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The stochastic Multi Armed Bandit (MAB) model

K unknown distributions ν1, . . . , νK called arms

a time t, select an arm At and collect an observation Xt ∼ νAt

Sequential strategy / algorithm : At+1 can depend on:

previous observation A1,X1, . . . ,At ,Xt

some external randomization Ut ∼ U([0, 1])

some knowledge about the possible distributions: νa ∈ D
[Thompson, 1933, Robbins, 1952, Lattimore and Szepesvari, 2019]
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Two classical bandit problems

Example: A/B/n testing

. . .

p1 p2 pK

pa: probability that a visitor seeing version a buys a product

For the t-th visitor:

choose a version At to display

observe Xt = 1 if a product is bought, 0 otherwise

Objective 1: observation = reward→ maximize rewards

maximize E[
∑T

t=1 Xt ] for some (possibly unknown) T

maximize profit

a reinforcement learning problem
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Two classical bandit problems

Example: A/B/n testing

. . .

p1 p2 pK

pa: probability that a visitor seeing version a buys a product

For the t-th visitor:

choose a version At to display

observe Xt = 1 if a product is bought, 0 otherwise

Objective 2: best arm identification

identify quickly a? = arg maxa pa

find the best version (in order to keep displaying it)

an adaptive testing problem
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Other applications

clinical trials → observation: success/failure (Bernoulli)

movie recommendation → observation: rating (multinomial)

website optimization → observation: amount of money spent
(Gaussian distribution?)
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Other applications

recommendation in agriculture → reward: yield
(complex bounded distribution)
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Outline

1 Thompson Sampling for Rewards Maximization

2 Thompson Sampling for Best Arm Identification?

3 Top Two Algorithms Beyond Thompson Sampling
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Performance measure

ν = (ν1, . . . , νK ) µa = EX∼νa [X ]

µ? = max
a∈{1,...,K}

µa a? = arg max
a∈{1,...,K}

µa.

Maximizing rewards ↔ selecting a? as much as possible
↔ minimizing the regret [Robbins, 52]

Rν(A,T ) = Tµ?︸︷︷︸
sum of rewards of
an oracle strategy

always selecting a?

− Eν

[
T∑
t=1

Xt

]
︸ ︷︷ ︸

sum of rewards of
the strategyA

Regret decomposition

Rν(A,T ) = Eν

[
T∑
t=1

(µ? − µAt )

]
Na(T ): number of selections of arm a up to round T .
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Best Achievable Regret

Lower bound [Burnetas and Katehakis, 1996]

Under an algorithm achieving small regret for any bandit model
ν ∈ DK , it holds that

∀a 6= a?(ν), lim inf
T→∞

Eν [Na(T )]

log(T )
≥ 1

KDinf(νa;µ?)
where

KDinf(ν;µ) = inf
{
KL(ν, ν ′)

∣∣ ν ′ ∈ D : EX∼ν′ [X ] ≥ µ
}

with KL(ν, ν ′) the Kullback-Leibler divergence.

Gaussian bandits

D =
{
N (µ, σ2), µ ∈ R

}
KDinf(N (µ, σ2);µ′) =

(µ− µ′)2

2σ2
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Best Achievable Regret

Lower bound [Burnetas and Katehakis, 1996]

Under an algorithm achieving small regret for any bandit model
ν ∈ DK , it holds that

∀a 6= a?(ν), lim inf
T→∞

Eν [Na(T )]

log(T )
≥ 1

KDinf(νa;µ?)
where

KDinf(ν;µ) = inf
{
KL(ν, ν ′)

∣∣ ν ′ ∈ D : EX∼ν′ [X ] ≥ µ
}

with KL(ν, ν ′) the Kullback-Leibler divergence.

Bernoulli bandits

D = {B(µ), µ ∈ [0, 1]}

KDinf(B(µ);µ′) = µ log
µ

µ′
+ (1− µ) log

1− µ
1− µ′
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Best Achievable Regret

Lower bound [Burnetas and Katehakis, 1996]

Under an algorithm achieving small regret for any bandit model
ν ∈ DK , it holds that

∀a 6= a?(ν), lim inf
T→∞

Eν [Na(T )]

log(T )
≥ 1

KDinf(νa;µ?)
where

KDinf(ν;µ) = inf
{
KL(ν, ν ′)

∣∣ ν ′ ∈ D : EX∼ν′ [X ] ≥ µ
}

with KL(ν, ν ′) the Kullback-Leibler divergence.

