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Regret versus pure exploration

RL setup : an agent interacts with an environement (MDP)

Several Performance measures :
1 the agent should adopt a good behavior during learning

Ü maximize the total rewards (regret minimization)
2 the agent should learn a good behavior, regarless of rewards gathered

Ü Pure Exploration
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Finite Horizon Tabular MDPs
M = (S,A,H , {ph}h∈[H], s1)

Value function
For a policy π = {πh}h∈[H] for a reward function r : [H]× S ×A → [0, 1]

V π
h (s; r) = Eπ

[
H∑
`=h

r`(S`,A`)

∣∣∣∣∣ Sh = s

]
A` ∼ π`(S`)

S`+1 ∼ p`(·|S`,A`)
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Online episodic algorithm

In each episode t = 1, 2, . . . , the agent
selects an exploration policy πt based on past data Dt−1

collects an episode under this policy

Dt = Dt−1 ∪ {(s t1, at1, s t2, at2, . . . , s tH , atH)}

where s t1 = s1, ath ∼ πt
h(s th) and s th+1 ∼ ph(·|s th, ath)

can decide to stop exploration → adaptive stopping time τ
if so, can output a prediction, e.g. a good policy π̂

Goal : make a Probaby Approximately Correct (PAC) prediction
Performance metric : Sample Complexity τ (number of episodes needed)
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Best Policy Identification (BPI)

Ü Learn the optimal policy for a known reward function r

[Fiechter, 1994]
Algorithm :

exploration policy πt

stopping rule τ
π̂ : guess for a good policy

(ε, δ)-PAC algorithm for Best Policy Identification

P
(
V ?
1 (s1; r)− V π̂

1 (s1; r) ≤ ε
)
≥ 1− δ
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Reward Free Exploration (RFE)

Ü Learn the optimal policy for any reward function r given afterwards
[Jin et al., 2020]

Algorithm :
exploration policy πt

stopping rule τ
for any r = (rh(s, a)) ∈ [0, 1]HSA, guess π̂r for a good policy

(ε, δ)-PAC algorithm for Reward-Free Exploration

P
(
for any r ∈ B,V ?

1 (s1; r)− V π̂r
1 (s1; r) ≤ ε

)
≥ 1− δ

Emilie Kaufmann (CNRS) From regret to PAC RL RL Theory Workshop 6 / 45



Reward Free Exploration (RFE)

Ü Learn the optimal policy for any reward function r given afterwards
[Jin et al., 2020]

Algorithm :
exploration policy πt

stopping rule τ
for any r ∈ B, guess π̂r for a good policy

(ε, δ)-PAC algorithm for Reward-Free Exploration

P
(
for any r ∈ B,V ?

1 (s1; r)− V π̂r
1 (s1; r) ≤ ε

)
≥ 1− δ

Emilie Kaufmann (CNRS) From regret to PAC RL RL Theory Workshop 6 / 45



Outline

1 Minimax Sample Complexity : Optimism is Enough

Fast Active Learning for Pure Exploration in RL, ICML 2021
Adaptive Reward Free Exploration, ALT 2021
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Optimistic RL algorithm

Bellman equation

π?h = greedy(Q?
h) where Q?

h(s, a) = rh(s, a)+
∑
s′

ph(s ′|s, a) max
b

Q?
h+1(s ′, b)

Optimism : πt+1
h = greedy(Q

t

h) where

Q
t

h(s, a) = max
p∈Mt

[
rh(s, a) +

∑
s′

ph(s ′|s, a) max
b

Q
t

h+1(s ′, b)

]

whereMt is a set of plausible MDPs.
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UCB-VI

UCB-VI style algorithm

πt+1
h = greedy

(
Q

t

h

)
for the optimistic Q-function

Q
t

h(s, a) =

[
rh(s, a) + Bt

h(s, a) +
∑
s′∈S

p̂th(s ′|s, a) max
b

V
t

h+1(s ′)

]
∧ (H − h)

V
t

h(s) = max
b

Q
t

h(s, b).

