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The Multi Armed Bandit (MAB) model

K unknown distributions ν1, . . . , νK called arms

a time t, select an arm At and collect an observation Xt ∼ νAt

Sequential strategy / algorithm : At+1 can depend on:

previous observation A1,X1, . . . ,At ,Xt

some external randomization Ut ∼ U([0, 1])
some knowledge about the possible distributions: νa ∈ D
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Example: A/B/n Testing

. . .
p1 p2 pK

pa: probability that a visitor seeing version a buys a product

For the t-th visitor:

choose a version At to display

observe Xt = 1 if a product is bought, 0 otherwise

Objective 1: Maximizing Rewards

observation = reward

maximize E[
∑T

t=1 Xt ] for some (possibly unknown) T

Regret minimization in bandits: UCB, Thompson Sampling...
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Example: A/B/n Testing

. . .
p1 p2 pK

pa: probability that a visitor seeing version a buys a product

For the t-th visitor:

choose a version At to display

observe Xt = 1 if a product is bought, 0 otherwise

Objective 2: Pure Exploration

identify quickly some interesting arms

e.g. a⋆ = argmaxa pa (best arm identification)

This talk: a generic receipe for pure exploration
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Pure Exploration

Possible bandit models: ν = (ν1, . . . , νK ) ∈ B
(e.g. independent sub-Gaussian arms, or Bernoulli arms)

Possible vectors of arms means µ = (µ1, . . . , µK ) ∈ M

Identification task

Given a correct answer function

i⋆ : M −→ I
µ 7→ i⋆(µ)

find a correct answer with high probability.
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Examples of correct answers

Best Arm Identification [Even-Dar et al., 2006]

. . .

i⋆(µ) = argmax
a∈[K ]

µa

Threshold-based questions: which means are below γ?
[Locatelli et al., 2016]

i⋆(µ) = (1(µ1 > γ), . . . ,1(µK > γ)) ∈ {0, 1}K
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Examples of correct answers

Best Arm Identification [Even-Dar et al., 2006]

. . .

i⋆(µ) = argmax
a∈[K ]

µa

Threshold-based questions: is there a mean below γ?
[Kaufmann et al., 2018]

i⋆(µ) = 1(min
i

µi < γ) ∈ {0, 1}
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Examples of correct answers

Pareto Set Identification [Auer et al., 2016]
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➜ arms are multi-variate distributions
➜ i⋆(µ) is the Pareto Set of the means
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Pure Exploration with Fixed Confidence

An algorithm is made of:

a sampling rule At ∈ [K ] : what is the next arm to explore?

➜ get a new observation Xt ∼ νAt

a recommendation rule ı̂t : a guess for the correct answer

a stopping rule τ : when to stop the data collection?

Definition

An algorithm is δ-correct if, for all µ ∈ M, Pµ(̂ıτ ̸= i⋆(µ)) ≤ δ.

Goal: a δ-correct algorithm with small sample complexity Eµ[τ ]
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Outline

1 (Optimal) Pure Exploration: A General Receipe

2 Best Arm Identification

3 Pareto Set Identification
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A lower bound on the sample complexity

Setting: independent arms, parametrized by their means

d(µ, µ′) := KL(νµ, νµ′)

Theorem [Garivier and Kaufmann, 2016]

For any δ-correct algorithm,

Eµ[τ ] ≥ T ⋆(µ) ln

(
1

3δ

)
,

where

T ⋆(µ)−1 = sup
w∈∆K

inf
λ∈Alt(i⋆(µ))

(
K∑

a=1

wad(µa, λa)

)
.

with

∆K =

{
w ∈ [0, 1]K :

K∑
i=1

wi = 1

}
Alt(i) =

{
λ ∈ M : i⋆(λ) ̸= i

}
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Optimal proportions

T ⋆(µ)−1 = sup
w∈∆K

inf
λ∈Alt(i⋆(µ))

(
K∑

a=1

wad(µa, λa)

)
.

