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The Multi Armed Bandit (MAB) model

@ K unknown distributions v4, ..., vk called arms

@ a time t, select an arm A; and collect an observation X; ~ v,

mulithreaded sitchfccom

@ previous observation Aq, X1,..., As, X

@ some external randomization U; ~ U([0,1])

@ some knowledge about the possible distributions: v, € D



Example: A/B/n Testing
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pa: probability that a visitor seeing version a buys a product
For the t-th visitor:

@ choose a version A; to display

@ observe X; =1 if a product is bought, 0 otherwise

Objective 1: Maximizing Rewards

@ observation = reward

o maximize E[Y)/_; X;] for some (possibly unknown) T

Regret minimization in bandits: UCB, Thompson Sampling...



Example: A/B/n Testing
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pa: probability that a visitor seeing version a buys a product
For the t-th visitor:

@ choose a version A; to display

@ observe X; = 1 if a product is bought, 0 otherwise

Objective 2: Pure Exploration

@ identify quickly some interesting arms

@ e.g. a, = argmax, p, (best arm identification)

This talk: a generic receipe for pure exploration



Pure Exploration

Possible bandit models: v = (v1,...,vk) € B

(e.g. independent sub-Gaussian arms, or Bernoulli arms)

Possible vectors of arms means p = (u1,...,ux) € M

Identification task
Given a correct answer function

o= i ()

find a correct answer with high probability.




Examples of correct answers

@ Best Arm Identification [Even-Dar et al., 2006]
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in(12) = arg max s,
ac[K]



Examples of correct answers

@ Best Arm ldentification [Even-Dar et al., 2006]
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in(12) = arg max s,
ac[K]

@ Threshold-based questions: which means are below ~7
[Locatelli et al., 2016]

io(p) = (L(m1 >7), -, Lpk > 7)) € {0,11%



Examples of correct answers

@ Best Arm ldentification [Even-Dar et al., 2006]
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in(11) = arg max s,
ac[K]

@ Threshold-based questions: is there a mean below ~7
[Kaufmann et al., 2018]
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Examples of correct answers

@ Pareto Set Identification [Auer et al., 2016]
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=>» arms are multi-variate distributions
=> i.(p) is the Pareto Set of the means
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Pure Exploration with Fixed Confidence

An algorithm is made of:
e a sampling rule A¢ € [K] : what is the next arm to explore?
=» get a new observation X; ~ v4,
@ a recommendation rule %; : a guess for the correct answer

@ a stopping rule 7: when to stop the data collection?

Definition

An algorithm is d-correct if, for all p € M, P, (2- # i(p)) < 9.

Goal: a J-correct algorithm with small sample complexity [E,,[7]



@ (Optimal) Pure Exploration: A General Receipe
© Best Arm Identification

© Pareto Set Identification



@ (Optimal) Pure Exploration: A General Receipe



A lower bound on the sample complexity

Setting: independent arms, parametrized by their means
d(”? :U’I) = KL(V;M Vu/)

Theorem

For any d-correct algorithm,

Bl 2 T () (55).

T*(u)_lz sup inf (Z wad(La, a))

where
wEAk AEALL(ix (1))
with
K
Ax = {WE [0,1]K;ZW,-:1}
i=1

Alt(7) {A € M :iy(N) £ /}




Optimal proportions
(N) 1_ sup inf (Z Wad(,u,a, > 8 J

WEAK AEAL(in (1))

o Ny(t) =t 1(As = a): number of selections of arm a

The proof of the lower bound further suggests that the vector

<]EM[N1(T)] EM[NK(T)])

Eulr] 777 Eul7]

should belong to

* — f
w*(p) = argmax )\emt (Z Wod(ftas Aa )

weAk

=» algorithmic strategy: let’s make this happen!