Different exploration bonuses Bt
h(s, a) yield different guarantees

Hoeffding bonuses Bt
h(s, a) '

√
log(SAH/δ)+S log(nth(s,a))

nth(s,a)
(“UCRL”)

Bernstein bonuses (more complex) (UCB-VI [Azar et al., 2017])

nth(s, a) : number of visits of (s, a) in step h in the first t episodes
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Regret and PAC guarantees

The (pseudo)-regret of an episodic RL algorithm π = (πt)t∈N is

RT (π) =
T∑
t=1

[
V ?
1 (s t1)− V πt

1 (s t1)
]
.

Regret of UCB-VI [Azar et al., 2017]

For appropriately chosen bonuses (depending on δ) UCB-VI satisfies

P
(
RT (π) = O

(√
H3SAT

))
≥ 1− δ

which is minimax optimal in time-inhomogeneous MDPs.
[Domingues et al., 2021]
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Regret and PAC guarantees
The (pseudo)-regret of an episodic RL algorithm π = (πt)t∈N is

RT (π) =
T∑
t=1

[
V ?
1 (s t1)− V πt

1 (s t1)
]
.

Regret to PAC conversion [Jin et al., 2018]

Running UCB-VI for T = O
(

SAH3

ε2δ2

)
and outputting

π̂ = πN where N ∼ U({1, . . . ,T})

yields an (ε, δ)-PAC identification of the optimal policy.

Minimax lower bound : for any (ε, δ)-PAC BPI algorithm, there exists an
MDP for which E[τ ] ≥ c SAH3

ε2
log
(
1
δ

)
[Domingues et al., 2021]
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Minimax Optimal BPI Algorithm

Solution : UCB-VI using instead an adaptive stopping rule

BPI-UCRL [Kaufmann et al., 2021]

Using UCB-VI with Hoeffding bonuses together with

τ = inf
{
t ∈ N : V

t

1(s1)− V t
1(s1) ≤ ε

}
π̂ = greedy(Qτ

1)

yields an (ε, δ)-PAC algorithm with P
(
τ = Õ

(
SAH4

ε2
log
(
1
δ

)))
≥ 1− δ.

Ü using Bernstein bonuses and a more sophisticated stopping rule yields a
Õ
(

SAH3

ε2
log
(
1
δ

))
sample complexity [Ménard et al., 2021]
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How about Reward Free Exploration ?

RF-UCRL [Kaufmann et al., 2021]

πt+1
h = greedy

(
Q

t

h

)
for

Q
t

h(s, a) =

[
��
��XXXXr th(s, a) + Bt

h(s, a) +
∑
s′∈S

p̂th(s ′|s, a) max
b

V
t

h+1(s ′)

]
∧ (H − h)

V
t
h(s) = max

b
Q

t

h(s, b).

Why does it work ? It greedily reduces the estimation error of the value of
any policy for any reward function :

∀π,∀r ,∀h, s, a, t |Q̂t,π
h (s, a; r)− Qπ

h (s, a; r)| ≤ E
t

h(s, a)

holds with high probability for some Hoeffding-type bonus B
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How about Reward Free Exploration ?

Reward-Free UCRL
exploration policy : πt+1 is the greedy policy wrt E

t
(s, a) :

∀s ∈ S, ∀h ∈ [h], πt+1
h (s) = argmaxa∈A E

t

h(s, a).

stopping rule : τ = inf
{
t ∈ N : E

t

1(s1, π
t+1
1 (s1)) ≤ ε/2

}
prediction : ∀r , π̂r = π?(P̂τ , r)

For a given reward function r

V ?1 (s1)− V π̂r
1 (s1) = Vπ

?

1 (s1)− V̂ τ,π
?

1 (s1) + V̂ τ,π
?

1 (s1)− V̂ τ,π̂r
1 (s1)︸ ︷︷ ︸

≤0

+V̂ τ,π̂r
1 (s1)− V π̂r

1 (s1)

≤ 2max
a

E
τ
1 (s1, a)

≤ ε
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How about Reward Free Exploration ?

Reward-Free UCRL
exploration policy : πt+1 is the greedy policy wrt E

t
(s, a) :

∀s ∈ S, ∀h ∈ [h], πt+1
h (s) = argmaxa∈A E

t

h(s, a).

stopping rule : τ = inf
{
t ∈ N : E

t

1(s1, π
t+1
1 (s1)) ≤ ε/2

}
prediction : ∀r , π̂r = π?(P̂τ , r)

Theorem [Kaufmann et al. 2020]
RF-UCRL is (ε, δ)-PAC for Reward-Free Exploration and

P
(
τRF-UCRL = Õ

(
SAH4

ε2

[
log

(
1
δ

)
+ S

]))
≥ 1− δ.
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How about Reward Free Exploration ?

