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Why bandits ?

I one-armed bandit = old name for a slot machine

an agent facing arms in a Multi-Armed Bandit
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Sequential resource allocation

Clinical trials

I K treatment for a given symptom (with unknown effect)

I Which treatment should be allocated to the next patient based on
responses observed on previous patients ?

Online advertisement

I K adds that can be displayed

I Which add should be displayed for a user, based on the previous
clicks of previous (similar) users ?
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The Multi-Armed Bandit Setting

K arms ↔ K rewards streams (Xa,t)t∈N

At round t, an agent :

I chooses an arm At

I receives a reward Rt = XAt ,t

Sequential sampling strategy (bandit algorithm) :

At+1 = Ft(A1,R1, . . . ,At ,Rt).

Goal : Maximize
∑T

t=1 Rt .
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The Stochastic Multi-Armed Bandit Setting

K arms ↔ K probability distributions : νa has mean µa

ν1 ν2 ν3 ν4 ν5

At round t, an agent :

I chooses an arm At

I receives a reward Rt = XAt ,t ∼ νAt

Sequential sampling strategy (bandit algorithm) :

At+1 = Ft(A1,R1, . . . ,At ,Rt).

Goal : Maximize E
[∑T

t=1 Rt

]
Ü solving a one-state MDP for the finite-horizon critirion

.
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Clinical trials

Historical motivation [Thompson, 1933]

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

For the t-th patient in a clinical study,

I chooses a treatment At

I observes a response Rt ∈ {0, 1} : P(Rt = 1|At = a) = µa

Goal : maximize the expected number of patients healed
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Online content optimization

Modern motivation ($$) [Li et al., 2010]
(recommender systems, online advertisement)

ν1 ν2 ν3 ν4 ν5

For the t-th visitor of a website,

I recommend a movie At

I observe a rating Rt ∼ νAt (e.g. Rt ∈ {1, . . . , 5})

Goal : maximize the sum of ratings
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Regret of a bandit algorithm

Bandit instance : ν = (ν1, ν2, . . . , νK ), mean of arm a : µa = EX∼νa [X ].

µ? = max
a∈{1,...,K}

µa a? = argmax
a∈{1,...,K}

µa.

Maximizing rewards ↔ selecting a? as much as possible
↔ minimizing the regret [Robbins, 1952]

Rν(A,T ) := Tµ?︸︷︷︸
sum of rewards of
an oracle strategy

always selecting a?

− E

[
T∑
t=1

Rt

]
︸ ︷︷ ︸

sum of rewards of
the strategyA

What regret rate can we achieve ?

Ü consistency : Rν(A,T )
T → 0

Ü can we be more precise ?
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Regret decomposition

Na(t) : number of selections of arm a in the first t rounds
∆a := µ? − µa : sub-optimality gap of arm a

Regret decomposition

Rν(A,T ) =
K∑

a=1

∆aE [Na(T )] .

Proof.

Rν(A,T ) = µ?T − E

[
T∑
t=1

XAt ,t

]
= µ?T − E

[
T∑
t=1

µAt

]

= E

[
T∑
t=1

(µ? − µAt )

]

=
K∑

a=1

µ? − µa︸ ︷︷ ︸
∆a

E
[ T∑

t=1

1(At = a)︸ ︷︷ ︸
Na(T )

]
.
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Regret decomposition

Na(t) : number of selections of arm a in the first t rounds
∆a := µ? − µa : sub-optimality gap of arm a

Regret decomposition

Rν(A,T ) =
K∑

a=1

∆aE [Na(T )] .

