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Bandits: one model, several objectives

Bandit model

A multi-armed bandit model is a set of K arms where

Each arm a is a probability distribution νa of mean µa

Drawing arm a is observing a realization of νa

Arms are assumed to be independent

In a bandit game, at round t, a forecaster

chooses arm At to draw based on past observations, according to its
sampling strategy (or bandit algorithm)

observes a sample Xt ∼ νAt

The agent wants to learn which arm(s) have highest means

a∗ = argmaxa µa
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Bandits: one model, several objectives Regret minimization

The (classical) bandit problem: regret minimization

Samples are seen as rewards (as in reinforcement learning)

The forecaster wants to maximize the reward accumulated during
learning or equivalently minimize its regret:

RT = E

[
Tµa∗ −

T∑
t=1

Xt

]

realizes a tradeoff between exploration and exploitation
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Bandits: one model, several objectives Best arm identification

Best arm identification (or pure exploration)

The forecaster has to find the best arm(s), and does not suffer a loss
when drawing ’bad arms’.

He has to find a sampling strategy that

optimaly explores the environment,

together with a stopping criterion, and then recommends a set Ŝ of m
arms such that

P
(
Ŝ is the set of m best arms

)
≥ 1− δ.
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Bandits: one model, several objectives Regret minimization versus best arm identification

Zoom on an application: Medical trials

A doctor can choose between K different treatments for a given symptom.

treatment number a has unknown probability of success µa
Unknown best treatment a∗ = argmaxa µa
If treatment a is given to patient t, he is cured with probability µa

The doctor:

chooses treatment At to give to patient t

observes whether the patient is healed : Xt ∼ B(µAt)

The doctor can ajust his strategy (At) so as to

Regret minimization Pure-exploration

Maximize the number of patient healed Identify the best treatment
during a study involving T patients with probability at least 1− δ

(and always give this one later)
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Two probabilistic views on regret minimization
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Two probabilistic views on regret minimization Two probabilistic models

Two probabilistic modelings

K independent arms. µ∗ = µa∗ highest expectation of reward.

Frequentist :
θ1, . . . , θK unknown parameters

(Xa,t)t is i.i.d. with distribution
νθa with mean µa

Bayesian :

θa
i.i.d.∼ πa

(Xa,t)t is i.i.d. conditionally to
θa with distribution νθa

At time t, arm At is chosen and reward Xt = XAt,t is observed

Two measures of performance

Minimize regret

RT (θ) = Eθ

[
T∑
t=1

(µ∗ − µAt)

] Minimize Bayes risk

RiskT (π) = E

[
T∑
t=1

(µ∗ − µAt)

]

=

∫
Rn(θ)dπ(θ)
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Two probabilistic views on regret minimization Two probabilistic models

Frequentist tools, Bayesian tools

Bandit algorithms based on frequentist tools use:

Maximum Likelihood Estimator of the mean of each arms

Confidence Intervals on the mean of each arms

Bandit algorithms based on Bayesian tools use:

Πt = (πt1, . . . , π
t
K) the current posterior over (θ1, ..., θK)

One can separate tools and objectives:

Performance Frequentist Bayesian
criterion algorithms algorithms

Regret ? ?

Bayes risk ? ?
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Two probabilistic views on regret minimization Optimal algorithms in a Bayesian sense

Bayesian algorithm optimal with respect to the Bayes risk

There exists a Bayesian optimal solution to Bayes risk minimization,
obtained by dynamic programming.

Bernoulli bandit model ν = (B(θ1), . . . ,B(θK))

θa ∼ U([0, 1])

πta = Beta(#|ones observed|+ 1,#|zeros observed|+ 1)

The game is summarized by a ’posterior matrix’ St ∈MK,2

St =

1 2
5 1
0 2

 At=2−→



1 2
6 1
0 2

 if XAt,t = 1

1 2
5 2
0 2

 if XAt,t = 0

St can be seen as a state in a Markov Decision Process.
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Two probabilistic views on regret minimization Optimal algorithms in a Bayesian sense

Bayesian algorithm optimal with respect to the Bayes risk

There exists a Bayesian optimal solution to Bayes risk minimization,
obtained by dynamic programming.