Reward-Free UCRL
exploration policy : πt+1 is the greedy policy wrt E
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∀s ∈ S, ∀h ∈ [h], πt+1
h (s) = argmaxa∈A E

t

h(s, a).

stopping rule : τ = inf
{
t ∈ N : E

t

1(s1, π
t+1
1 (s1)) ≤ ε/2

}
prediction : ∀r , π̂r = π?(P̂τ , r)

Ü To get a near-optimal Õ
(

SAH3

ε2
(log(1/δ) + S)

)
sample complexity the

algorithm structure and bonus type has to be changed a bit
[Ménard et al., 2021]
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Summary

UCB-VI is (almost) enough to get minimax optimal sample complexity for
both Best Policy Identification and Reward Free Exploration
Ü How about instance-dependent results ?
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Ouline

2 Towards Instance Optimality

Active Coverage for PAC RL, COLT 2023
Near Instance-Optimal PAC RL for Deterministic MDPs, NeurIPS 2022

Optimistic PAC RL : the Instance-Dependent View, ALT 2022
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Instance dependent results

Goal
Design (ε, δ)-PAC algorithms that adapt to the difficulty of each specific
MDPM and get

τδ = O (Cε(M) log (1/δ))

where Cε(M) is some appropriate complexity term.

Reward Free Exploration : Given the worse-case nature of the problem, is
it at all possible to get

Cε(M) <
SAH3

ε2
?
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Instance dependent results

Goal
Design (ε, δ)-PAC algorithms that adapt to the difficulty of each specific
MDPM and get

τδ = O (Cε(M) log (1/δ))

where Cε(M) is some appropriate complexity term.

Best Policy Identification :
EPRL [Tirinzoni et al., 2022] for deterministic MDPs
MOCA [Wagenmaker et al., 2022] (gap-visitation complexity)
PEDEL [Wagenmaker and Jamieson, 2022]

Feature different complexity measures, and some mechanisms to visit certain
triplets (h, s, a) proportionally to some instance-dependent quantity (“gap”)
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A Coverage Problem
Let c : [H]× S ×A → R+ be a target function.

δ-correct c-coverage
An algorithm (πt)t∈N is a δ-correct c-coverage if it interacts withM and
return a dataset Dt such that

P
(
∃t ≥ 1, ∀(h, s, a), nth(s, a) ≥ ch(s, a)

)
≥ 1− δ.

where nth(s, a) is the number of visits of (h, s, a) in Dt

Sample complexity :

τ = inf
{
t ∈ N : ∀h, s, a, nth(s, a) ≥ ch(s, a)

}
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Lower bound

Theorem [Al Marjani et al., 2023]

For any target function c and δ ∈ [0, 1), the stopping time τ of any
δ-correct c-coverage algorithm satisfies E[τ ] ≥ (1− δ)ϕ?(c), where

ϕ?(c) = inf
πexp∈ΠS

max
(s,a,h)∈X

ch(s, a)

p
πexp
h (s, a)

,

with X := {(h, s, a) : ch(s, a) > 0}.

Intuition : ch(s,a)

p
πexp
h (s,a)

is the expected number of episodes needed before
getting ch(s, a) visits from (h, s, a) using exploration policy πexp.
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Insight on ϕ?

ϕ?(c) = inf
πexp∈ΠS

max
(h,s,a)∈X

ch(s, a)

p
πexp
h (s, a)

with X = {(h, s, a) : ch(s, a) > 0}

We prove the following bounds :

max
h

∑
s,a

ch(s, a) ≤ ϕ?(c) ≤
∑
h

inf
πexp∈ΠS

max
s,a

ch(s, a)

p
πexp
h (s, a)

≤
∑
h,s,a

ch(s, a)

maxπ pπh (s, a)

Ü featured in the gap-visitation complexity in the sample complexity
bound obtained for a BPI algorithm, MOCA
[Wagenmaker et al., 2022]
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Towards a coverage algorithm

ϕ?(c) = inf
πexp∈ΠS

max
(h,s,a)∈X

ch(s, a)

p
πexp
h (s, a)

with X = {(h, s, a) : ch(s, a) > 0}

1
ϕ?(c)