Single Parameter Exponential Family (SPEF)

D = {νµ, µ ∈ I}

KDinf(νµ;µ′) = KL
(
νµ, νµ′

)
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Best Achievable Regret

Lower bound [Burnetas and Katehakis, 1996]

Under an algorithm achieving small regret for any bandit model
ν ∈ DK , it holds that

∀a 6= a?(ν), lim inf
T→∞

Eν [Na(T )]

log(T )
≥ 1

KDinf(νa;µ?)
where

KDinf(ν;µ) = inf
{
KL(ν, ν ′)

∣∣ ν ′ ∈ D : EX∼ν′ [X ] ≥ µ
}

with KL(ν, ν ′) the Kullback-Leibler divergence.

Bounded distributions

DB = {ν, ν supported in [0,B]}

KDB
inf (ν;µ′) = non explicit, but computable
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A first (bad) algorithm

Select each arm once, then exploit the current knowledge:

At+1 = arg max
a∈[K ]

µ̂a(t)

where

Na(t) =
∑t

s=1 1(As = a) is the number of selections of arm a

µ̂a(t) = 1
Na(t)

∑t
s=1 Xs1(As = a) is the empirical mean of the

rewards collected from arm a

Follow the leader can fail! ν1 = B(µ1), ν2 = B(µ2), µ1 > µ2

E[N2(T )] ≥ (1− µ1)µ2 × (T − 1)

Ü Exploitation is not enough, we need to add some exploration
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A Bayesian algorithm: Thompson Sampling

πa(0): prior distribution on µa
πa(t) = L(µa|Ya,1, . . . ,Ya,Na(t)): posterior distribution on µa

0

1

2 4 346 107 40

Two equivalent interpretations:
[Thompson, 1933]: “randomize the arms according to their
posterior probability of being optimal”

modern view: “draw a possible bandit model from the posterior
distribution and act optimally in this sampled model”

Russo et al. 2018, A Tutorial on Thompson Sampling
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A Bayesian algorithm: Thompson Sampling

Input: a prior distribution π(0){
∀a ∈ {1..K}, θ̃a(t) ∼ πa(t)

At+1 = argmax
a=1...K

θ̃a(t).

Thompson Sampling for Bernoulli distributions νa = B(µa)

πa(0) = U([0, 1])

πa(t) = Beta (Sa(t) + 1;Na(t)− Sa(t) + 1)
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A Bayesian algorithm: Thompson Sampling

Input: a prior distribution π(0){
∀a ∈ {1..K}, θ̃a(t) ∼ πa(t)

At+1 = argmax
a=1...K

θ̃a(t).

Thompson Sampling for Bernoulli distributions νa = B(µa)

πa(0) = U([0, 1])

πa(t) = Beta (Sa(t) + 1;Na(t)− Sa(t) + 1)

Thompson Sampling for Gaussian distributions νa = N (µa, σ
2)

πa(0) ∝ 1

πa(t) = N
(
µ̂a(t); σ2

Na(t)

)
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Theoretical guarantees

For different Single Parameter Exponential Families, TS with a
conjugate prior satisfy the following:

Upper bound on sub-optimal selections

∀a 6= a?, Eµ[Na(T )] ≤ log(T )

KL(νµa , νµ?)
+ oµ(log(T )).

Ü matching the lower bound! TS is asymptotically optimal

[Kaufmann et al., 2012, Agrawal and Goyal, 2013, Korda et al., 2013]
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Where does the KL come from?