There exists an optimal policy (At) in this MDP satisfying

arg max
(At)

E

[ ∞∑
t=1

γt−1Xt

]
or arg max

(At)
E

[
T∑
t=1

Xt

]

NOT tracable for large horizon

with the discounted criterion,
[Gittins’79] shows the optimal policy reduces to an index policy

with a finite horizon,
it does not reduce to an index policy
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Two probabilistic views on regret minimization Optimal algorithms in the frequentist sense

Asymptotically optimal algorithms in the frequentist setting

Na(t) the number of draws of arm a up to time t

RT (θ) =

K∑
a=1

(µ∗ − µa)Eθ[Na(T )]

Lai and Robbins,1985 : every consistent policy satisfies

µa < µ∗ ⇒ lim inf
T→∞

Eθ[Na(T )]

log T
≥ 1

KL(νθa , νθ∗)

A bandit algorithm is asymptotically optimal if

µa < µ∗ ⇒ lim sup
T→∞

Eθ[Na(T )]

log T
≤ 1

KL(νθa , νθ∗)
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Two probabilistic views on regret minimization Optimal algorithms in the frequentist sense

Algorithms: a family of optimistic index policies

For each arm a, compute an Upper Confidence Bound on µa:

µa ≤ UCBa(t) w.h.p

Act as if the best possible model was the true model
(optimism-in-face-of-uncertainty):

At+1 = arg max
a

UCBa(t)

Example UCB1 [Auer et al. 02] uses Hoeffding bounds:

UCBa(t) =
Sa(t)

Na(t)
+

√
α log(t)

2Na(t)
.

Sa(t): sum of the rewards collected from arm a up to time t.

UCB1 satisfies, for bounded rewards,

E[Na(T )] ≤ K1

2(µa − µ∗)2
log T +K2, with K1 > 1.
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Two probabilistic views on regret minimization Optimal algorithms in the frequentist sense

KL-UCB: an asymptotically optimal frequentist algorithm

KL-UCB [Cappé et al. 2013] for Bernoulli rewards uses the index:

ua(t) = argmax
x>

Sa(t)
Na(t)

{
d

(
Sa(t)

Na(t)
, x

)
≤ log(t) + c log log(t)

Na(t)

}
with d(p, q) = KL (B(p),B(q)) = p log

(
p
q

)
+ (1− p) log

(
1−p
1−q

)
.
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Two probabilistic views on regret minimization Summary

Summary so far

Objective Frequentist Bayesian
algorithms algorithms

Regret KL-UCB ?

Bayes risk ? Dynamic Programming
(not tractable)
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Two probabilistic views on regret minimization Summary

Our objective

We aim at designing algorithms using Bayesian tools that
are optimal with respect to (frequentist) regret
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Two Bayesian bandit algorithms
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Two Bayesian bandit algorithms Bayesian algorithms

UCBs versus Bayesian algorithms

Figure: Confidence intervals on the arms means after t rounds of a bandit game

Figure: Posterior over the means of the arms after t rounds of a bandit game
⇒ How do we exploit the posterior in a Bayesian bandit algorithm?
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Two Bayesian bandit algorithms Bayes UCB
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Two Bayesian bandit algorithms The algorithm

The Bayes-UCB algorithm

Let :

Π0 = (π01, . . . , π
0
K) be a prior distribution over (θ1, ..., θK)

Λt = (λt1, . . . , λ
t
K) be the posterior over the means (µ1, ..., µK) a the

end of round t

The Bayes-UCB algorithm chooses at time t

At = argmax
a

Q

(
1− 1

t(log t)c
, λt−1a

)
where Q(α, π) is the quantile of order α of the distribution π.

Bernoulli reward with uniform prior: θ = µ and Πt = Λt

π0a
i.i.d∼ U([0, 1]) = Beta(1, 1)

πta = Beta(Sa(t) + 1, Na(t)− Sa(t) + 1)
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Two Bayesian bandit algorithms The algorithm

Bayes UCB in action !

0

1

6 19 443 4 27
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Two Bayesian bandit algorithms Theoretical results

Theoretical results for the Bernoulli case

Bayes-UCB is asymptotically optimal for Bernoulli rewards

Theorem [K.,Cappé,Garivier 2012]
Let ε > 0. The Bayes-UCB algorithm using a uniform prior over the arms
and parameter c ≥ 5 satisfies

Eθ[Na(T )] ≤ 1 + ε

d(µa, µ∗)
log(T ) + oε,c (log(T )) .
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Two Bayesian bandit algorithms Theoretical results

Links with a frequentist algorithm

Bayes-UCB index is close to KL-UCB indices: ũa(t) ≤ qa(t) ≤ ua(t)
with:

ua(t) = argmax
x>

Sa(t)
Na(t)

{
d

(
Sa(t)

Na(t)
, x

)
≤ log(t) + c log(log(t))

Na(t)

}

ũa(t) = argmax
x>

Sa(t)
Na(t)+1

d
(

Sa(t)

Na(t) + 1
, x

)
≤

log
(

t
Na(t)+2

)
+ c log(log(t))

(Na(t) + 1)


Bayes-UCB appears to build automatically confidence intervals
based on Kullback-Leibler divergence, that are adapted to the
geometry of the problem in this specific case.
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Two Bayesian bandit algorithms Theoretical results

Where does it come from?