= sup
πexp∈ΠS

min
(s,a,h)∈X

p
πexp
h (s, a)

ch(s, a)

= sup
πexp∈ΠS

inf
λ∈∆X

∑
h,s,a

p
πexp
h (s, a)λh(s, a)

ch(s, a)

= value of a game !

where ∆X is the simplex over X .
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Principle

1
ϕ?(c)

= sup
πexp∈ΠS

inf
λ∈∆X

∑
h,s,a

p
πexp
h (s, a)λh(s, a)

ch(s, a)

∑
h,s,a

p
πexp
h (s,a)λh(s,a)

ch(s,a)
= V πexp(s1; r̃)

value function for the reward function r̃h(s, a) = λh(s,a)
ch(s,a)∑

h,s,a
p
πexp
h (s,a)λh(s,a)

ch(s,a)
= λ> (pπexp/c)

linear loss function

!4unknown MDP : V πexp and pπexp cannot be computed
Ü use online learners !

[Degenne et al., 2019, Zahavy et al., 2021, Tiapkin et al., 2023]
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CovGame

Algorithm 1 (Simplified) CovGame

1: Input : target function c , risk δ.
2: Adversarial RL algorithm AΠ, Online learner Aλ.
3: Initialize weights λ1h(s, a)← 1((h, s, a) ∈ X )/|X | for all h, s, a
4: for t = 1, 2, . . . do
5: Define reward function r̃ th(s, a) =

λth(s,a)

ch(s,a)
1((h, s, a) ∈ X )

6: Feed AΠ with r̃ t , confidence δ/2 and get exploration policy πt

7: Play πt and observe trajectory Ht := {(s th, ath, s th+1)}1≤h≤H−1
8: Feed Aλ with linear loss `t and get new weight vector λt+1

`t(λ) =
∑

(h,s,a)∈X

λh(s, a)
1(sth = s, ath = a)

ch(s, a)

9: If ∀(h, s, a), nth(s, a) ≥ ch(s, a) : Stop and return Dt
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A key component : UCB-VI

Needed for the RL algorithm : If AΠ is run with confidence 1− δ on a
sequence of rewards {λt}t≥1 with λt ∈ P(X ), w.p. 1− δ, for all T > 1,

T∑
t=1

V ?
1
(
s1;λt

)
−

T∑
t=1

V πt
1
(
s1;λt

)
≤

√√√√Rδ(T )
T∑
t=1

V πt

1 (s1;λt) +Rδ(T )

Ü first-order regret bounds
Ü ... with changing rewards

We prove that UCB-VI with Bernstein bonuses can be used with

Rδ(T ) = cSAH2
(

log

(
2SAH
δ

)
+ S

)
log2(T )
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(Full) CovGame
Extra trick to control the range of the rewards for the RL algorithm :

Cluster triplets (h, s, a) by their order of magnitude

Yk = {(h, s, a) : ch(s, a) ∈ [cmin2k , cmin2k+1]}
and restart the λ-learner when one of this set has been covered

Theorem [Al Marjani et al., 2023]

Let m = dlog2(cmax/cmin)e ∨ 1. With
Aλ : Weighted Majority Forecaster (WMF) with variance-dependent
learning rate [Cesa-Bianchi et al., 2005]
Aπ : UCB-VI

CovGame satisfies, with probability larger than 1− δ,

τ ≤ 64mϕ?(c) + Õ(mϕ?(1X )SAH2(log(1/δ) + S)) .
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UCB-VI for exploration
CovGame can be written

πt(s) = argmax
a∈A

Q
t
h

(
s, a; r̃ th

)
Q

t
h (s, a; r) =

[
rh(s, a) + Bt

h(s, a) +
∑
s′∈S

p̂th(s ′|s, a) max
b

Q
t
h+1(s, b; r)

]
∧ 1

for the a time-varying reward r̃ t ∈ ∆X

r̃ th(s, a) ∝ exp (−ηt [nth(s, a)− nmt
h (s, a)])1

(
ch(s, a) > cmin2kt

)
Links with other exploration algorithms

indicator-based rewards are more common in the literature, e.g.
r̃ th(s, a) = 1 (nth(s, a) < ch(s, a)) for GOSPRL [Tarbouriech et al., 2021a]

other form of time-varying rewards proposed for entropy exploration
[Tiapkin et al., 2023]
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CoveGame for Reward Free Exploration

Proportional Coverage
Idea : visit each (h, s, a) in proportion to its maximum reachability :

ϕ?
([

max
π

pπh (s, a)
]
h,s,a

)
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Why Proportional Coverage ?

