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The multi-armed bandit model

K arms = K probability distributions (νa has mean µa)

ν1 ν2 ν3 ν4 ν5

At round t, an agent:

chooses an arm At

observes a sample Xt ∼ νAt

using a sequential sampling strategy (At):

At+1 = Ft(A1,X1, . . . ,At ,Xt).

Generic goal: learn the best arm, a∗ = argmaxa µa
of mean µ∗ = maxa µa
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Bernoulli bandit model

K arms = K Bernoulli distributions

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

At round t, an agent:

chooses an arm At

observes a sample Xt ∼ B(µAt ): P(Xt = 1|At) = µAt

using a sequential sampling strategy (At):

At+1 = Ft(A1,X1, . . . ,At ,Xt).

Generic goal: learn the best arm, a∗ = argmaxa µa
of mean µ∗ = maxa µa
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Outline

1 Two bandit problems
Regret minimization
Best arm identification

2 Bandit tools for planning in games

3 Multi-player bandit revisited
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Regret minimization in a bandit model

Samples = rewards, (At) is adjusted to

maximize the (expected) sum of rewards,

E

[
T∑
t=1

Xt

]

or equivalently minimize the regret:

RT = Tµ∗ − E

[
T∑
t=1

Xt

]
=

K∑
a=1

(µ∗ − µa)E[Na(T )]

Na(T ) : number of draws of arm a up to time T

⇒ Exploration/Exploitation tradeoff
or... Learning while Earning
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The UCB approach

A UCB-type (or optimistic) algorithm chooses at round t

At+1 = argmax
a=1...K

UCBa(t).

where UCBa(t) is an Upper Confidence Bound on µa.

[Lai and Robbins 1985, Agrawal 1995, Auer et al. 02...]
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The kl-UCB algorithm

The kl-UCB index

UCBa(t) := max

{
q : d (µ̂a(t), q) ≤ log(t)

Na(t)

}
,

with d(x , y) = KL(B(x),B(y))

q
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The kl-UCB algorithm

[Cappé et al. 13]: kl-UCB satisfies

Eµ[Na(T )] ≤ 1

d(µa, µ∗)
logT + O(

√
log(T )).

Ü matches the lower bound of [Lai and Robbins 1985]
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A pure-exploration objective

Regret minimization:
maximize the number of conversions while learning which version
of your webpage is the best

Alternative goal: quickly find out the best version for your webpage
(no focus on conversions during the A/B testing phase)
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Best arm identification

The agent has to identify the arm with highest mean a∗

(no loss when drawing “bad” arms)

The agent

uses a sampling strategy (At)

stops at some (random) time τ

upon stopping, recommends an arm âτ

His goal:

Fixed-budget setting Fixed-confidence setting

τ = T minimize E[τ ]
minimize P(âτ 6= a∗) P(âτ 6= a∗) ≤ δ

[Bubeck et al. 2010] [Even Dar et al. 2006]
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Best arm identification

The agent has to identify the arm with highest mean a∗

(no loss when drawing “bad” arms)

The agent

uses a sampling strategy (At)

stops at some (random) time τ

upon stopping, recommends an arm âτ

His goal:

Fixed-budget setting Fixed-confidence setting
τ = T minimize E[τ ]

minimize P(âτ 6= a∗) P(µâτ < µ∗− ε) ≤ δ

(ε, δ)-PAC algortihm

Emilie Kaufmann Bandits (for) Games



The LUCB algorithm

An algorithm based on confidence intervals

Ia(t) = [LCBa(t),UCBa(t)].

0

1

771 459 200 45 48 23

At round t, draw

bt = arg max
a

µ̂a(t)

ct = arg max
a 6=bt

UCBa(t)

Stop at round t if

LCBbt (t) > UCBct (t)− ε

Theorem [Kalyanakrishan et al. 2012]

For well-chosen confidence intervals, LUCB is (ε, δ)-PAC and

E [τδ] = O

([
1

∆2
2 ∨ ε2

+
K∑

a=2

1

∆2
a ∨ ε2

]
log

(
1

δ

))
with ∆a = µ1 − µa.
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Regret minimization versus Best Arm Identification

Algorithms for regret minimization and BAI are very different!

kl-UCB versus (kl)-LUCB

0

1
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Next: how to use them in two different game situations:

BAI for planning in games
Monte-Carlo Tree Search By Best Arm Identification,
with Wouter Koolen, NIPS 2017
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Regret minimization versus Best Arm Identification