Na(t) =
∑t

s=1 1(As = a): number of selections of arm a

The proof of the lower bound further suggests that the vector(
Eµ[N1(τ)]

Eµ[τ ]
, . . . ,

Eµ[NK (τ)]

Eµ[τ ]

)
should belong to

w⋆(µ) = argmax
w∈∆K

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)

➜ algorithmic strategy: let’s make this happen!
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The GLR stopping rule

Given a candidate best arm i , the (log) Generalized Likelihood
Ratio statistic associated to

H0 = (µ ∈ Alt(i)) against H1 : (µ /∈ Alt(i))

is

Zi (t) = log
supλ∈M ℓ (X1, . . . ,Xt ;λ)

supλ∈Alt(i) ℓ(X1, . . . ,Xt ;λ)

= inf
λ∈Alt(i)

log
ℓ (X1, . . . ,Xt ; µ̂(t))

ℓ (X1, . . . ,Xt ;λ)

= inf
λ∈Alt(i)

K∑
a=1

Na(t)d(µ̂a(t), λa)

for exponential families (Bernoulli, Gaussian with known variance, etc.)

Idea: stop the first time that one of the Zi (t) is large enough
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A stopping rule aligned with the lower bound

GLR stopping rule

Given a threshold function β(t, δ):

τδ = inf

{
t ∈ N : inf

λ∈Alt(ı̂⋆t )

K∑
a=1

Na(t)d(µ̂a(t), λa) ≥ β(t, δ)

}

with the recommendation rule ı̂⋆t = i⋆(µ̂(t))

➜ reminiscent of

T ⋆(µ)−1 = sup
w∈∆K

inf
λ∈Alt(i⋆(µ))

(
K∑

a=1

wad(µa, λa)

)
.

if Na(t)
t ≃ w⋆

a (µ) and β(t, δ) ≃ log(1/δ), we get

τδ ≃ T⋆(µ) log(1/δ)
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Converging to the optimal proportions

Introducing Ut =
{
a : Na(t) <

√
t
}
,

At+1 ∈


argmin
a∈Ut

Na(t) if Ut ̸= ∅ (forced exploration)

argmax
1≤a≤K

[
w⋆
a (µ̂(t))− Na(t)

t

]
(tracking)

Lemma

Assume that

for all µ ∈ M, |w⋆(µ)| = 1 (unique optimal allocation)

µ 7→ w⋆(µ) is continuous in all µ ∈ M
Under the Tracking sampling rule,

Pµ

(
lim
t→∞

Na(t)

t
= w⋆

a (µ)

)
= 1.
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An asymptotically optimal algorithm

Theorem [Garivier and Kaufmann, 2016, Kaufmann and Koolen, 2021]

When the arm distributions belong to a one-dimensional
exponential family, the Track-and-Stop strategy, that uses

the Tracking sampling rule

the GLR stopping rule with

β(t, δ) ≃ ln (1/δ) + ln ln (1/δ) + K ln(ln(t))

and the recommendation rule ı̂t = i⋆(µ̂(t))

is δ-correct for every δ ∈]0, 1[ and satisfies

lim sup
δ→0

Eµ[τδ]

ln(1/δ)
= T ⋆(µ).
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Calibration of the Stopping Rule

Pµ(τ < ∞, ı̂⋆τ ̸= i⋆(µ))

≤ Pµ

(
∃t ∈ N : ı̂⋆τ ̸= i⋆(µ), inf

λ∈Alt(ı̂⋆τ )

K∑
a=1

Na(t)d(µ̂a(t), λa) > β(t, δ)

)

≤ Pµ

(
∃t ∈ N :

K∑
a=1

Na(t)d(µ̂a(t), µa) > β(t, δ)

)

Needed:

a time uniform deviation inequality

where the deviations are measured with KL-divergence

and aggregated over arms

Solution: (a product of) e-processes
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Calibration of the Stopping Rule

Xa(t) = Na(t)d(µ̂a(t), µa)− 3 log(1 + log(Na(t)))

Step 1: eλXa(t) is (almost) an e-process

∀λ ∈ Λ : Mλ
a (t) ≥ eλXa(t)−g(λ)

where Mλ
a (t) is a test martingale and g a correction function.