For RFE, we want a good estimate of the value functions of all policies, for
all reward functions :

∀π ∈ ΠD ,∀r ∈ B,
∣∣∣V t,π

1 (s1; r)− V̂ t,π
1 (s1; r)

∣∣∣ ≤ ε

2

Concentration inequality [Al Marjani et al., 2023]

∀π ∈ ΠD , ∀r ∈ B,
∣∣V π

1 (s1; r)− V̂ π,t
1 (s1; r)

∣∣ ≤√√√√β(t, δ)
∑

(h,s,a)∈Xε

pπh (s, a)2

nth(s, a)
+
ε

4
,

where Xε ⊆
{

(h, s, a) : maxπ p
π
h (s, a) ≥ ε

4SH2

}
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Proportional Coverage Exploration

Algorithm 2 Proportional Coverage Exploration
1: Input : Precision ε, Confidence δ.
2: For each (h, s), run EstimateReachability((h, s)) to get confidence inter-

vals
[
W h(s),W h(s)

]
on maxπ p

π
h (s)

3: Define X̂ := {(h, s, a) : W h(s) ≥ ε
32SH2}

4: for k = 1, . . . do
5: Compute targets ckh (s, a) := 2kW h(s)1

(
(h, s, a) ∈ X̂

)
for all (h, s, a)

6: Execute CovGame
(
ck , δ/6(k + 1)2

)
to get dataset Dk of dk episodes

7: Update episode count tk ← tk−1 + dk and statistics nkh(s, a), p̂kh (.|s, a)
8: if

√
Hβ(tk , δ/3)24−k ≤ ε then stop and return Dk

9: end for
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Sample complexity

Theorem [Al Marjani et al., 2023]

Proportional Coverage Exploration is (ε, δ)-PAC for reward free exploration.
Moreover, with probability at least 1− δ its sample complexity satisfies

τ ≤ Õ
((

H3 log(1/δ) + SH4)ϕ?([supπ p
π
h (s)1(supπ p

π
h (s) ≥ ε

32SH2 )

ε2

]
h,s,a

)
︸ ︷︷ ︸

C(M,ε)

+
S3A2H5(log(1/δ) + S)

ε

)
.

C(M, ε) ≤ SAH

ε2
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Beyond worse case

We always have

τ ≤ Õ
(
SAH4 log(1/δ)

ε2
+

S2AH5

ε2
+

S3A2H5(log(1/δ) + S)

ε

)
Ü Only sub-optimal by H factors in the small (ε, δ) regime
Ü We exhibit a class of MDPs depending on α ∈ (0, 1) such that
C(M, ε) ≤ SαAH/ε2

τ ≤ Õ
(
SαAH4 log(1/δ)

ε2
+

S1+αAH5

ε2
+

S3A2H5(log(1/δ) + S)

ε

)
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Summary

CovGame a.k.a. UCB-VI with (well designed) changing rewards
provides a near-optimal solution to the coverage problem
can be used to obtain a RFE algorithm “better than the worse case”
can also be used as an ingredient for BPI algorithms

Ü optimality ? computational efficiency ?
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Ouline

3 Beyond Episodic MDPs

Finding good policies in average-reward MDPs without prior knowledge. NeurIPS 2024
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Average Rewards MDPs

gain : gπ(s) = lim
T→∞

Eπ

[
T∑
t=1

rt

∣∣∣∣∣ s1 = s

]
Poisson equations :

g ? + b?(s) = max
a

{
r(s, a) +

∑
s′

p(s ′|s, a)b?(s ′)

}

π?(s) = arg max
a

{
r(s, a) +

∑
s′

p(s ′|s, a)b?(s ′)

}

(in communicating MDPs, g ?(s) = g ?)
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Best Policy Identification Algorithm

At step t = 1, 2, . . . , the agent
selects an action at in its current state st based on past observations
observes s ′ ∼ p(·|st , at) and

I generative model : selects st+1
I online model : set st+1 = s ′

can decide to stop exploration → adaptive stopping time τ
if so, can output a guess for π?, π̂

(ε, δ)-PAC algorithm
P
(
τ <∞, ∃s ∈ S : g π̂(s) < g ? − ε

)
≤ δ.
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State-of-the-art
This problem has been mostly studies in the generative model setting.