Algorithms for regret minimization and BAI are very different!

kl-UCB versus (kl)-LUCB

0
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Next: how to use them in two different game situations:

Regret minimization in a competitive game situation
Multi-Player Bandits Revisited,
with Lilian Besson, ALT 2018
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Outline

1 Two bandit problems
Regret minimization
Best arm identification

2 Bandit tools for planning in games

3 Multi-player bandit revisited
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Monte-Carlo Tree Search for games

Goal: decide for the next move based on evaluation of possible
trajectories in the game

Usual bandit approach: [UCT, Koczis and Szepesvari 2006]

Ü use UCB in each node to decide the next children to explore

Ü no sample complexity guarantees
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Monte-Carlo Tree Search for games

We introduce an idealized model:

fixed maximin tree

i.i.d. playouts starting from each leaf

and propose new algorithms with sample complexity guarantees
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A simple model for MCTS

A fixed MAXMIN game tree T , with leaves L.

MAX node (= your move)

MIN node (= adversary move)

Leaf `: stochastic oracle O` that evaluates the position
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A simple model for MCTS

At round t a MCTS algorithm:

picks a path down to a leaf Lt

get an evaluation of this leaf Xt ∼ OLt

Assumption: i.i.d. sucessive evaluations, EX∼O` [X ] = µ`
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A simple model for MCTS

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

At round t a MCTS algorithm:

picks a path down to a leaf Lt

get an evaluation of this leaf Xt ∼ OLt

Assumption: i.i.d. sucessive evaluations, EX∼O` [X ] = µ`

Emilie Kaufmann Bandits (for) Games



Goal

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

A MCTS algorithm should find the best move at the root:

Vs =


µs if s ∈ L,

maxc∈C(s) Vc if s is a MAX node,
minc∈C(s) Vc if s is a MIN node.

s∗ = argmax
s∈C(s0)

Vs
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A structured BAI problem

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

MCTS algorithm: (Lt , τ, ŝτ ), where

Lt is the sampling rule

τ is the stopping rule

ŝτ ∈ C(s0) is the recommendation rule

is (ε, δ)− PAC if P (Vŝτ ≥ Vs∗ − ε) ≥ 1− δ.
Goal: (ε, δ)-PAC algorithm with a small sample complexity τ .
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First tool: confidence intervals

Using the samples collected for the leaves, one can build, for ` ∈ L,

[LCB`(t),UCB`(t)] a confidence interval on µ`

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

Idea: Propagate these confidence intervals up in the tree
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First tool: confidence intervals

MAX node:

UCBs(t) = max
c∈C(s)

UCBc(t) LCBs(t) = max
c∈C(s)

LCBc(t)

s0
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First tool: confidence intervals

MAX node:

UCBs(t) = max
c∈C(s)

UCBc(t) LCBs(t) = max
c∈C(s)

LCBc(t)

s0
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First tool: confidence intervals

MIN node:

UCBs(t) = min
c∈C(s)

UCBc(t) LCBs(t) = min
c∈C(s)

LCBc(t)

s0
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Property of this construction

s0

⋂
`∈L

(µ` ∈ I`(t)) ⇒
⋂
s∈T

(Vs ∈ Is(t))
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Second tool: representative leaves

`s(t): representative leaf of internal node s ∈ T .

s0

Idea: alternate optimistic/pessimistic moves starting from s
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Generic BAI-MCTS algorithm

Input: a BAI algorithm
Initialization: t = 0.
while not BAIStop ({s ∈ C(s0)}) do

Rt+1 = BAIStep ({s ∈ C(s0)})
Sample the representative leaf Lt+1 = `Rt+1(t)
Update the information about the arms. t = t + 1.

end
Output: BAIReco ({s ∈ C(s0)})

... typically the confidence intervals
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LUCB-MCTS

Sampling rule: Rt+1 is the least sampled among two
promising depth-one nodes:

bt = argmax
s∈C(s0)

V̂s(t) and ct = argmax
s∈C(s0)\{bt}

UCBs(t),

where V̂s(t) = µ̂`s(t)(t).

(empirical value of the representative leaf)

Stopping rule:

τ = inf
{
t ∈ N : LCBbt

(t) > UCBct (t)− ε
}

Recommendation rule: ŝτ = bτ

Variant: UGapE-MCTS, based on [Gabillon et al. 12]
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Theoretical guarantees

We choose confidence intervals of the form

LCB`(t) = µ̂`(t)−

√
β(N`(t), δ)

2N`(t)

UCB`(t) = µ̂`(t) +

√
β(N`(t), δ)

2N`(t)

where β(s, δ) is some exploration function.