1 Link Xa(t) to the martingale W η
a (t) = eηSa(t)−ϕµa (η)Na(t)

Sa(t) =
t∑

s=1

Xs1(As = a) ϕµa = logEX∼νµa

[
eλX

]
[Robbins, 1970]

For exponential families:

If Na(t) ∈ [(1 + ξ)i−1, (1 + ξ)i ], there exists some η ∈ {η±i (x)}:

{Na(t)d(µ̂a(t), µa) ≥ x} ⊆
{
W η

t (t) ≥ e
x

1+ξ

}
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Sa(t) =
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s=1

Xs1(As = a) ϕµa = logEX∼νµa

[
eλX

]
[Robbins, 1970]

For exponential families:

The martingale Z
(x)
a (t) =

∑
i
c
i2

[
W

η−i (x)
a (t) +W

η+i (x)
a (t)

]
satisfies

{Xa(t)− f (ξ) ≥ x} ⊆
{
Z

(x)
a (t) ≥ e

x
1+ξ

}
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Xa(t) = Na(t)d(µ̂a(t), µa)− 3 log(1 + log(Na(t)))

Step 1: eλXa(t) is (almost) an e-process

∀λ ∈ Λ : Mλ
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Sa(t) =
t∑

s=1

Xs1(As = a) ϕµa = logEX∼νµa

[
eλX

]
[Robbins, 1970]

For exponential families:

The final test martingale is

Mλ
a (t) ∝ 1 +

∫ ∞

1
Z̃

(λ,z)
a (t)dz
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Xa(t) = Na(t)d(µ̂a(t), µa)− 3 log(1 + log(Na(t)))

Step 2: Product martingales

∀λ ∈ Λ : Mλ(t) =
∏
a∈[K ]

Mλ
a (t) is still a test martingale

➜ Chernoff method + Ville’s inequality

P

(
∃t ∈ N :

K∑
a=1

Xa(t) > x

)
≤ P

(
∃t ∈ N : e

∑K
a=1(λXa(t)−g(λ)) > eλx−Kg(λ)

)
≤ P

(
∃t ∈ N : M(t) > eλx−Kg(λ)

)
≤ e−λx+Kg(λ)

Then optimize over λ:

P

(
∃t ∈ N :

K∑
a=1

Xa(t) > K min
λ∈Λ

g(λ) + log(1/δ)/K

λ

)
≤ δ.
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Final result

Correctness [Kaufmann and Koolen, 2021]

When the arm distributions belong to a one-dimensional
exponential family, there exists a threshold such that

β(t, δ) ≃ log(1/δ) + log log(1/δ) + K log log(t)

for which, Pµ(τ < ∞, ı̂τ ̸= i⋆(µ)) ≤ δ.

(the factor K may be reduced for some particular identification tasks)
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Back to Track and Stop

Wait! Can we actually implement it?

Track-and-Stop requires the computation in every round t of the
“minimal distance”

inf
λ∈Alt(µ̂(t))

K∑
a=1

Na(t)d(µ̂a(t), λa)

for checking the stopping rule, and

argmax
w∈ΣK

inf
λ∈Alt(µ̂(t))

K∑
a=1

Na(t)d(µ̂a(t), λa)

for the sampling rule.
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Outline

1 (Optimal) Pure Exploration: A General Receipe

2 Best Arm Identification

3 Pareto Set Identification
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GLR stopping rule

i⋆(µ) = a⋆(µ) = argmax
a∈[K ]

µa

Using that Alt(µ) =
⋃

a ̸=a⋆(µ) {λ : λa > λa⋆}, the minimal

distance can be computed in closed-form:

inf
λ∈Alt(µ)

K∑
i=1

wid(µi , λi )

= min
a ̸=a⋆

inf
λ:λa>λa⋆

K∑
i=1

wid(µi , λi )

= min
a ̸=a⋆

min
λ∈(µa,µa⋆ )

[wa⋆d(µa⋆ , λ) + wad(µa, λ)]

= min
a ̸=a⋆

[
wa⋆d

(
µa⋆ ,

wa⋆µa⋆ + waµa

wa⋆ + wa

)
+ wad

(
µa,

wa⋆µa⋆ + waµa

wa⋆ + wa

)]
for exponential families.
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Example: Gaussian bandits

For Gaussian bandits with variance σ2:

inf
λ∈Alt(µ)

K∑
i=1

wi
(µi − λi )

2

2σ2
= min

a ̸=a⋆

(µ⋆ − µa)
2

2σ2
(

1
wa⋆

+ 1
wa

)
hence

τδ = inf

t ∈ N : min
a ̸=â⋆t

(µ̂â⋆t (t)− µ̂a(t))
2

2σ2

(
1

Nâ⋆t
(t) +

1
Na(t)

) > β(t, δ)



But w⋆(µ) still doesn’t have a closed form

➜ we propose an efficient approximation algorithm for
exponential families in [Garivier and Kaufmann, 2016]
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(µ̂â⋆t (t)− µ̂a(t))
2