Lower bound : [Wang et al., 2022] for any (ε, δ)-PAC algorithm, there
exists an MDPM such that

EM[τδ] = Ω

(
SAH

ε2
log(1/δ)

)
Upper bound : [Zurek and Chen, 2023] there exists an algorithm such
that, for all MDPs,

EM[τδ] = Õ
(
SAH

ε2
log(1/δ)

)
... but it requires the knowledge of the optimal span bias, H

H = max
s

b?(s)−min
s

b?(s)
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Estimating H is hard

1

2 3

1
2 , 1

R , 1 0, 1− p

0, p

0, 1

0,
1 0, 1

R = 1/2− ε ⇒ π? =→ ⇒ H = 1/2
R = 1/2 + ε ⇒ π? =99K ⇒ H = (1/2 + ε)1+p

p
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Estimating H is hard

Theorem
For any δ < 1

2e4 , T > 0, ∆, there exists an MDPM with H = 1/2 such
that any algorithm that computes a Ĥ satisfying H ≤ Ĥ ≤ H + ∆ with
probability greater than 1− δ needs (in expectation) more than T samples
inM.
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But estimating D is easy

Diameter (D) versus Optimal Bias Span (H) : H ≤ D

D = max
s 6=s′

min
π:S→A

Eπ[min{t > 0, st = s ′}|s0 = s]

H = max
s

b?(s)−min
s

b?(s)

A two-stage algorithm :
Ü Use an algorithm from [Tarbouriech et al., 2021b] that outputs D̂ such

that P(D ≤ D̂ ≤ 4D) ≥ 1− δ/2 using Õ(D2 log(1/δ) + S) samples

Ü Use the algorithm of [Zurek and Chen, 2023] with D̂ as an upper
bound on H , which uses Õ

(
SAD̂
ε2

log(1/δ)
)
samples
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Diameter Free Exploration

Entry : Accuracy ε ∈ (0, 1), confidence level δ ∈ (0, 1)

D̂ = DiameterEstimation(δ/2)

π̂ = BPI(D̂, ε, δ/2)

Return π̂

Theorem
The algorithm above is (ε, δ)-PAC and

P
(
τ ≤ Õ

([
SAD

ε2
+ D2SA

]
log(1/δ) + D2S2A

))
≥ 1− δ.

→ optimal in the regime of small ε as the lower bound of
[Wang et al., 2022] is for an instance with H = D !
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Without a generative model ?

Little is known in the online setting !
we prove that H is definitely not the right complexity measure there
using an online diameter estimation procedure, we propose an algorithm
with a Õδ

(
SAD2

ε2
+ S2AD3

)
sample complexity

Ü ... but more adaptive algorithms are needed
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Conclusion

Episodic MDPs :
Variants of UCB-VI (possibly with changing rewards) can solve different
pure exploration tasks in a minimax sense
The instance-dependent complexity of BPI remains hard to characterize
... and require complex algorithms

Average reward MDPs :
Are (arguably) more meaningful in practice
But there exists no minimax-optimal online algorithm yet
... and certainly no practical one, even with a generative model
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Sample complexities bounds for BPI
For MOCA, PEDEL and PRINCIPLE we have

τ = Õε,δ
(

Alg(M, ε) log

(
1
δ

))
where

MOCA(M, ε) = H2
H∑

h=1

min
ρ∈Ω

max
s,a

1
ρh(s, a)

min

(
1

∆̃h(s, a)2
,
Wh(s)2

ε2

)

+
H4
∣∣(h, s, a) : ∆̃h(s, a) ≤ 3ε/Wh(s)

∣∣
ε2

PEDEL(M, ε) = H4
H∑

h=1

min
ρ∈Ω

max
π∈ΠD

∑
s,a

pπh (s, a)2/ρh(s, a)

max(ε,∆(π),∆min(ΠD))2

PRINCIPLE(M, ε) = H3ϕ?

([
sup
π∈ΠS

pπh (s, a)

max(ε,∆(π))2

]
h,s,a

)
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