The GLR stopping rule

Given a candidate best arm i, the (log) Generalized Likelihood
Ratio statistic associated to

Ho = (n € Alt(i)) against Hj : (n ¢ Alt(r))

supxem £ (X1, .., Xe; A)
supxcai(i) £(X1, - -+, Xe; A)

. E(Xl,,Xt,[:\L(t))
—  inf |
AeAl() 80X, Xe )

— inf ZN(t fia(t), Aa)

A€Alt(j) £

Zi(t) log

for exponential families (Bernoulli, Gaussian with known variance, etc.)

Idea: stop the first time that one of the Z;(t) is large enough



A stopping rule aligned with the lower bound

GLR stopping rule

Given a threshold function 3(t,0):

K

=i : [ a f1a(t), Aa) = )
TS mf{teN )\Ellﬂ‘f(i;‘) Na(t)d(f1a(t), Na) > B(t 5)}

with the recommendation rule i} = i, (fi(t))

=» reminiscent of

T*(u)_1 = sup inf (Z Wod (feay Aa )

WGAK AEALL(ix(p))

o if N%(t) ~ wi(p) and B(t,9) ~ log(1/d), we get

75 = Tu(u) log(1/9)



Converging to the optimal proportions

e Introducing U = {a: Nu(t) < +/t},

argmin N,(t) if Uy # 0 (forced exploration)
A c acU:
o argmax [ wi(f(t)) — N%(t)] (tracking)
1<a<K

Lemma

Assume that

o forall p € M, |w*(p)| =1 (unique optimal allocation)
@ p+— w*(p) is continuous in all p € M
Under the Tracking sampling rule,

P (im0~ wi)) 1.

t—00 t




An asymptotically optimal algorithm

When the arm distributions belong to a one-dimensional
exponential family, the Track-and-Stop strategy, that uses

@ the Tracking sampling rule
@ the GLR stopping rule with
B(t,8) ~1In(1/6)+Inin(1/6) + K In(In(t))

@ and the recommendation rule i; = i, (fi(t))

is 0-correct for every § €]0, 1] and satisfies

o EH[Té] o *
et




Calibration of the Stopping Rule

Pu(r < 00,87 # ix(p))

gIP’u<EItEN:i:;& ), inf ZN )>ﬁ(t5))

AEAlt(3r)

K
<P, <E|t €N N(t)d(fialt), 1a) > Bt 5))

a=1

Needed:
@ a time uniform deviation inequality
@ where the deviations are measured with KL-divergence

@ and aggregated over arms

Solution: (a product of) e-processes
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Calibration of the Stopping Rule
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@ a time uniform deviation inequality
@ where the deviations are measured with KL-divergence

@ and aggregated over arms

Solution: (a product of) e-processes



Calibration of the Stopping Rule

Xa(t) = Na(t)d(fia(t), pa) — 3log(1 + log(Na(t)))

Step 1: e"(*) is (almost) an e-process

YAEA: MMt)> eMe(-e)

where MJ(t) is a test martingale and g a correction function.




Calibration of the Stopping Rule

Xa(t) = Na(t)d(fia(t), pa) — 3log(1 + log(Na(t)))

Step 1: e"(*) is (almost) an e-process

YAEA: MMt)> eMe(-e)

where MJ(t) is a test martingale and g a correction function.

@ Link X,(t) to the martingale W/ (t) = e"%(1)=Pua(mNa(t)

Sa(t) =3 X:L(As=2) ¢y, = logExms,, [e*X]
= [Robbins, 1970]



Calibration of the Stopping Rule

Xa(t) = Na(t)d(fia(t), pa) — 3log(1 + log(Na(t)))

Step 1: e*(*) is (almost) an e-process

YAEA: MMt)> eMe(-e)

where MJ(t) is a test martingale and g a correction function.

@ Link X,(t) to the martingale W/ (t) = e"%(1)=Pua(mNa(t)

t
Sa(t) =3 X:L(As=2) ¢y, = logExms,, [e*X]
s=1
[Robbins, 1970]
For exponential families:

If Na(t) € [(1+ €)1, (1 +£)7], there exists some 7 € {nF(x)}:

{Na(£)d(1a(t), 1) = x} € {WP(t) = eTie |




Calibration of the Stopping Rule

Xa(t) = Na(t)d(fia(t), pa) — 3log(1 + log(Na(t)))

Step 1: e*(*) is (almost) an e-process

VAEA: M)(t) > eMe(=el)

where M2(t) is a test martingale and g a correction function.