2σ2

(
1

Nâ⋆t
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In practice

Empirical distribution of τδ for δ = 0.01 for different algorithms on
µ = [1, 0.8, 0.75, 0.7] , σ2 = 1, estimated on 1000 runs

Using the right stopping rule makes a difference:

UGapE : ∀a ̸= ı̂⋆t , µ̂ı̂⋆t (t)− µ̂a(t) >

√
2σ2β(t, δ)

Na,t
+

√
2σ2β(t, δ)

Na,t

GLR : ∀a ̸= ı̂⋆t , µ̂ı̂⋆t (t)− µ̂a(t) >

√
2σ2β(t, δ)

(
1

Na,t
+

1

Na,t

)
Limitation: Computing w⋆ is costly
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Efficient alternatives to Tracking exist, e.g. Top Two algorithms
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Outline
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Multi-objective bandit

Bandit model

K arms ν1, . . . , νK

νk is a multi-variate distribution in RD with mean µk ∈ RD

Assumption: each marginal of νk is sub-Gaussian

In each round t, an agent selects and arm At ∈ [K ] and observes a
response Xt ∼ νAt , independently from past observations.

➜ What is a “good set of arms”?
a possiblity: the Pareto Set of the mean vectors

S⋆(µ) = {“all arms that are not uniformly

worse than any other arm”}
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Pareto Set

Let X ⊂ RD a set of vectors. Let x , y ∈ X .

x is (strictly) dominated by y (x ≺ y) if ∀d ∈ [D], xd < yd

The Pareto Set is
P(X ) := {x ∈ X : ∄ y ∈ X such that x ≺ y}
A vector x ∈ P(X ) is called Pareto optimal

1 x3 ≺ x1
2 x4 ≺ x2
3 x5 ≺ x1
4 x1 ⊀ x2
5 x2 ⊀ x1

P(X ) = {x1, x2}
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Pareto Set Identification with Fixed Confidence

µ = (µ1, . . . ,µK ) ∈ (RD)K

S⋆(µ) = {k ∈ [K ] : µk ∈ P(µ1, . . . ,µK )}

Pareto Set Identification algorithm:

a sampling rule At ∈ [K ] : what is the next arm to explore?

➜ get a new observation Xt ∼ νAt∈ RD

a recommendation rule Ŝt : a guess for S⋆(µ)

a stopping rule τ : when to stop the data collection?

Definition

An algorithm is δ-correct (on M) if, for all ν ∈ M,
Pν(Ŝτ ̸= S⋆(µ)) ≤ δ.

Goal: a δ-correct algorithm with small sample complexity Eν [τ ]
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Sample Complexity Lower Bound

Theorem

For arms that are multi-variate Gaussian (known covariance Σ),
any δ-correct algorithm for Pareto Set Identification satisfies, for
all µ ∈ (RD)K ,

Eµ[τδ] ≥ T ⋆(µ) log

(
1

3δ

)
where

T ⋆(µ)−1 = sup
w∈∆K

inf
λ∈Alt(S⋆(µ))

(
K∑

k=1

wkKL(N (µa,Σ),N (λa,Σ))

)
.

with Alt(S) = {λ ∈ (RD)K : S⋆(λ) ̸= S}.



28/35

Sample Complexity Lower Bound

Theorem

For arms that are multi-variate Gaussian (known covariance Σ),
any δ-correct algorithm for Pareto Set Identification satisfies, for
all µ ∈ (RD)K ,

Eµ[τδ] ≥ T ⋆(µ) log

(
1

3δ

)
where

T ⋆(µ)−1 = sup
w∈∆K

inf
λ∈Alt(S⋆(µ))

(
K∑

k=1

wk
1

2
∥µk − λk∥2Σ−1

)
.

with Alt(S) = {λ ∈ (RD)K : S⋆(λ) ̸= S}.



29/35

Computing the Minimal Distance

there are many ways to alter the Pareto set

no closed-form is known for the minimal distance

(1) : w 7→ inf
λ∈Alt(S)

∑
k

wk

2
∥µk − λk∥2Σ−1

for Σ = σ2Id , (1) can be computed by solving O(K |S⋆(µ)|d)
separably convex problems [Crepon et al., 2024]
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Track-And-Stop?

