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The multi-armed bandit model

K arms = K probability distributions (v, has mean pu,)

11 %) V3 V4 143
At round t, an agent:

@ chooses an arm A;

@ observes a sample X; ~ 14,

using a sequential sampling strategy (A;):
Arp1 = Fe(Ar, Xe, .. A Xe).

Generic goal: learn the best arm, a" = argmax, i,
of mean u* = max, i,

Emilie Kaufmann Bandits (for) Games



Bernoulli bandit model

K arms = K Bernoulli distributions

B(p1) B(u2)  B(us) B(ja) B(us)

At round t, an agent:

@ chooses an arm A;
@ observes a sample X, ~ B(ja,): P(Xy = 1|Ar) = pa,

using a sequential sampling strategy (A;):
At+1 = Ft(A17 X]_, .o 7At7 Xt)

H . * __
Generic goal: learn the best arm, a" = argmax, i,
of mean u* = max, i,
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o Two bandit problems
@ Regret minimization
@ Best arm identification

© Bandit tools for planning in games

© Multi-player bandit revisited
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o Two bandit problems
@ Regret minimization
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Regret minimization in a bandit model

Samples = rewards, (A;) is adjusted to

@ maximize the (expected) sum of rewards,
T

DX
t=1

@ or equivalently minimize the regret:
T

DX
t=1

N,(T) : number of draws of arm a up to time T

E

K

= Z(M* - Ma)E[Na( T)]

a=1

RT: TILL**E

= Exploration/Exploitation tradeoff
or... Learning while Earning
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The UCB approach

e A UCB-type (or optimistic) algorithm chooses at round t
A¢i1 = argmax UCB,(t).
a=1..K
where UCB,(t) is an Upper Confidence Bound on .

1k

T ?

<

[Lai and Robbins 1985, Agrawal 1995, Auer et al. 02...]
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The kl-UCB algorithm

The klI-UCB index

UCB,(t) := max {q d (fa(t), ) < Iog(t)} )

with d(x. y) = KL(B(x). B(y))

——d(n, 0
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satisfies P11, < UCB,(t)) > 1 — L.
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The kl-UCB algorithm

[Cappé et al. 13]: klI-UCB satisfies
1

=» matches the lower bound of [Lai and Robbins 1985]

T hi
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o Two bandit problems

@ Best arm identification
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A pure-exploration objective

Regret minimization:
maximize the number of conversions while learning which version
of your webpage is the best

Controlled Test

Visitors Conversion

” &

‘Control” Q
12%

-p -y @

“Control” Variation A ’ m
E "

Variation B

Alternative goal: quickly find out the best version for your webpage
(no focus on conversions during the A/B testing phase)
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Best arm identification

The agent has to identify the arm with highest mean a*
(no loss when drawing “bad” arms)

The agent
@ uses a sampling strategy (Ay)
@ stops at some (random) time 7

@ upon stopping, recommends an arm &,

His goal:
Fixed-budget setting | Fixed-confidence setting
T=T minimize E[7]
minimize P(4, # a*) P(a; #a*) <o

[Bubeck et al. 2010] [Even Dar et al. 2006]
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Best arm identification

The agent has to identify the arm with highest mean a*
(no loss when drawing “bad” arms)

The agent
@ uses a sampling strategy (Ay)
@ stops at some (random) time 7

@ upon stopping, recommends an arm &,

His goal:

Fixed-budget setting | Fixed-confidence setting
T=T minimize E[7]
minimize P(3; # a*) | P(ps, < p* —€) <4

(e,0)-PAC algortihm
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The LUCB algorithm

An algorithm based on confidence intervals
Z,(t) = [LCB,(t), UCB,(t)].