@ Link X,(t) to the martingale W/ (t) = e"%(1)=ua(m)Na(t)
Sa(t) = Xt:Xs]l(As —a)  ¢u, = logExmy, [e*X]
- [Robbins, 1970]
For exponential families:
- )y — 5 ¢ |y ) 1 (%) -
The martingale Z3(t) = >, & |Wa' “7(t) + Wa" 7(t)| satisfies
{Xa(8) - £(©) 2 x} € {Z0(t) = eTie }




Calibration of the Stopping Rule

Xa(t) = Na(t)d(fia(t), pa) — 3log(1 + log(Na(t)))

Step 1: e*(*) is (almost) an e-process

VAEA: M)(t) > eMe(=el)

where M2(t) is a test martingale and g a correction function.

@ Link X,(t) to the martingale W/ (t) = e"%(1)=ua(m)Na(t)

t
Sa() =S Xl(As=a) ¢, = logExms,, [e*X]
= [Robbins, 1970]
For exponential families:

]

The martingale Z;,(,X)(t) =Y.5 Wgr(x)(t) + W:r(x)(t)] satisfies
{e)\Xa(t)—Af(g) >0 ¢ {ng,z)(t) > 1}




Calibration of the Stopping Rule

Xa(t) = Na(t)d(fia(t), pa) — 3log(1 + log(Na(t)))

Step 1: *(*) is (almost) an e-process

VAEN: M(t)> Mgl

where M2(t) is a test martingale and g a correction function.

@ Link X,(t) to the martingale W (t) = e"%(1)=ua(m)Na(t)

Sa() =S Xl(As=a) ¢, = logExms,, [e“]
= [Robbins, 1970]
For exponential families:

The final test martingale is

* s
M;‘(t)ocl-i-/ ZM (1) dz
1




Xa(t) = Na(t)d(f1a(t), pa) — 3log(1 + log(Na(t)))

Step 2: Product martingales

YA e A: M\t) = H M2\(t) is still a test martingale
a€[K]

=» Chernoff method + Ville's inequality

17/35



Xa(t) = Na(t)d(f1a(t), pa) — 3log(1 + log(Na(t)))

Step 2: Product martingales

YA e A: M\t) = H M2\(t) is still a test martingale
ac[K]

=» Chernoff method + Ville's inequality

K
P <3t eN: ZXa(t) > x> <P (Ht €N : eZra(MWXa()—g() eAx—Kg(/\))

a=1
<P(3teN:M(t)> eAX—Kg(A))

e~ M TKe(\)

IN

Then optimize over \:

P (Elt EN: zK:Xa(t) > K min g + '°f(1/5)/K> <.

a=1



Final result

Correctness

When the arm distributions belong to a one-dimensional
exponential family, there exists a threshold such that

B(t,8) ~ log(1/9) + loglog(1/d) + K log log(t)

for which, P, (7 < 00,7 # ix(p)) < 0.

(the factor K may be reduced for some particular identification tasks)



Back to Track and Stop

Wait! Can we actually implement it?

Track-and-Stop requires the computation in every round t of the
“minimal distance”

f N )\
. Z )

for checking the stopping rule, and

arg max |nf Z Na( t), Aa)

wes, AEAlt(a

for the sampling rule.



© Best Arm Identification



GLR stopping rule

i(1) = au(p) = argmax pu,
a€[K]

Using that Alt(x) = U, .., () {A - Aa > Aa, }, the minimal
distance can be computed in closed-form:

inf E w;d
A ATt (e i [L,, l

=min  min [wa,, d(pa,, A) + wad(pa, A)]
aF#a, NE(Ka,ltay )

= min |:Wa*d (/la*s Way Ha, T Wa,“a) + w,d </La= Wa, ta, T Walffa>:|

a#a, Wy, + W, W,, + W,

for exponential families.