1 the best arm (arm 1) has to be drawn a lot
2 probability of selecting a sub-optimal arm a:

P(At = a|Ft−1) = P
(
θ̃a(t) = max

i
θ̃i (t)|Ft−1

)
' P

(
θ̃a(t) ≥ θ̃1(t)|Ft−1

)
' P

(
θ̃a(t) ≥ µ1|Ft−1

)

For Gaussian bandits θ̃a(t)|Ft−1 = N (µ̂a(t), σ2/Na(t)), thus

P(At = a|Ft−1) ' P

(
X ≥

√
Na(t)(µ1 − µ̂a(t))

σ

)

≤ exp

(
−Na(t)(µ̂a(t)− µ1)2

2σ2

)
P(At = a|Ft−1) ≤ 1

T
⇒ Na(t) ' log(T )

KL(µ̂a(t), µ1)
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Beyond Parametric Distributions

[Riou and Honda, 2020] : NPTS for Bounded distributions

DB = {ν : ν is support in [0,B]}

Non Parametric Thompson Sampling

At+1 = arg max
a∈[K ]

θ̃a(t)

where

θ̃a(t) =
1

Na(t) + 1

Na(t)∑
i=1

w
(a)
i Ya,i + w

(a)
Na(t)+1B


with

(Ya,1, . . . ,Ya,Na(t),B) is the augmented history of
observations gathered from arm a

w (a) ∼ Dir(1, . . . , 1︸ ︷︷ ︸
Na(t)+1

) a random probability vector

Ü TS is asymptotically optimal for bounded distributions!
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Outline

1 Thompson Sampling for Rewards Maximization

2 Thompson Sampling for Best Arm Identification?

3 Top Two Algorithms Beyond Thompson Sampling
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Best Arm Identification

Algorithm: made of three components:

Ü sampling rule: At (arm to explore)

Ü recommendation rule: ât (current guess for the best arm)

Ü (optional) stopping rule τ (when do we stop exploring?)

Settings studied in the literature:

Fixed-confidence Fixed-budget Anytime
input: error bound δ input: budget T

min. E[τ ] τ = T ∀t ∈ N,
P(âτ 6= a?) ≤ δ min. P(âT 6= a?) min. P(ât 6= a?)

[Even-Dar et al., 2006] [Audibert et al., 2010] [Bubeck et al., 2011]
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input: error bound δ input: budget T

min. E[τ ] τ = T ∀t ∈ N,
P(âτ 6= a?) ≤ δ min. P(âT 6= a?) min. E[µ? − µât ]

[Even-Dar et al., 2006] [Audibert et al., 2010] [Bubeck et al., 2011]
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Can Thompson Sampling find the best arm?

âT : guess for the best arm after T samples.

Thompson Sampling selects a lot the best arm...

idea (1): âT = arg maxa Na(T )

idea (2) : P(âT = a|FT ) = Na(T )
T

Thompson Sampling + (2):

E[µ? − µâT ] = E

[
K∑

a=1

(µ? − µa)
Na(T )

T

]

=
R(TS,T )

T
= O

(
K log(T )

∆T

)
© the estimation error decays with T

Uniform Sampling + Empirical Best Arm:

E[µ? − µâT ] = O

(
K exp

(
−T

K
∆2

))
§ but not as fast as with uniform sampling...
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Top Two Thompson Sampling

Πt = (π1(t), . . . , πK (t)) posterior distribution on (µ1, . . . , µK )

Top-Two Thompson Sampling (TTTS) [Russo, 2016]

Input: parameter β ∈ (0, 1). In round t + 1:

draw a posterior sample θ ∼ Πt , a?(θ) = arg maxa θa

with probability β, select At+1 = a?(θ)

with probability 1− β, re-sample the posterior θ′ ∼ Πt until
a?(θ′) 6= a?(θ), select At+1 = a?(θ′)

[Russo, 2016] Bayesian analysis of TTTS (for exp. families):

Πt ({θ : a?(θ) 6= a?}) . C exp
(
−t/T ?

β (µ)
)

a.s.

where the rate is proved to be optimal.
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The optimal exponent

Ü connected with the optimal sample complexity of
fixed-confidence best arm identification

Lower bound [Garivier and Kaufmann, 2016]

For any strategy such that Pν (Bτ 6= a?(ν)) ≤ δ for all
ν = (ν1, . . . , νK ) ∈ DK ,

∀ν ∈ DK , Eν [τδ] ≥ T ?(ν) ln

(
1

3δ

)
,

where T ?(ν) = minβ∈(0,1) T
?
β (ν).