A strategy with small regret should :

I select not too often arms for which ∆a > 0

I ... which requires to try all arms to estimate the values of the ∆a’s

⇒ Exploration / Exploitation trade-off
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The greedy strategy

Select each arm once, then exploit the current knowledge :

At+1 = argmax
a∈[K ]

µ̂a(t)

where

I Na(t) =
∑t

s=1 1(As = a) is the number of selections of arm a

I µ̂a(t) = 1
Na(t)

∑t
s=1 Xs1(As = a) is the empirical mean of the

rewards collected from arm a

Thre greedy strategy can fail ! ν1 = B(µ1), ν2 = B(µ2), µ1 > µ2

E[N2(T )] ≥ (1− µ1)µ2 × (T − 1)

Ü Exploitation is not enough, we need to add some exploration
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Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
I draw each arm m times

I compute the empirical best arm â = argmaxa µ̂a(Km)

I keep playing this arm until round T

At+1 = â for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Rν(ETC,T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× P (µ̂2,m ≥ µ̂1,m)

µ̂a,m : empirical mean of the first m observations from arm a
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Rν(ETC,T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× P (µ̂2,m ≥ µ̂1,m)

µ̂a,m : empirical mean of the first m observations from arm a
→ requires a concentration inequality
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Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
I draw each arm m times

I compute the empirical best arm â = argmaxa µ̂a(Km)

I keep playing this arm until round T

At+1 = â for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Assumption : ν1, ν2 are bounded in [0, 1].

Rν(T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× P (µ̂2,m ≥ µ̂1,m)

µ̂a,m : empirical mean of the first m observations from arm a
→ Hoeffding’s inequality
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Explore-Then-Commit
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Assumption : ν1, ν2 are bounded in [0, 1].

Rν(T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× exp(−m∆2/2)
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Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
I draw each arm m times

I compute the empirical best arm â = argmaxa µ̂a(Km)

I keep playing this arm until round T

At+1 = â for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Assumption : ν1, ν2 are bounded in [0, 1].

For m = 2
∆2 log

(
T∆2

2

)
,

Rν(ETC,T ) ≤ 2

∆

[
log

(
T∆2

2

)
+ 1

]
.

+ logarithmic regret !

− requires the knowledge of T and ∆

Emilie Kaufmann |CRIStAL - 14



Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
I draw each arm m times

I compute the empirical best arm â = argmaxa µ̂a(Km)
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Sequential Explore-Then-Commit

I explore uniformly until a random time of the form

τ = inf

{
t ∈ N : |µ̂1(t)− µ̂2(t)| >

√
c log(T/t)

t

}
I âτ = argmax a µ̂a(τ) and (At+1 = âτ ) for t ∈ {τ + 1, . . . ,T}

0 200 400 600 800 1000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Ü [Garivier et al., 2016] for two Gaussian arms, for c = 8, same regret
as ETC, without the knowledge of ∆

... but larger regret as that of the best fully sequential strategy
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Another possible fix : ε-greedy

The ε-greedy rule [Sutton and Barto, 1998] is a simple randomized way
to alternate exploration and exploitation.

ε-greedy strategy

At round t,

I with probability ε
At ∼ U({1, . . . ,K})

I with probability 1− ε

At = argmax
a=1,...,K

µ̂a(t).

Ü Linear regret : Rν (ε-greedy,T ) ≥ εK−1
K ∆minT .

∆min = min
a:µa<µ?

∆a
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Another possible fix : ε-greedy

εt-greedy strategy

At round t,

I with probability εt := min
(
1, K

d2t

)
At ∼ U({1, . . . ,K})

I with probability 1− εt
At = argmax

a=1,...,K
µ̂a(t − 1).

Theorem [Auer et al., 2002]

If 0 < d ≤ ∆min, Rν (εt-greedy,T ) = O
(

K log(T )
d2

)
.

Ü requires the knowledge of a lower bound on ∆min
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The optimism principle

Step 1 : construct a set of statistically plausible models

I For each arm a, build a confidence interval on the mean µa :

Ia(t) = [LCBa(t),UCBa(t)]

LCB = Lower Confidence Bound
UCB = Upper Confidence Bound

Figure – Confidence intervals on the means after t rounds
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The optimism principle

Step 2 : act as if the best possible model were the true model
(optimism in face of uncertainty)

Figure – Confidence intervals on the means after t rounds

I That is, select

At+1 = argmax
a=1,...,K

UCBa(t).
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How to build confidence intervals ?

We need UCBa(t) such that

P (µa ≤ UCBa(t)) & 1− t−1.

Ü tool : concentration inequalities

Example : rewards are σ2 sub-Gaussian

Reminder : Hoeffding inequality

Zi i.i.d. with mean µ s.t. E[eλ(Z1−µ)] ≤ e
λ2σ2

2 . For all s ≥ 1

P
(
Z1 + · · ·+ Zs

s
< µ− x

)
≤ e−

sx2

2σ2
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How to build confidence intervals ?