The GLR stopping rule

τ = inf

{
t ∈ N : inf

λ∈Alt(Ŝ⋆
t )

K∑
k=1

Nk(t)

2
∥µ̂k(t)− λk∥2Σ−1 > β(t, δ)

}

can be calibrated to attain correctness with

β(t, δ) ≃ log(1/δ) + log log(1/δ) + KD log log(Dt)

... but is computationally expansive due to the minimal distance.

The Tracking sampling rule is intractable as it further computes

w⋆(µ) = argmax
w∈∆K

inf
λ∈Alt(S⋆(µ))

∑
k

wk

2
∥µk − λk∥2Σ−1

➜ existing alternative approaches based on online learning
e.g.[Ménard, 2019] also rely on minimal distance computation.
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The Posterior (Re)Sampling Stopping Rule

PS Stopping rule

For all m ≤ M(t, δ), sample θ̃m = (θ̃m
1 , . . . , θ̃

m
K ) with

θ̃m
a ∼ N

(
µ̂a(t),

c(t, δ)

Na(t)
Σ

)
If for all m, S⋆(θ̃m)=S⋆(µ̂(t)), stop and recommend S⋆(µ̂(t))

inspired by the TS-Explore strategy for Combinatorial bandits
[Wang and Zhu, 2022]

analyzed in [Kone et al., 2025] for PSI, together with a
tractable sampling rule giving asymptotic optimality
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Proving correctness

Let β(t, δ) be such that Eδ holds w.p. at least 1− δ:

Eδ =
⋂
t≥1

(∑
k

Nt,k ∥µk − µ̂t,k∥2Σ−1 < 2β(t, δ)

)
︸ ︷︷ ︸

E t
δ

Then,

Pν(τ < ∞, Ŝτ ̸= S⋆) ≤ δ/2 + Pν(τ < ∞ and Ŝτ ̸= S⋆, Eδ/2)
≤ δ/2 +

∑
t≥1

Pν(τ = t and Ŝt ̸= S⋆, E t
δ/2)

= δ/2 +
∑
t≥1

Eν

[
1Ŝt ̸=S⋆1E t

δ/2
Pν(τ = t | Ht−1)

]
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Proving correctness

Pν(τ = t | Ht−1) ≤ Pν(∀m ≤ M(t, δ),S⋆(θ̃m
t ) = Ŝt | Ht−1)

= (1− Pν(S
⋆(θ̃1

t ) ̸= Ŝt | Ht−1))
M(t,δ) ,

= (1− Πt(Alt(Ŝt)))
M(t,δ)

≤ exp
(
−Πt(Alt(Ŝt))M(t, δ)

)
hence the error probability is bounded by

δ

2
+
∑
t≥1

Eν

[
1Ŝt ̸=S⋆(µ)1E t

δ/2
exp

(
−Πt(Alt(Ŝt))M(t, δ)

)]
.

The tricky part of the proof is then to get a lower bound on
Πt(Alt(Ŝt)) (Gaussian anti-concentration)

Lemma [Kone et al., 2025]

The PS Stopping rule is δ correct for

c(t, δ) ≃ log(log(t)/δ)

log(1/δ)
and M(t, δ) ≃ log(t/δ)

δ
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Πt(Alt(Ŝt)) (Gaussian anti-concentration)

Lemma [Kone et al., 2025]

The PS Stopping rule is δ correct for

c(t, δ) ≃ log(log(t)/δ)

log(1/δ)
and M(t, δ) ≃ log(t/δ)

δ



34/35

Conclusion

Two generic stopping rules for pure exploration tasks in bandits:

the GLR stopping rule that is easy to calibrate
(for exponential families)

the PS stopping rule that can be easier to compute
(but harder to calibrate)

In these approaches, e-processes are hidden in the proofs... but the
resulting calibration are a bit conservative in practice.

➜ Tigther calibrations?

➜ When is PS “better” than GLR?
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Pareto Set Identification with Posterior Sampling. (AISTATS 2025)



35/35

Auer, P., Chiang, C., Ortner, R., and Drugan, M. M. (2016).
Pareto front identification from stochastic bandit feedback.
In AISTATS.
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On the effect of correlation

We evaluate the performance of PSIPS on a 5-arm, 2-dimensional
Gaussian instance with correlated objectives.

Covariance matrix: Σρ with unit variances and correlation
ρ ∈ (−1, 1).

ρ = 0: objectives are independent.

ρ → +1 (resp. ρ → −1): strongly positively (resp. negatively)
correlated objectives.
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