@ At round t, draw

by = argmax [i,(t)
a

¢ 3 % } l l ¢ = arién;tax UCB,(t)

@ Stop at round t if

Qe - . . . LCBp,(t) > UCBg (1) — e

For well-chosen confidence intervals, LUCB is (¢, §)-PAC and

1 K1 1
E[rs] =0 ([—A§ V2 +Z;—Ag \/62] log (5)>

with Ay = 1 — pa.
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Regret minimization versus Best Arm Identification

Algorithms for regret minimization and BAI are very different!

kl-UCB versus (kl)-LUCB

° . ’ S . )
459 200 45 48 23
£ 111 2 19 2

Next: how to use them in two different game situations:
o BAI for planning in games
Monte-Carlo Tree Search By Best Arm Identification,
with Wouter Koolen, NIPS 2017
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Regret minimization versus Best Arm Identification

Algorithms for regret minimization and BAI are very different!

kI-UCB versus (kl)-LUCB

I%} II%}ll

. . S . )
459 200 45 48 23
£ 111

Next: how to use them in two different game situations:
@ Regret minimization in a competitive game situation
Multi-Player Bandits Revisited,
with Lilian Besson, ALT 2018
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© Bandit tools for planning in games
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Monte-Carlo Tree Search for games

Selection Expansion Simulation Backpropagation

o © Bo o
@ 00 @ 0 @ @@
OQC0D ORFVD CRCOL QTG
®6 @? ©e 0

® ® @

o1

Goal: decide for the next move based on evaluation of possible
trajectories in the game
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Monte-Carlo Tree Search for games

Selection Expansion Simulation Backpropagation

)
@ @ ® @
@@@@@ @Q@@@ OEEOO

Goal: decide for the next move based on evaluation of possible
trajectories in the game

Usual bandit approach: [UCT, Koczis and Szepesvari 2006]
=?» use UCB in each node to decide the next children to explore

=» no sample complexity guarantees
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Monte-Carlo Tree Search for games

Selection Expansion Simulation Backpropagation

S @ o &
@ 00 @ 0 @ @@
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® ® @

o1

We introduce an idealized model:
@ fixed maximin tree
@ i.id. playouts starting from each leaf

and propose new algorithms with sample complexity guarantees
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A simple model for MCTS

A fixed MAXMIN game tree T, with leaves L.
W MAX node (= your move)

A /N node (= adversary move)

® Leaf ¢: stochastic oracle O, that evaluates the position
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A simple model for MCTS

A fixed MAXMIN game tree T, with leaves L.
W MAX node (= your move)

A /N node (= adversary move)

® Leaf ¢: stochastic oracle O, that evaluates the position
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A simple model for MCTS

At round t a MCTS algorithm:
@ picks a path down to a leaf L;

@ get an evaluation of this leaf X; ~ Oy,

Assumption: i.i.d. sucessive evaluations, Ex.o,[X] = s
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A simple model for MCTS

At round t a MCTS algorithm:
@ picks a path down to a leaf L;

@ get an evaluation of this leaf X; ~ Oy,

Assumption: i.i.d. sucessive evaluations, Ex.o,[X] = s
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Goal

A MCTS algorithm should find the best move at the root:
Ihs ifs € L,
Vs = ¢ maxcee(s) Ve if sis a MAX node,
mincee(s) Ve if sis a MIN node.
s* = argmax Vs
seC(so)
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A structured BAI problem

MCTS algorithm: (L, 7, 5;), where
@ L; is the sampling rule
@ 7 is the stopping rule
@ 5, € C(sp) is the recommendation rule
is (6,0) —PACif P(Vz > Ve —¢)>1—0.

Goal: (€, 6)-PAC algorithm with a small sample complexity 7.
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First tool: confidence intervals

Using the samples collected for the leaves, one can build, for ¢ € L,

[LCB(t), UCBy(t)] a confidence interval on py
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First tool: confidence intervals

Using the samples collected for the leaves, one can build, for £ € L,

[LCBy(t), UCBy(t)] a confidence interval on ti

Idea: Propagate these confidence intervals up in the tree
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First tool: confidence intervals

MAX node:
UCBs(t) = max UCB.(t) LCBs(t) = max LCB(t)

ceC(s) ceC(s)

-
(I Ll
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First tool: confidence intervals

MAX node:

UCBs(t) = max UCB.(t) LCBs(t) = max LCB(t)
ceC(s) ceC(s)

+r
P
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Emilie Kaufmann Bandits (for) Games

™

7N I T

L




First tool: confidence intervals

MIN node:

UCBs4(t) = min UCB.(t) LCBs(t) = min LCB(t)
ceC(s) ceC(s)

.
A

m| law |
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A e

(' ]

gy Ly Jia =
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Property of this construction

_
r/ (T — B\Y_I
A e
M Y Z e a YL
y Ly g =
Ll [ |

1

() (e € Zu(t)) = ) (Vs € Zs(1))

leL seT
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Second tool: representative leaves

ls(t): representative leaf of internal node s € 7.

q

'_-r-i'—l ,_,Z”#_ﬂ :—ZX'I r_;-ir(_‘
L P ‘——'I__Il bl

Idea: alternate optimistic/pessimistic moves starting from s
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Generic BAI-MCTS algorithm

Input: 2 BAI algorithm

Initialization: t = 0.

while not BAIStop ({s € C(so)}) do

Re+1 — BAIStep ({s € C(s0)})

Sample the representative leaf Ly 1 = (g, (1)
Update the information about the arms. t =t + 1.

end
Output: BAIReco ({s € C(s)})
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Generic BAI-MCTS algorithm

Input: 2 BAI algorithm

Initialization: t = 0.

while not BAIStop ({s € C(sp)}) do

Ree1 = BAIStep ({s € C(s0)})

Sample the representative leaf Ly 1 = (g, (1)
Update the information about the arms. t =t 4+ 1.

end
Output: BAIReco ({s € C(s)})

... typically the confidence intervals
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LUCB-MCTS

@ Sampling rule: Ry is the least sampled among two
promising depth-one nodes:

b, = argmax Vi(t) and ¢, = argmax UCB(t),
s€C(s0) se€C(s0)\{b;}

where V;(t) = floy(e)(t)-
(empirical value of the representative leaf)
@ Stopping rule:
7 =inf {t € N: LCBy (t) > UCB (t) — €}
@ Recommendation rule: 5, = b,

Variant: UGapE-MCTS, based on [Gabillon et al. 12]
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Theoretical guarantees

We choose confidence intervals of the form

LOB() = fu(e) — | PGaes
UCBi(t) = fu(t) + 5%%5)

where (s, ) is some exploration function.

If & < max(0.1|£],1), for the choice

B(s, ) = log(|L£]/d) + 3loglog(|L|/d) + (3/2) log(logs + 1)

UGapE-MCTS and LUCB-MCTS are (¢, 0)-PAC.
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Theoretical guarantees

H ) = Y 22

AZV A2V e

LeLl
where
A* = V(S*) _ V(S;()
A = ma V aren - Vs
¢ sEAncestor)s((Z)\{sO}| P t(s) |

Sample complexity

With probability larger than 1 — §, the total number of leaves
explorations performed by UGapE-MCTS is upper bounded as

=0 (ruame (2)).

Emilie Kaufmann Bandits (for) Games




Theoretical guarantees

. 1
HZ (1) ::ZAgvAi\/é

el
where
A, = V(s*)—V(s3)
A a Vparen — V.
¢ SGAncesTor)s((l)\{so}| P t(s) Sl
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Numerical results

€=0,86=0.1-27 (N = 10° simulations)

LUCB-MCTS (0.72% errors, 1551 samples)
UGapE-MCTS (0.75% erros, 1584 samples)
FindTopWinner (0% errors, 20730 samples) |[Teraoka et al. 14|

+ should add LUCBMinMax [Huang et al. 17]
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© Multi-player bandit revisited
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Multi-player bandits

M agents playing the same K-armed bandit (M < K)

At round t,
@ each player j selects arm A/(t)

@ collisions may occur

Cit) = (3] #j: A () = H(1)

Player j receives the reward

J - ) _
r(t) = Yai(e),t X L)
——
reward of the selected arm... _if no other player select the same arm
Goal:

- maximize the total reward E |31, ZJAil H(t)

=» ... without communications between agents

Emilie Kaufmann Bandits (for) Games



Typical application: cognitive radio

@ agents: smart radio devices that need to communicate in a
crowded network
@ arms: model the background traffic of several radio channels