General expression:

T ?
β (ν)−1 = sup

w∈4K
wa?=β

min
a 6=a?

inf
λa≥λa?

[
wa?K−inf(νa? , λa?) + waK+

inf(νa, λa)
]

︸ ︷︷ ︸
“transportation cost”

.
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The optimal exponent

Ü connected with the optimal sample complexity of
fixed-confidence best arm identification

Lower bound [Garivier and Kaufmann, 2016]

For any strategy such that Pν (Bτ 6= a?(ν)) ≤ δ for all
ν = (ν1, . . . , νK ) ∈ DK ,

∀ν ∈ DK , Eν [τδ] ≥ T ?(ν) ln

(
1

3δ

)
,

where T ?(ν) = minβ∈(0,1) T
?
β (ν).

Back to the parametric case: Gaussian bandits

T ?
β (µ)−1 = sup

w∈4K
wi?=β

min
a 6=a?

(µa? − µa)2

2σ2
(

1
wa?

+ 1
wa

) .
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Sample complexity of TTTS

For Gaussian bandits, one can analyze TTTS with the posterior

πa(t) = N
(
µ̂a(t),

σ2

Na(t)

)
coupled with the (Generalized Likelihood Ratio) stopping rule

τδ = inf

t ∈ N : min
a 6=â?t

(µ̂â?t − µ̂a(t))2

2σ2

(
1

Nâ?t
(t) + 1

Na(t)

) > c(t, δ)


with threshold c(t, δ) ' log(1/δ) + K log log(t).

T ?
β (µ)−1 = min

a 6=a?

(µa? − µa)2

2σ2
(

1
w?
a?

+ 1
w?
a

)
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Theorem [Shang et al., 2020]

TTTS(β) is δ-correct and

∀µ, lim
δ→0

Eµ[τδ]

log(1/δ)
≤ T ?

β (µ)
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Nâ?t
(t) + 1

Na(t)

) > c(t, δ)


with threshold c(t, δ) ' log(1/δ) + K log log(t).

Theorem [Shang et al., 2020]

TTTS(1/2) is δ-correct and

∀µ, lim
δ→0

Eµ[τδ]

log(1/δ)
≤ 2T ?(µ)
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Outline

1 Thompson Sampling for Rewards Maximization

2 Thompson Sampling for Best Arm Identification?

3 Top Two Algorithms Beyond Thompson Sampling
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The Top Two structure

Top Two algorithm

Given a parameter β ∈ (0, 1), in round t:

define a leader Bt ∈ [K ]

define a challenger Ct 6= Bt

select arm At ∈ {Bt ,Ct} at random:

P (At = Bt) = β P (At = Ct) = 1− β

In Top Two Thompson Sampling,

TS leader: BTS
t = a?(θ) with θ ∼ Πt−1

Re-Sampling (RS) challenger: CRS
t = a?(θ′) where

θ′ ∼ Πt−1|
(
a?(θ′) 6= Bt

)

Liminations:

Ü re-sampling can be numerically costly

Ü do we need a posterior distribution?
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Approximating Re-Sampling

Under the RS challenger,

P
(
CRS
t = a|Bt = b

)
=

pt,a∑
i 6=b pt,i

where pt,a = Πt (θa = maxj θj) ' Πt (θa > θb).

For Gaussian bandits when µ̂b(t) > µ̂a(t),

Πt (θa > θb) ' exp

−t (µ̂b(t)− µ̂a(t))2

2σ2
(

1
Nb(t) + 1

Na(t)

)


Idea: select the mode from this distribution instead of sampling!