We have a tight bound on the tail of posterior distributions
(Beta distributions)

First element: link between Beta and Binomial distribution:

P(Xa,b ≥ x) = P(Sa+b−1,1−x ≥ b)

Second element: Sanov inequality: for k > nx,

e−nd(
k
n
,x)

n+ 1
≤ P(Sn,x ≥ k) ≤ e−nd(

k
n
,x)
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Two Bayesian bandit algorithms Thompson Sampling
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Two Bayesian bandit algorithms The algorithm

Thompson Sampling

Πt = (πt1, . . . , π
t
K) the posterior distribution on (θ1, . . . , θK) at the end of

round t.

A randomized bayesian algorithm:

∀a ∈ {1..K}, θa(t) ∼ πt−1a

At = argmaxa µ(θa(t))

⇒ Each arm is drawn according to its posterior probability of being optimal

(Recent) interest for this algorithm:

TS is the first bandit algorithm proposed
[Thompson 1933]
Partial analysis were proposed by
[Granmo 2010][May, Korda, Lee, Leslie 2012]

Numerical studies assess its performance beyond the Bernoulli case
[Scott, 2010],[Chapelle, Li 2011]

The first logarithmic upper bound on the regret was given by
[Agrawal,Goyal 2012]
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Two Bayesian bandit algorithms Theoretical results

An optimal regret bound for Bernoulli bandits

Assume arm 1 is the unique optimal arm and let ∆a = µ1 − µa.

Known result : [Agrawal,Goyal 2012]

RT (θ) ≤ C

(
K∑
a=2

1

∆2
a

)2

log(T ) + oµ(log(T ))

Our improvement : [K.,Korda,Munos 2012]

Theorem ∀ε > 0,

RT (θ) ≤ (1 + ε)

(
K∑
a=2

∆a

d(µa, µ∗)

)
log(T ) + oµ,ε(log(T ))
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Two Bayesian bandit algorithms Theoretical results

Two key elements in the proof

Introduce a quantile to replace the sample:

qa(t) := Q

(
1− 1

t log(T )
, πta

)
such that

T∑
t=1

P (θa(t) > qa(t)) ≤ 2

and use what we know about quantiles (cf. Bayes-UCB)

Proove separately that the optimal arm has to be drawn a lot

Proposition

There exists constants b = b(µ) ∈ (0, 1) and Cb <∞ such that
∞∑
t=1

P
(
N1(t) ≤ tb

)
≤ Cb.
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Two Bayesian bandit algorithms Theoretical results

{
N1(t) ≤ tb

}
= {there exists a time range of length at least t1−b − 1

with no draw of arm 1}
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Assume that :

on Ij = [τj , τj + dt1−b − 1e] there is no draw of arm 1

there exists Jj ⊂ Ij such that ∀s ∈ Jj , ∀a 6= 1, θa(s) ≤ µ2 + δ

Then :

∀s ∈ Jj , θ1(s) ≤ µ2 + δ

⇒ This only happens with small probability
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Conclusions about regret minimization

Summary

Objective Frequentist Bayesian
algorithms algorithms

Regret KL-UCB Bayes-UCB
Thompson Sampling

Bayes risk ' KL-UCB Dynamic Programming
[Lai 87] (not tractable)
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Conclusions about regret minimization

Why using Bayesian algorithm in the frequentist setting?
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Regret as a function of time in a ten arms Bernoulli bandit problem with low

rewards, horizon T = 20000, average over N = 50000 trials.
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Conclusions about regret minimization

Why using Bayesian algorithm in the frequentist setting?

In the Bernoulli case, for each arm,

KL-UCB requires to solve an optimization problem:

ua(t) = argmax
x>

Sa(t)
Na(t)

{
d

(
Sa(t)

Na(t)
, x

)
≤ log(t) + c log log(t)

Na(t)

}
Bayes-UCB requires to compute one quantile of a Beta distribution

Thompson requires to compute one sample of a Beta distribution

Other advantages of Bayesian algorithms:

they easily generalize to more complex models...

...even when the posterior is not directly computable (using MCMC)

the prior can incorporate correlation between arms
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An overview of best arm(s) identification
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An overview of best arm(s) identification m best arm identification

m best arms identification

Assume µ1 ≥ · · · ≥ µm > µm+1 ≥ . . . µK (Bernoulli bandit model)

Parameters and notations

m the number of arms to find

δ ∈]0, 1[ a risk parameter

S∗m = {1, . . . ,m} the set of m optimal arms

The forecaster

chooses at time t one (or several) arms to draw

decides to stop after a (possibly random) total number of samples
from the arms τ

recommends a set Ŝ of m arms

His goal (in the fixed-confidence setting)

P(Ŝ = S∗m) ≥ 1− δ (the algorithm is δ-PAC)

The sample complexity E[τ ] is small
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P(Ŝ = S∗m) ≥ 1− δ (the algorithm is δ-PAC)