=» ex: presence of a primary user (licensed protocol)
=» ex: presence of any other user (unlicensed protocol)

Frequency BandsK

Time

Optimal frequency band

- low quality
I:l high quality

su

Typically, reward = availability = successful communication
Yje ~ B(uj)
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Typical application: cognitive radio

@ agents: smart radio devices that need to communicate in a
crowded network
@ arms: model the background traffic of several radio channels
=» ex: presence of a primary user (licensed protocol)
=» ex: presence of any other user (unlicensed protocol)

Frequency BandsK

1 2

3 4 5 6
=1

Time

Optimal frequency band

Q Q Y - low quality
Q Q ‘:I high quality
SU
Typically, reward = availability = successful communication

Yj,t ~ B(Mj)
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Different feedback models

rJ(t) = YAj(t)J_L X ]l(Cj(t))

Agent j always observes r/(t) (was the communication successful ?
— acknowledgement) but can also

Q “Full feedback”: observe both Yy, . and Ci(t)
(not very realistic)
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Different feedback models

rJ(t) = YAj(t)J_L X ]l(Cj(t))

Agent j always observes r/(t) (was the communication successful ?
— acknowledgement) but can also

© “Full feedback”: observe both Yy, and Ci(t)
(not very realistic)

@ ‘“Sensing”: observe Yy, , (thus also Cl(t) if Yaie),e 7 0)
(licensed protocols)
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Different feedback models

I’J(t) = YAf(t),t X H(Tm)

Agent j always observes r/(t) (was the communication successful ?
— acknowledgement) but can also

© “Full feedback”: observe both Yy, and Ci(t)
(not very realistic)

@ “Sensing”: observe Yy, (thus also Ci(t) if Yaie),e # 0)
(licensed protocols)

© "No sensing”: observe only the combined Yy . ¥ ll(Cj(t))

(unlicensed protocols)
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Different feedback models

Agent j always observes r/(t) (was the communication successful ?
— acknowledgement) but can also

Q “Full feedback”: observe both Yy, . and Ci(t)
(not very realistic)

@ ‘“Sensing”: observe Yy, , (thus also CI(t) if Yaie),e 7 0)
(licensed protocols)

© “No sensing”: observe only the combined Yy ; X ]l(cj(t))

(unlicensed protocols)
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Regret for multi-player bandits

ftz: mean of the k-best arm

M T M )
Rr(p, M, p) == (Z;f;) T—Eu|> > A1)

k=1 t=1 j=1

Regret decomposition

Rr(p, M, p) = Z (v — 1 )E[Nk (T)]
ke M-worst

K

+ > (k= i) (T =B[N () + D ik BCi(T)]-
ke M-best k=1

@ Ni(T) total number of selections of arm k

@ Ci(T) total number of collisions experienced on arm k
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Regret for multi-player bandits

ftz: mean of the k-best arm

M T M )
Rr(p, M, p) := (ZM’L) T—E, > > A1)

k=1 t=1 j=1

Regret: Lower Bound

RT(H? M, p) > Z (/jl‘;/l - Mk)E[Nk(T)]

ke M-worst

@ Ni(T) total number of selections of arm k

@ C(T) total number of collisions experienced on arm k
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Regret for multi-player bandits

ftz: mean of the k-best arm

M T M )
Rr(p, M, p) := (ZM’L) T—E, > > A1)

k=1 t=1 j=1

Regret: Upper Bound

Rr(p,M,p) <C Y E[N«(TI+D > EuC(T)].
ke M-worst ke M-best

@ Ni(T) total number of selections of arm k

@ C(T) total number of collisions experienced on arm k
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The MC-Top-M algorithm

Based on the sensing information, each player computes a
kl-UCB index for each arm:

UCBY(t) = max {q : M(e)d (#](t). q) < log(t)}
and use this to estimate the M best channels:

A

M;(t) = {arms with M largest UCBJ,'((t)}

Other UCB-based algorithms:
TDFS [Lui and Zhao 2010], Rho-Rand [Anandkumar et al. 2011]
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MC-Top-M