Correctness

If δ ≤ max(0.1|L|, 1), for the choice

β(s, δ) = log(|L|/δ) + 3 log log(|L|/δ) + (3/2) log(log s + 1)

UGapE-MCTS and LUCB-MCTS are (ε, δ)-PAC.
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Theoretical guarantees

H∗ε (µ) :=
∑
`∈L

1

∆2
` ∨∆2

∗ ∨ ε2

where

∆∗ := V (s∗)− V (s∗2 )

∆` := max
s∈Ancestors(`)\{s0}

∣∣VParent(s) − Vs

∣∣
Sample complexity

With probability larger than 1− δ, the total number of leaves
explorations performed by UGapE-MCTS is upper bounded as

τ = O

(
H∗ε (µ) log

(
1

δ

))
.
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Theoretical guarantees

H∗ε (µ) :=
∑
`∈L

1

∆2
` ∨∆2

∗ ∨ ε2

where

∆∗ := V (s∗)− V (s∗2 )

∆` := max
s∈Ancestors(`)\{s0}

∣∣VParent(s) − Vs

∣∣
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Numerical results

ε = 0, δ = 0.1 · 27 (N = 106 simulations)
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LUCB-MCTS (0.72% errors, 1551 samples)
UGapE-MCTS (0.75% erros, 1584 samples)
FindTopWinner (0% errors, 20730 samples) [Teraoka et al. 14]

+ should add LUCBMinMax [Huang et al. 17]
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Multi-player bandits

M agents playing the same K -armed bandit (M ≤ K )

At round t,

each player j selects arm Aj(t)

collisions may occur

C j(t) := {∃j ′ 6= j : Aj ′(t) = Aj(t)}

Player j receives the reward

r j(t) := YAj (t),t︸ ︷︷ ︸
reward of the selected arm...

× 1
(C j (t))︸ ︷︷ ︸

...if no other player select the same arm

.

Goal:

Ü maximize the total reward E
[∑T

t=1

∑M
j=1 r

j(t)
]

Ü ... without communications between agents
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Typical application: cognitive radio

agents: smart radio devices that need to communicate in a
crowded network
arms: model the background traffic of several radio channels

Ü ex: presence of a primary user (licensed protocol)
Ü ex: presence of any other user (unlicensed protocol)

Typically, reward = availability = successful communication

Yj ,t ∼ B(µj)
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Different feedback models

r j(t) := YAj (t),t × 1(C j (t))

Agent j always observes r j(t) (was the communication successful ?
→ acknowledgement) but can also

1 “Full feedback”: observe both YAj (t),t and C j(t)
(not very realistic)

2 “Sensing”: observe YAj (t),t (thus also C j(t) if YAj (t),t 6= 0)
(licensed protocols)

3 “No sensing”: observe only the combined YAj (t),t × 1(C j (t))
,

(unlicensed protocols)
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Regret for multi-player bandits

µ∗k : mean of the k-best arm

RT (µ,M, ρ) :=

(
M∑
k=1

µ∗k

)
T − Eµ

 T∑
t=1

M∑
j=1

r j(t)


Regret decomposition

RT (µ,M, ρ) =
∑

k∈M-worst

(µ∗M − µk)E[Nk(T )]

+
∑

k∈M-best

(µk − µ∗M) (T − E[Nk(T )]) +
K∑

k=1

µkEµ[Ck(T )].

Nk(T ) total number of selections of arm k

Ck(T ) total number of collisions experienced on arm k
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µ∗k : mean of the k-best arm

RT (µ,M, ρ) :=

(
M∑
k=1

µ∗k

)
T − Eµ

 T∑
t=1

M∑
j=1

r j(t)


Regret: Lower Bound

RT (µ,M, ρ) ≥
∑

k∈M-worst

(µ∗M − µk)E[Nk(T )].

Nk(T ) total number of selections of arm k

Ck(T ) total number of collisions experienced on arm k
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Regret for multi-player bandits

µ∗k : mean of the k-best arm

RT (µ,M, ρ) :=

(
M∑
k=1

µ∗k

)
T − Eµ

 T∑
t=1

M∑
j=1

r j(t)


Regret: Upper Bound

RT (µ,M, ρ) ≤ C
∑

k∈M-worst

E[Nk(T )] + D
∑

k∈M-best

Eµ[Ck(T )].