Example: Gaussian bandits

For Gaussian bandits with variance o2:

inf Z Wj—————— )2 = min (11 — ,ua)2

AeAlt( p,)

hence




Example: Gaussian bandits

For Gaussian bandits with variance o2:

inf Z Wi——————— )2 = min (12 = p1a)

AeAlt( p,)

hence

But w,(p) still doesn’t have a closed form

=» we propose an efficient approximation algorithm for
exponential families in [Garivier and Kaufmann, 2016]



In practice

Empirical distribution of 75 for 6 = 0.01 for different algorithms on
pu=1[1,0.8,0.75,0.7] ,02 = 1, estimated on 1000 runs
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Using the right stopping rule makes a difference:

2028(t. 2020(t, 6
UGapE: Va#1} aﬂiz(t)_ﬂa(t)>\/a/\ﬁ/(7 )+\/GI€(7)
a,t a,t

1 1
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at a,t

Limitation: Computing w* is costly



In practice

Empirical distribution of 75 for 6 = 0.01 for different algorithms on
pn=1[1,0.8,0.75,0.7] ,02 = 1, estimated on 1000 runs
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Using the right stopping rule makes a difference:

202(t.0) \/ 202(t, 5)

E: i, P (t) — fa
UGap VaF iy, fu(t) — fa(t) > \/ N, + Na. ¢

1 1
GLR: Va#7#; , figr(t) — fia(t) > \/2026(t,6) (N + N >
a,t a,t

Efficient alternatives to Tracking exist, e.g. Top Two algorithms



© Pareto Set Identification



Multi-objective bandit

Bandit model
@ Karms vy,...,vk
@ vy is a multi-variate distribution in RP with mean p, € RP
@ Assumption: each marginal of vy is sub-Gaussian

In each round t, an agent selects and arm A; € [K] and observes a
response X; ~ v4,, independently from past observations.

=» What is a “good set of arms”?
a possiblity: the Pareto Set of the mean vectors

S*(n) = {“all arms that are not uniformly

worse than any other arm” }



Pareto Set

Let X C RPD a set of vectors. Let x,y € X.

e x is (strictly) dominated by y (x < y) if ¥d € [D], x? < y¢
@ The Pareto Set is
P(X):={x€X:fy € X suchthat x <y}
@ A vector x € P(X) is called Pareto optimal

Objective 2
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P(X) = {x1, %2}



Pareto Set Identification with Fixed Confidence

no= (I’l’la"'ay’K)e(RD)K
S*(n) = {kelK]:pu € P(p,. .., pk)}

Pareto Set ldentification algorithm:
e a sampling rule A¢ € [K] : what is the next arm to explore?
=» get a new observation X; ~ vy € RP
e a recommendation rule S, : a guess for S*(p)

@ a stopping rule 7: when to stop the data collection?

Definition

An algorithm is d-correct (on M) if, for all v € M,
Py (Sr # 8*(m)) < 6.

Goal: a d-correct algorithm with small sample complexity E, [7]



Sample Complexity Lower Bound

Theorem

For arms that are multi-variate Gaussian (known covariance ¥),
any d-correct algorithm for Pareto Set ldentification satisfies, for

all p e (RP)K,
Bl > T*(0)log ( 35

where

T*(N)_l = sup inf (Z wi KL(N (pa, Z),N(Aa,z))> :

weAy AEALL(S* (1))

with AlE(S) = {A € (RP)K : S*(A) # S}.




Sample Complexity Lower Bound

Theorem

For arms that are multi-variate Gaussian (known covariance ¥),
any d-correct algorithm for Pareto Set ldentification satisfies, for

all p e (RP)K,
Bl > T*(0)log ( 35

where

T*(u)™' = sup inf (Z Wk*”ﬂk Aullg- 1>~

weAy AEALL(S*(p))

with Alt(S) = {A € (RP)K : S*(A) # S}.