We need UCBa(t) such that

P (µa ≤ UCBa(t)) & 1− t−1.

Ü tool : concentration inequalities

Example : rewards are σ2 sub-Gaussian

Reminder : Hoeffding inequality

Zi i.i.d. with mean µ s.t. E[eλ(Z1−µ)] ≤ e
λ2σ2

2 . For all s ≥ 1

P
(
Z1 + · · ·+ Zs

s
< µ− x

)
≤ e−

sx2

2σ2

"Cannot be used directly in a bandit model as the number of
observations from each arm is random !
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How to build confidence intervals ?

I Na(t) =
∑t

s=1 1(As=a) number of selections of a after t rounds

I µ̂a,s = 1
s

∑s
k=1 Ya,k average of the first s observations from arm a

I µ̂a(t) = µ̂a,Na(t) empirical estimate of µa after t rounds

Hoeffding inequality + union bound

P

(
µa ≤ µ̂a(t) +

√
6σ2 log(t)

Na(t)

)
≥ 1− 1

t2

Proof.

P

(
µa > µ̂a(t) +

√
6σ2 log(t)

Na(t)

)
≤ P

(
∃s ≤ t : µa > µ̂a,s +

√
6σ2 log(t)

s

)

≤
t∑

s=1

P

(
µ̂a,s < µa −

√
6σ2 log(t)

s

)
≤

t∑
s=1

1

t3
=

1

t2
.
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A first UCB algorithm

UCB(α) selects At+1 = argmaxa UCBa(t) where

UCBa(t) = µ̂a(t)︸ ︷︷ ︸
exploitation term

+

√
α log(t)

Na(t)︸ ︷︷ ︸
exploration bonus

.

I this form of UCB was first proposed for Gaussian rewards
[Katehakis and Robbins, 1995]

I popularized by [Auer et al., 2002] for bounded rewards :
UCB1, for α = 2

I the analysis of UCB(α) was further refined to hold for α > 1/2 in
that case [Bubeck, 2010, Cappé et al., 2013]
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A UCB algorithm in action
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A regret bound for UCB(α)

Theorem

For σ2-subGaussian rewards, the UCB algorithm with parameter α = 6σ2

satisfies, for any sub-optimal arm a,

Eµ[Na(T )] ≤ 24σ2

∆2
a

log(T ) + 1 +
π2

3

where ∆a = µ? − µa.

Consequence :

Rν(UCB(6σ2),T ) ≤

( ∑
a:µa<µ?

24σ2

∆a

)
log(T ) +

(
1 +

π2

3

) K∑
a=1

∆a
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Proof (1/2)

For each arm i ∈ {1, a}, define the two ends of the confidence interval :

UCBi (t) = µ̂i (t) +

√
6σ2 log(t)

Ni (t)

LCBi (t) = µ̂i (t)−

√
6σ2 log(t)

Ni (t)

and the good event

Et = (µ1 < UCB1(t)) ∩ (µa > LCBa(t))

I Step 1 : Hoeffding inequality + union bound :

P (Ect ) ≤ P

(
µ1 > µ̂1(t) +

√
6σ2 log(t)

N1(t)

)
+P

(
µa < µ̂a(t)−

√
6σ2 log(t)

Na(t)

)
≤ 2

t2
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Proof (2/2)

I Step 2 : What happens on the good event ?

(At+1 = a) ∩ (µ1 < UCB1(t)) ∩ (µa > LCBa(t))

 µ1 µa

 UCBa LCBa UCB1 LCB1

Δa

⇒ Na(t) ≤ 24σ2 log(t)

∆2
a

I Step 3 : Putting everything together

E[Na(T )] ≤ 1 +
T−1∑
t=K

P (Ect ) +
T−1∑
t=K

P (At+1 = a, Et)

≤ 1 +
π2

3
+

T−1∑
t=K

P
(
At+1 = a,Na(t) ≤ 24σ2 log(T )