Nk(T ) total number of selections of arm k

Ck(T ) total number of collisions experienced on arm k
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The MC-Top-M algorithm

Based on the sensing information, each player computes a
kl-UCB index for each arm:

UCBj
k(t) = max

{
q : N j

k(t)d
(
µ̂jk(t), q

)
≤ log(t)

}
and use this to estimate the M best channels:

M̂j(t) =
{

arms with M largest UCBj
k(t)

}
Other UCB-based algorithms:
TDFS [Lui and Zhao 2010], Rho-Rand [Anandkumar et al. 2011]
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MC-Top-M

Two simple ideas:

Ü always pick Aj(t) ∈ M̂ j(t − 1)

Ü try not to switch arm too often

We introduce a fixed state:

s j(t) = {player j is fixed at the end of round t}

→ inspired by Musical Chair [Rosenski et al. 2016]

MC-Top-M: at round t,

if Aj(t − 1) /∈ M̂ j(t − 1), set s j(t) = False and carefully select
a new arm in M̂ j(t − 1).

else if C j(t − 1) ∩ s j(t − 1), pick a new arm at random

Aj(t) ∼ U(M̂j(t − 1)) and s j(t) = False

else, draw the previous arm, and fix yourself on it

Aj(t) = Aj(t − 1) and s j(t) = True
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MC-Top-M

Two simple ideas:

Ü always pick Aj(t) ∈ M̂ j(t − 1)

Ü try not to switch arm too often

We introduce a fixed state:

s j(t) = {player j is fixed at the end of round t}

→ inspired by Musical Chair [Rosenski et al. 2016]

MC-Top-M: at round t,

if Aj(t − 1) /∈ M̂ j(t − 1), set s j(t) = False and carefully select
a new arm in M̂ j(t − 1).

Aj(t) ∼ U
(
M̂j(t − 1) ∩

{
k : UCBj

k(t − 2) ≤ UCBj
Aj (t−1)(t − 2)

})
(permits to control

∑T
t=1 P

(
Aj(t) = k, k /∈ Aj(t)

)
)
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MC-Top-M: visualization

(0) Start t = 0

Not fixed, s j(t) (2) C j(t),Aj(t) ∈ M̂ j(t)

(3) Aj(t) /∈ M̂ j(t)

Fixed, s j(t)

(1) C j(t),Aj(t) ∈ M̂ j(t)

(4) Aj(t) ∈ M̂ j(t)

(5) Aj(t) /∈ M̂ j(t)
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Theoretical guarantees

a tight bound on the number of sub-optimal selections

Lemma

The number of time player j selects the sub-optimal arm k satisfies

Eµ[N j
k(T )] ≤ log(T )

d(µk , µ
∗
M)

+ Cµ

√
log(T ) + Dµ log log(T ) + 3M + 1.

Ü matches a new lower bound we provide !

the tricky part is to control the collisions

Lemma

The number of collisions of Rand-Top-M satisfies

Eµ

[
K∑

k=1

Ck(T )

]
≤

 ∑
a,b:µa<µb

M2 (2M + 1)

d(µa, µb)

 log(T ) + O(logT ).

Ü logarithmic regret!
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Numerical results
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Multi-players M= 3 : Cumulated centralized regret, averaged 100 times
9 arms: [B(0.1), B(0.2), B(0.3), B(0.4), B(0.5), B(0.6), B(0.7) ∗ , B(0.8) ∗ , B(0.9) ∗ ]

3×  CentralizedMultiplePlay(KLUCB)
3×  RandTopM-KLUCB
3×  MCTopM-KLUCB
3×  RhoRand-KLUCB
3×  MEGA(c= 0.1, d= 0.099, p0 = 0.1, α= 0.1, β= 0.5)
3×  MusicalChair(T0 = 95117)
3×  MusicalChair(T0 = 118764)
3×  MusicalChair(T0 = 257182)

(log scale on the y axis)
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Numerical results
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Multi-players M= 6 : Cumulated centralized regret, averaged 500 times
9 arms: Bayesian MAB, Bernoulli with means on [0, 1]

6×  RandTopM-KLUCB
6×  MCTopM-KLUCB
6×  Selfish-KLUCB
6×  RhoRand-KLUCB
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Some perspectives

For cognitive radios:

find a lower bound on the minimal number of collisions

what to do without sensing?

For MCTS:

can we manage growing trees and still have some sample
complexity guarantees?
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