Two simple ideas:
- always pick A/(t) € M/(t —1)
=¥ try not to switch arm too often
We introduce a fixed state:

s/(t) = {player j is fixed at the end of round t}

— inspired by Musical Chair [Rosenski et al. 2016]
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MC-Top-M

Two simple ideas:
- always pick A/(t) € Mi(t —1)
=» try not to switch arm too often
We introduce a fixed state:

s/(t) = {player j is fixed at the end of round t}
— inspired by Musical Chair [Rosenski et al. 2016]
MC-Top-M: at round t,
o if A(t—1)¢ Ifﬂj(t —1), set §/(t) = False and carefully select
a new arm in MV(t —1).
e else if C/(t —1)Ns/(t — 1), pick a new arm at random
A(t) ~U(M;(t — 1)) and §/(t) = False
o else, draw the previous arm, and fix yourself on it
A(t)=A(t—1) and /(1) = True
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MC-Top-M

Two simple ideas:
= always pick A/(t) € M/(t —1)
=¥ try not to switch arm too often

We introduce a fixed state:
s/(t) = {player j is fixed at the end of round t}
— inspired by Musical Chair [Rosenski et al. 2016]

MC-Top-M: at round t,
o if A(t—1)¢ Ifﬂf(t —1), set s/(t) = False and carefully select
a new arm in MV(t —1).
A(t) ~ U <I\7Ij(t ~1)n {k  UCB/(t —2) < UCBly,_(t - 2)})

(permits to control 3] P (A/(t) = k, k ¢ A(t)))
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MC-Top-M: visualization

(0) Start t =0
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MC-Top-M: visualization
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Not fixed, s/(t)
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MC-Top-M: visualization

(0) Start t =0

Not fixed, s/(t)

(1) CI(e), Ai(t) € Mi(t)

Fixed, s/(t)

(2) Ci(t), Ai(t) € Mi(t)

(3) Ai(r) ¢ Mi(t)



MC-Top-M: visualization

(0) Start t =0

Not fixed, s/(t)

(1) CI(e), Ai(t) € Mi(t)
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MC-Top-M: visualization

(0) Start t =0

Not fixed, s/(t)

(5) 4(1) ¢ Mi(t)

(1) CI(e), Ai(t) € Mi(t)

(4) Ai(t) € Mi(1)

(2) Ci(t), Ai(t) € Mi(t)

(3) Ai(r) ¢ Mi(t)
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Theoretical guarantees

@ a tight bound on the number of sub-optimal selections

The number of time pIayerj selects the sub-optimal arm k satisfies

: |
B [M(T)] < 22 og(T M j+ Cu /10g(T) + Dy, log log(T) + 3M + 1.

d(pse 143

=» matches a new lower bound we provide !

@ the tricky part is to control the collisions

The number of collisions of Rand-Top-M satisfies

K
ch(r)]g S MEME )7y 4 0gog T).
k=1

a,bipa<pip d(pa; 1p)

=» logarithmic regret!
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Numerical results

Multi-players 1/ =3 : Cumulated centralized regret, averaged 100 times
9 arms: [B(0.1), B(0.2), B(0.3), B(0.4), B(0.5), B(0.6), B(0.7) *, B(0.8)*, B(0.9) *|

—e— 3x CentralizedMultiplePlay(KLUCB)
3x RandTopM-KLUCB
3% MCTopM-KLUCB
3 RhoRand-KLUCB
y 3% MEGA(c=0.1, d=0.099, py=0.1, a=0.1
—#- 3 MusicalChair(1) =95117)

—4— 3 MusicalChair(T, - 118764)
/_A-’_’k_’.k —— 3 MusicalChair(; - 25712)
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(log scale on the y axis)
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Numerical results

Multi-players M =6 : Cumulated centralized regret, averaged 500 times
9 arms: Bayesian MAB, Bernoulli with means on [0,1]
~e— % RandTopM-KLUCB
6x MCTopM-KLUCB
6% Selfish-KLUCB
—< 6% RhoRand-KLUCB
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Some perspectives

For cognitive radios:
o find a lower bound on the minimal number of collisions

@ what to do without sensing?
For MCTS:

@ can we manage growing trees and still have some sample
complexity guarantees?
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