∆2
a

)
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A worse-case regret bound

Corollary

Rν(UCB(6σ2),T ) ≤ 10
√
KT log(T ) +

(
1 +

π2

3

)( K∑
a=1

∆a

)

Proof. For any algorithm satisfying E[Na(T )] ≤ C log(T )
∆a

+ D for all
sub-optimal arm a, for any ∆ > 0,

Rν(T ) =
∑

a:∆a≤∆

∆aE[Na(T )] +
∑

a:∆a≥∆

∆aE[Na(T )]

≤ ∆T +
∑

a:∆a≥∆

(
C

log(T )

∆a
+ D∆a

)

≤ ∆T +
CK log(T )

∆
+ D

(
K∑

a=1

∆a

)

= 2
√

CKT log(T ) + D

(
K∑

a=1

∆a

)
for ∆ =

√
CK log(T )

T
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Best known problem-dependent bound

Context : σ2 sub-Gaussian rewards

UCBa(t) = µ̂a(t) +

√
2σ2(log(t) + c log log(t))

Na(t)

(c = 0 corresponds to UCB(α) with α = 2σ2)

Theorem [Cappé et al.’13]

For c ≥ 3, the UCB algorithm associated to the above index satisfy

E[Na(T )] ≤ 2σ2

∆2
a

log(T ) + Cµ

√
log(T ).
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Summary

For UCB(α) applied to σ2-subGaussian reward, setting α = 2σ2 yields

I a problem-dependent regret bound of(
K∑

a=1

2σ2

∆a

)
log(T ) + o(log(T ))

I a worse-case regret of order

O
(√

KT log(T )
)

Ü how good are these regret rates ?
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A worse-case lower bound

Theorem [Cesa-Bianchi and Lugosi, 2006]

Fix T ∈ N. For every bandit algorithm A, there exists a stochastic bandit
model ν with rewards supported in [0, 1] such that

Rν(A,T ) ≥ 1

20

√
KT

I worse-case model :{
νa = B(1/2) for all a 6= i
νi = B(1/2 + ∆)

with ∆ '
√
K/T .

Remark. UCB achieves O(
√
KT log(T )) (near-optimal)

There exists worse-case optimal algorithms, e.g., MOSS or Tsallis-Inf
[Audibert and Bubeck, 2010, Zimmert and Seldin, 2021]
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The Lai and Robbins lower bound

Context : a parametric bandit model where each arm is parameterized
by its mean ν = (νµ1 , . . . , νµK

), µa ∈ I.

ν ↔ µ = (µ1, . . . , µK )

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) := KL (νµ, νµ′) = EX∼νµ

[
log

dνµ
dνµ′

(X )

]

Theorem
For uniformly good algorithm,

µa < µ? ⇒ lim inf
T→∞

Eµ[Na(T )]

logT
≥ 1

kl(µa, µ?)

[Lai and Robbins, 1985]
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The Lai and Robbins lower bound

Context : a parametric bandit model where each arm is parameterized
by its mean ν = (νµ1 , . . . , νµK

), µa ∈ I.

ν ↔ µ = (µ1, . . . , µK )

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) :=
(µ− µ′)2

2σ2
(Gaussian bandits)

Theorem
For uniformly good algorithm,

µa < µ? ⇒ lim inf
T→∞

Eµ[Na(T )]

logT
≥ 1

kl(µa, µ?)

[Lai and Robbins, 1985]
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The Lai and Robbins lower bound

Context : a parametric bandit model where each arm is parameterized
by its mean ν = (νµ1 , . . . , νµK

), µa ∈ I.

ν ↔ µ = (µ1, . . . , µK )

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) := µ log

(
µ

µ′

)
+ (1− µ) log

(
1− µ
1− µ′

)
(Bernoulli bandits)

Theorem
For uniformly good algorithm,

µa < µ? ⇒ lim inf
T→∞

Eµ[Na(T )]

logT
≥ 1

kl(µa, µ?)

[Lai and Robbins, 1985]
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UCB compared to the lower bound

Gaussian distributions with variance σ2

I Lower bound : E[Na(T )] & 2σ2

(µ?−µa)2 log(T )

I Upper bound : for UCB(α) with α = 2σ2

E[Na(T )] .
2σ2

(µ? − µa)2
log(T )

Ü UCB is asymptotically optimal for Gaussian rewards !