Computing the Minimal Distance

@ there are many ways to alter the Pareto set

¥ y y
1 1 1
+ + +
+2 +2 +2 *2
5 5 5
+ + 4 + 4
+3 4--* +3 ¥ +3
4% 4t 4%
X X X

@ no closed-form is known for the minimal distance

. Wi 2
1):w— f — . _
0wt 5 e = Al

o for ¥ = 02ly, (1) can be computed by solving O(K|S*()|%)
separably convex problems [Crepon et al., 2024]



Track-And-Stop?

The GLR stopping rule

K

r = inf {t en: it S M Dya a2 s s 5)}

AEAIL(SE) 13

can be calibrated to attain correctness with

B(t,0) ~ log(1/0) + loglog(1/d) + KD log log(Dt)

... but is computationally expansive due to the minimal distance.

The Tracking sampling rule is intractable as it further computes

. Wi 2
W, = arg max inf — - _
(1) g ma AeAlt(s*(u))Zk: 5 bk = A5

=¥ existing alternative approaches based on online learning
e.g.[Ménard, 2019] also rely on minimal distance computation.



The Posterior (Re)Sampling Stopping Rule

PS Stopping rule

For all m < M(t, ), sample 8™ = (55”, . ,5;?) with

- (050

If for all m, S*(6™)=8*(ji(t)), stop and recommend S*(ji(t))

w

@ inspired by the TS-Explore strategy for Combinatorial bandits
[Wang and Zhu, 2022]

@ analyzed in [Kone et al., 2025] for PSI, together with a
tractable sampling rule giving asymptotic optimality



Proving correctness

Let 5(t,d) be such that & holds w.p. at least 1 — §:

& = ﬂ (Z Nk ||k — fiexllgs < 26(t, 5))

t£>1 \ k

~ /
-~

&

Then,

Py (1 < 00,8, #8%) < §/2+Py(r < 00 and S, # 5%, &)
<6/2+ ) Py (r=tand S # 8%, ,)

t>1

=5/2+ 3 E, [ngtw]lgg/zpy(f —t ’Ht_l)]
t>1



Proving correctness

P,(r=t|He1) < Po(Vm< M(t,6),8%(0F) = S; | He 1)
(1—Pu(S*(8}) # St | Hen))MEO)
= (1= M(ALL(S,)))M(80)

< exp (—I'It(Alt(gt))l\/l(t,é)>

hence the error probability is bounded by
1 ~
S+ ;EV (1525 oz, &0 (~M(AL(S)M(,5) )]
t=>

The tricky part of the proof is then to get a lower bound on
M:(Alt(S:)) (Gaussian anti-concentration)



Proving correctness

P(r=t|Hea) < Pu(¥m< M(t,5),8%(0F) = S | He1)

(1 - P,(S*(6}) # St | Heor))MED
= (1= M(ALL(S,)))M(80)

< exp (—I'It(Alt(gt))l\/l(t,é)>

hence the error probability is bounded by

2+ S OE [1g g ler, o0 (~NUALS)M(z.0))]
t>1

The tricky part of the proof is then to get a lower bound on
M:(Alt(S:)) (Gaussian anti-concentration)

The PS Stopping rule is ¢ correct for
log(log(t)/4) log(t/9)
[ — A ~ —

c(t,0) ~ log(1/0) and M(t,0) ~ 5




Conclusion

Two generic stopping rules for pure exploration tasks in bandits:

@ the GLR stopping rule that is easy to calibrate
(for exponential families)

@ the PS stopping rule that can be easier to compute
(but harder to calibrate)

In these approaches, e-processes are hidden in the proofs... but the
resulting calibration are a bit conservative in practice.

=» Tigther calibrations?
=» When is PS "better” than GLR?
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On the effect of correlation

We evaluate the performance of PSIPS on a 5-arm, 2-dimensional
Gaussian instance with correlated objectives.

@ Covariance matrix: 3, with unit variances and correlation
pe(—1,1).

@ p = 0: objectives are independent.

e p— +1 (resp. p — —1): strongly positively (resp. negatively)
correlated objectives.
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