP (S, A, P*, r)
o Q7™ (s;r) Q-values in the empirical MDP (S, A, P, r)



Upper bounding the error

Sufficient condition

A sufficient condition to be (e, d)-PAC for RFE is to have accurate
estimates of the value function for all 7 and r:

i <V7r,Vr, (V7 (51 1) — Vi (s1;r)] < 5/2) >1-4.

Proof.

*
r

Vi (s1;r) — Vlﬁ’ (s1;r) = Vfr (sl;r)—\A/lt’w’ (sl;r)+\7f’7r’ (sl;r)—\A/f’*’ (s1;r)

<0

+\A/1t’ﬁ-’ (s1;r) — Vlﬁ-’ (s1;r).

Rationale for the stopping rule: Introducing the estimation error
At i i At, . .
& (s,ar) = |Qy" (s air) — Qf(s,a;r)],

we want to stop when max, , & (s, w(s1); r) < /2.




Upper bounding the error

With probability at least 1 — §, for any episode t, policy 7, and
reward function r,

é\lt,ﬂ(sl’ 7_‘_1(51); r) < 3e Tea}t( Wlt(sl, a) + gﬂéz‘( Wlt(Sla 3).

=» data-dependent upper bound, independent of 7 and r
=» justifies the stopping rule

T = inf {t € N: 3e, /max W{(s1, a) + max W (s1,a) < 5/2}
a a

=» note that the bound on &7 (s, a; r) is only valid for h = 1



Proof sketch

éht’”(s, ajr) = }Qﬁ’”(s, a;r)— Qn(s,a; r)’ J
Writing the Bellman equations
Q" (s,air) = s a) + B VT (s 2)
and Qf(s,a;r) = r(s,a)+ prVi (s, a).

the reward cancel and one obtains

T

8,7 (s,a:r) < |(Bf — pn)Viria(s, a)| + BAIVi Ty — Viial(s, a)

= (B — pn)Viia(s,a)|  +Pimhni18,1(s,air).

/

upper bound bound this using
an empirical Bernstein inequality

with the notation mp118(s) = g(s, Th+1(s))



Proof sketch

On the event £ = {KL (Bf(s,a), pu(s,a)) < %} we prove
h\>>

ems Varyt(Vy)(s,ai 1) (H2B(nt(s, a), ) L B(nt (s, a), 5)

& "(s,ar) < 3\j b 0 < ni(s.2) A1) +15H W

()

1y, R
(1 + ﬁ) Prmhi1 ehtj:;(s, a;r).

Challenge: the empirical variance term depends on the
unobserved reward function

=» (%) cannot be computed by an algorithm




Proof sketch

On the event £ = {KL (Bf(s,a), pu(s,a)) < %} we prove
h\>>

ems Varyt(Vy)(s,ai 1) (H2B(nt(s, a), ) L B(nt (s, a), 5)

& "(s,ar) < 3\j b 0 < ni(s.2) A1) +15H W

()

1\ N
(1 + ﬁ) Prmhi1 ehtjrq(s, a;r).

Challenge: the empirical variance term depends on the
unobserved reward function

=» (%) cannot be computed by an algorithm

Solution: splitting the bonus



Proof sketch

& (s, ar) < YT (s,ar) + Wi (s, a)

where

Var,: (V2™ )(s,a;r) [ H28(nt
t,m . P, h+1 (i B(nh(sv 3)7 5) 1 N t,m )
Y, (s,ar) = 3¢ h = ( i (s,2) AL+ (14 o Brmhra Yy 1(s air)

T . ﬂ(nt(s7 a)76) 1 A~ Ky
W™ (s, a) = min <H, 15H2W +(1+ o Pimhi1 W,;’_l(s, a)| < Wi(s, a).

Using notably a Bellman equation for the variance, we prove

Y1 (s1,mi(s1); r) < 36’\/VVf’W(SLM(Sl))

= élt’”(s, mi(s); r) < 3e, /mfx Wi (s1,a) + max Wi (s, a)




Sample complexity: how do we get rid of an H?

By definition of the stopping rule, for any t < T,

g<3e\/Wt (s1, 71 (s1)) + Wi (sp, w1 (s1)).

Summing these inequalities yields

T7—1

Te < 3e TZ Wi (s1, 75 (s1)) + Z Wi (s1, 75 (s1)) -

t=0

() ()

A careful sum of the bonuses (w.h.p.)

(*) < CHZTZIiZ t+1 nh(s 3)76)
a tOhlsap > "h(sa)\/1
C'H*SAlog(7)B(r, 8)

12




Is 1/n any good in practice?

RF-Express (1/n bonuses) versus RF-UCRL (1/+/n) in a grid-world
environment with 15 rooms and 25 states per room

250
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3
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—— RF-UCRL 50 —— RF-UCRL
3 ---- RF-Express ---- RF-Express
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episode episodes led

Figure: Entropy of the emplrlcal dlstrlbutlon over states (left) and the
number of visited states (right) versus number of episodes.
Horizon H = 30, average over 4 runs.



Conclusion

@ We got rid of an H in the sample complexity of reward-free
exploration algorithms an optimal algorithm

@ ... which showcases 1/n bonuses

Open questions:
e Can (a variant of) RF-Express attain a horizon-free sample
complexity under the total bounded reward assumption?
e What are the practical benefits of using 1/n bonuses instead
of 1/y/n?
see, Domingues et al., Density-Based Bonuses on Learned Representations for RFE in

Deep Reinforcement Learning @ Unsupervised RL workshop

@ Optimal Best Policy Identification in a minimax and
problem-dependent sense 7
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