Bernoulli distributions (bounded, σ2 = 1/4)

I Lower bound : E[Na(T )] & 1
kl(µa,µ?) log(T )

I Upper bound : for UCB(α) with α = 1/2

E[Na(T )] .
1

2(µ? − µa)2
log(T )

Pinsker’s inequality : kl(µa, µ?) > 2(µ? − µa)2

Ü UCB is not asymptotically optimal for Bernoulli rewards...
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The kl-UCB algorithm

Exploits the KL-divergence in the lower bound !

UCBa(t) = max

{
q ∈ [0, 1] : kl (µ̂a(t), q) ≤ log(t)

Na(t)

}
.

q
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µ
a
(t)

[ ]
u

a
(t)

log(t)/N
a
(t)

d(µ
a
(t),q)

A tighter concentration inequality [Garivier and Cappé, 2011]

For rewards in a one-dimensional exponential family a,

P(UCBa(t) > µa) & 1− 1

t log(t)
.

a. e.g., Bernoulli, Gaussian with known variances, Poisson, Exponential
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An asymptotically optimal algorithm

kl-UCB selects At+1 = argmaxa UCBa(t) with

UCBa(t) = max

{
q ∈ [0, 1] : kl (µ̂a(t), q) ≤ log(t) + c log log(t)

Na(t)

}
.

Theorem [Cappé et al., 2013]

If c ≥ 3, for every arm such that µa < µ?,

Eµ[Na(T )] ≤ 1

kl(µa, µ?)
log(T ) + Cµ

√
log(T ).

I asymptotically optimal for Bernoulli rewards (and one-dimenionsal
exponential families) :

Rµ(kl-UCB,T ) '

( ∑
a:µa<µ?

∆a

kl(µa, µ?)

)
log(T ).
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A variant : the IMED algorithm

An interesting alternative proposed by [Honda and Takemura, 2015], that
slightly departs from an index policy. 1

Indexed Minimum Empricial Divergence

Compute
µ̂?(t) = max

a∈[K ]
µ̂a(t)

and select

At+1 = argmin
a∈[K ]

[
Na(t)kl (µ̂a(t), µ̂?(t)) + log(Na(t))

]

Ü IMED is also asymptotically optimal for exponential families
(and beyond)

1. in an index policy, the index computed for each arm depends on the history of this
arm only, whereas µ̂?(t) depends on all arms

Emilie Kaufmann |CRIStAL - 38



Outline

1 The multi-armed bandit problem
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3 Optimistic Exploration
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Thompson Sampling
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A Bayesian algorithm
πa(0) : prior distribution on µa

πa(t) = L(µa|Ya,1, . . . ,Ya,Na(t)) : posterior distribution on µa

0

1

2 4 346 107 40

Two equivalent interpretations :

I [Thompson, 1933] : “randomize the arms according to their posterior
probability being optimal”

I modern view : “draw a possible bandit model from the posterior
distribution and act optimally in this sampled model”

Russo et al. 2018, A Tutorial on Thompson SamplingEmilie Kaufmann |CRIStAL - 40



A Bayesian algorithm : Thompson Sampling

Input : a prior distribution π(0){
∀a ∈ {1..K}, θa(t) ∼ πa(t)
At+1 = argmax

a=1...K
θa(t).

Thompson Sampling for Bernoulli distributions νa = B(µa)

I πa(0) = U([0, 1])

I πa(t) = Beta (Sa(t) + 1;Na(t)− Sa(t) + 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Emilie Kaufmann |CRIStAL - 41



A Bayesian algorithm : Thompson Sampling

Input : a prior distribution π(0){
∀a ∈ {1..K}, θa(t) ∼ πa(t)
At+1 = argmax

a=1...K
θa(t).