The sample complexity E[τ ] is small
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An overview of best arm(s) identification m best arm identification

Challenges for m best arm identification

The regret minimization problem is ’solved’ in some sense:

An (asymptotic) lower bound on the regret of any good algorithm

lim inf
n→∞

Rn
log(n)

≥
K∑
a=2

µ1 − µa
KL(B(µa),B(µ1))

Algorithms matching this lower bound: KL-UCB, Thompson Sampling

For m best arm identification, we would want to give:

A lower bound on the sample complexity E[τ ] of any δ-PAC algorithm

δ-PAC algorithms whose sample complexity matches this lower bound
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An overview of best arm(s) identification Lower bound on the sample complexity

A lower bound

Theorem [K.,Cappé, Garivier (14)]
Any algorithm that is δ-PAC on every bandit model such that µm > µm+1

satisfies, for δ ≤ 0.15,

E[τ ] ≥

(
m∑
t=1

1

d(µa, µm+1)
+

K∑
t=m+1

1

d(µa, µm)

)
log

1

2δ
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An overview of best arm(s) identification Upper bound on the sample complexity

An algorithm: KL-LUCB

Generic notation:

confidence interval (C.I.) on the mean of arm a at round t:

Ia(t) = [La(t), Ua(t)]

J(t) the set of estimated m best arms at round t
(m empirical best)

Our contribution: Introduce KL-based confidence intervals

Ua(t) = max {q ≥ µ̂a(t) : Na(t)d(µ̂a(t), q) ≤ β(t, δ)}
La(t) = min {q ≤ µ̂a(t) : Na(t)d(µ̂a(t), q) ≤ β(t, δ)}

for β(t, δ) some exploration rate.
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An overview of best arm(s) identification Upper bound on the sample complexity

An algorithm: KL-LUCB

At round t, the algorithm:

draws only two well-chosen arms: ut and lt (in bold)
stops when C.I. for arms in J(t) and J(t)c are separated

0

1

58 118 346 330 120 72

m = 3,K = 6
Set J(t), arm lt in bold Set J(t)c, arm ut in bold
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An overview of best arm(s) identification Upper bound on the sample complexity

Theoretical guarantees

Theorem [K.,Kalyanakrishnan 2013]
KL-LUCB using the exploration rate

β(t, δ) = log

(
k1Kt

α

δ

)
,

with α > 1 and k1 > 1 + 1
α−1 satisfies P(Ŝ = S∗m) ≥ 1− δ.

For α > 2,

E[τ ] ≤ 4αH∗
[
log

(
k1K(H∗)α

δ

)
+ log log

(
k1K(H∗)α

δ

)]
+ Cα,

with

H∗ = min
c∈[µm+1;µm]

K∑
a=1

1

d∗(µa, c)
.
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An overview of best arm(s) identification Upper bound on the sample complexity

Theoretical guarantees

An alternative informational quantity: Chernoff information

d∗(x, y) := d(z∗, x) = d(z∗, y),

where z∗ is defined by the equality

d(z∗, x) = d(z∗, y).
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An overview of best arm(s) identification Summary

Summary

Lower bound:

lim sup
δ→0

Eν [τ ]

log 1
δ

≥
m∑
t=1

1

d(µa, µm+1)
+

K∑
t=m+1

1

d(µa, µm)

Upper bound (for KL-LUCB):

lim sup
δ→0

Eν [τ ]

log 1
δ

≤ 4 min
c∈[µm+1;µm]

K∑
a=1

1

d∗(µa, c)
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General conclusion

Regret minimization versus Best arms identification

KL-based confidence intervals are useful in both settings, although
KL-UCB and KL-LUCB draw the arms in a different fashion

0

1

785 50 115 28 14 7

0

1

24 69 396 325 148 38

Do the complexity of these two problems feature the same
information-theoretic quantities?

inf
consistent
algorithms

lim sup
T→∞

RT
log T

=

K∑
a=2

µ1 − µa
d(µa, µ1)

inf
δ−PAC
algorithms

lim sup
δ→∞

E[τ ]

log(1/δ)
≥

K∑
a=1

1

d(µa, µm+1)
+

K∑
a=m+1

1

d(µa, µm)
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General Conclusion

Conclusion

The use of KL-based confidence intervals is useful in bandits models:

KL-UCB is asymptotically optimal in the regret setting

KL-LUCB is provably very efficient in the pure-exploration setting

Regret minimization: Go Bayesian!

Bayes-UCB show striking similarities with KL-UCB

Thompson Sampling is an easy-to-implement alternative to the
optimistic approach

both algorithms are asymptotically optimal towards frequentist regret
(and more efficient in practice)

Natural open question:

Can Bayesian tools be used to build efficient algorithms for the
pure-exploration objective?
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