CTC
t = arg min

a 6=Bt

(µ̂Bt (t)− µ̂a(t))2

2σ2
(

1
NBt (t) + 1

Na(t)

)1(µ̂Bt (t) ≥ µ̂a(t))

[Shang et al., 2020]
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Another (non Bayesian) interpretation

Recall that TTTS was analyzed with

τδ = inf

t ∈ N : min
a 6=â?t

(µ̂â?t − µ̂a(t))2

2σ2

(
1

Nâ?t
(t) + 1

Na(t)

) > c(t, δ)


Ü another interpretation: CTC

t minimizes the Empirical
Transportation Cost (TC) featured in the stopping rule

Ü could we use BEB
T = â?t , i.e. Empirical Best leader?
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Ü another interpretation: CTC

t minimizes the Empirical
Transportation Cost (TC) featured in the stopping rule

Ü could we use BEB
T = â?t , i.e. Empirical Best leader?
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Asymptotically... yes!

Theorem
Given a calibrated GLR stopping rule, instantiating the Top Two sampling
rule with any pair of leader/challenger satisfying some properties yields a
δ-correct algorithm satisfying for all ν ∈ DK with distincts means

lim sup
δ→0

Eν [τδ]

log(1/δ)
≤ T ?

β (ν) .

Distributions TS EB RS TC TCI

Gaussian KV 3 3 3 3 3
Bernoulli 3 3 3 3 3
sub-Exp SPEF ? 3 ? 3 3
Gaussian UV ? 3 ? 3 3
Bounded 3 3 3 3 3

[Jourdan et al., 2022, Jourdan et al., 2023a]
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But exploration is nice for finite-time performance

TS-TC

Bt ∼ arg max
a∈[K ]

θ̃a(t) θ̃(t) ∼ Πt

Ct = arg min
a 6=Bt

(µ̂Bt (t)− µ̂a(t))2
+

2σ2
(

1
NBt (t) + 1

Na(t)

)
EB-TCI

Bt = arg max
a∈[K ]

µ̂a(t)

Ct = arg min
a 6=Bt

 (µ̂Bt (t)− µ̂a(t))2
+

2σ2
(

1
NBt (t) + 1

Na(t)

) + logNa(t)
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Numerical experiments

Moderate regime, δ = 0.1. Top Two algorithms with β = 1/2.

Figure: Empirical sample complexity averaged over 5000 random (Bernoulli)

instances with K = 8 and ∆min ≥ 0.01.
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Numerical experiments

arm = planting date / observation = yield

Moderate regime, δ = 0.01. Top Two algorithms with β = 1/2.

Figure: Empirical stopping time (a) on scaled DSSAT instances with their
density and mean (b). Lower bound is T ?(ν) ln(1/δ).
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Numerical experiments

arm = planting date / observation = yield

Moderate regime, δ = 0.01. Top Two algorithms with β = 1/2.

Figure: Empirical stopping time (a) on scaled DSSAT instances with their
density and mean (b). Lower bound is T ?(ν) ln(1/δ).
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Experiments: Bounded distributions

arm = planting date / observation = yield

Moderate regime, δ = 0.01. Top Two algorithms with β = 1/2.

Figure: Empirical stopping time (a) on scaled DSSAT instances with their
density and mean (b). Lower bound is T ?(ν) ln(1/δ).
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Top Two algorithms beyond Fixed Confidence

EB-TCε0

Bt = arg max
a∈[K ]

µ̂a(t)

Ct = arg min
a 6=Bt

 µ̂Bt (t)− µ̂a(t) + ε0√
1

NBt (t) + 1
Na(t)


[Jourdan et al., 2023b]

motivated by the lower bound for (ε0, δ)-PAC identification

can be used for (ε, δ)-PAC identification1 for ε 6= ε0

first guarantees in the anytime setting...

1 P
(
µâτ > µ? − ε

)
≥ 1− δ
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Top Two algorithms Beyond Fixed Confidence

Figure: Simple regret as a function of time on an instance
µ ∈ {0.4, 0.6}10 with 2 best arms

(... but the theory is just saying that the algorithm is not too
much worse than uniform sampling...)
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Conclusion

Thompson Sampling for maximizing rewards:

is asymptotically optimal for simple parametric distributions

can be extended to some non-parametric settings

Top Two Thompson Sampling for best arm identification:

may be viewed as a fix of TS for BAI

is a inspiration for others (non-Bayesian) Top Two algorithms

... which are near optimal in theory and very good in practice

Perspective:

Understand better the good anytime performance

Top Two for more complex pure exploration problems?
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