Thompson Sampling for Bernoulli distributions νa = B(µa)

I πa(0) = U([0, 1])

I πa(t) = Beta (Sa(t) + 1;Na(t)− Sa(t) + 1)

Thompson Sampling for Gaussian distributions νa = N (µa, σ
2)

I πa(0) ∝ 1

I πa(t) = N
(
µ̂a(t); σ2

Na(t)

)
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Regret bounds

Upper bound on sub-optimal selections

∀a 6= a?, Eµ[Na(T )] ≤ log(T )

kl(µa, µ?)
+ oµ(log(T )).

where kl(µa, µ?) is the KL divergence between νa and νa?

I proved for Bernoulli bandits, with a uniform prior

[Kaufmann et al., 2012, Agrawal and Goyal, 2013]

I for 1-dimensional exponential families, with a conjuguate prior

[Agrawal and Goyal, 2017, Korda et al., 2013]

Ü Thompson Sampling is asymptotically optimal in these cases

I beyond 1-parameter models, the prior has to be well chosen...

[Honda and Takemura, 2014]
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Practical performance

Bernoulli arms

µ = [0.1 0.05 0.05 0.05 0.02 0.02 0.02 0.01 0.01 0.01]

0 2000 4000 6000 8000 10000
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Non parametric algorithms

Thompson Sampling relies on a parametric assumption to maintain a
posterior distribution

I Gaussian rewards with known variance : TS with Gaussian prior

I Bernoulli rewards∗ : TS with Beta prior

Idea : replace the posterior sampling step by a non-parametric
history-resampling method

∗A binarization trick can be used to handle more general bounded rewards
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Perturbed History Exploration

First idea : Non-parameteric Bootstrap

I Ha,t = (Ya,1, . . . ,Ya,Na(t)) : history of collected rewards from arm a

I sample Na(t) rewards from Ha,t with replacement, and average
them to define an index Ba(t)

I At+1 = argmaxa Ba(t)

[Kveton et al., 2019b] : linear regret even for two Bernoulli arms

Ü possible fix : Perturbing the history

Perturbed History Exploration (PHE)

Ba(t) is the empirical means of the rewards in Ha,t and α× Na(t) fake
rewards drawn iid from B(1/2)

Ü α > 2 : logarithmic regret for bounded rewards in [0, 1]
[Kveton et al., 2019a]
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Non Parametric Thompson Sampling

Context : rewards bounded in [0,B]
Idea : random re-weighting of the augmented history

[Riou and Honda, 2020]

Index of arm a after t rounds

I Ha,t = (Ya,1, . . . ,Ya,Na(t),B) : history of collected rewards from arm
a augmented by the upper bound B on the support

I wa,t ∼ Dir(1, . . . , 1︸ ︷︷ ︸
Na(t)+1

) a random probability vector

Ba(t) =

Na(t)∑
s=1

wa,t(s)Ya,s + Bwa,t(Na(t) + 1)
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Non Parameteric Thompson Sampling

Let B be the set of distributions that are supported on [0,B].

Theorem [Riou and Honda, 2020]

On an instance ν = (ν1, . . . , νK ) such that νa ∈ B for all a.

Rν(NPTS,T ) ≤
∑

a:µa<µ?

∆a logT

Kinf(νa, µ?)
+ o(logT ) .

where Kinf(ν, µ) = inf {KL (ν, ν′) : ν′ ∈ B : EX∼ν′ [X ] ≥ µ}.

Ü matching the lower bound of [Burnetas and Katehakis, 1996]
for general (possibly non-parametric) reward distributions
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More on Non-Parametric Algorithms

I Extending the idea of Non Parameteric Thompson Sampling beyond
bounded distributions

Ü Dirichlet Sampling [Baudry et al., 2021]

I Sub-sampling algorithms : fair pairwise comparison between arms
based on sub-sampling the most selected one

Ü BESA[Baransi et al., 2014], SSMC [Chan, 2020]
SDA algorithms [Baudry et al., 2020]
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Conclusion

We saw several principles to solve the exploration/exploitation trade-off
in a simple bandit model, with strong guarantees on their regret, e.g.,

I the use of confidence intervals

I posterior sampling or randomized mechanisms

They can be extended to more challenging tasks such that contextual
bandits or regret minimization in reinforcement learning
(see tomorrow’s classes)

Bandit strategies such as UCB have also served as an inspiration for
some Monte-Carlo Tree Search strategies
(see this afternoon’s class)
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