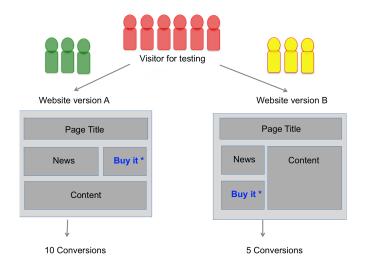
New tools from the bandit literature to improve A/B Testing

Emilie Kaufmann,

joint work with Aurélien Garivier & Olivier Cappé

RecSys Meetup, March 23rd, 2016

Motivation



A way to do A/B Testing:

- allocate n_A users to page A and n_B users to page B
- perform a statistical test of "A better than B"

A way to do A/B Testing:

- allocate n_A users to page A and n_B users to page B
- perform a statistical test of "A better than B"
- A variant: fully adaptive A/B Testing
 - sequentially choose which version to allocate to each visitor
 - adaptively choose when to stop the experiment
 - → multi-armed bandit model

A/B/C... testing as a Best Arm Identification problem

K arms = K probability distributions (ν_a has mean μ_a)

$$a^* = \operatorname*{argmax}_{a=1,...,K} \mu_a$$

For the *t*-th user,

- allocate a version (arm) $A_t \in \{1, \dots, K\}$
- observe a feedback $X_t \sim \nu_{A_t}$

<u>Goal:</u> design

- a sequential sampling rule: $A_{t+1} = F_t(A_1, X_1, \dots, A_t, X_t)$,
- a stopping rule τ
- a recommendation rule $\hat{a}_{ au}$

such that $\mathbb{P}(\hat{a}_{ au} = a^*) \geq 1 - \delta$ and au is as small as possible.

Outline

1 Optimal algorithms for best-arm identification

- Lower bounds
- The Track-and-Stop strategy

2 A/B Testing

- Bernoulli distribution
- Gaussian distribution

Outline

Optimal algorithms for best-arm identification

- Lower bounds
- The Track-and-Stop strategy

2 A/B Testing

- Bernoulli distribution
- Gaussian distribution
- 3 Practical performance

PAC algorithms in one-parameter bandit models

 $\mathcal{P} = \{\nu_{\mu}, \mu \in \mathcal{I}\}\$ set of distributions parametrized by their mean **Example:** Bernoulli, Poisson, Gaussian (known variance)

$$\nu_{\mu_1}, \dots, \nu_{\mu_K} \in \mathcal{P}^K \quad \Leftrightarrow \quad \boldsymbol{\mu} = (\mu_1, \dots, \mu_K) \in \mathcal{I}^K$$
$$\mathcal{S} = \left\{ \boldsymbol{\mu} \in \mathcal{I}^K : \exists a \in \{1, \dots, K\} : \mu_a > \max_{i \neq a} \mu_i \right\}$$

• A strategy is δ -PAC (on S) if

$$orall
u \in \mathcal{S}, \quad \mathbb{P}_{
u}(\hat{a}_{ au} = a^*) \geq 1 - \delta.$$

PAC algorithms in one-parameter bandit models

 $\mathcal{P} = \{\nu_{\mu}, \mu \in \mathcal{I}\}\$ set of distributions parametrized by their mean **Example:** Bernoulli, Poisson, Gaussian (known variance)

$$\nu_{\mu_1}, \dots, \nu_{\mu_K} \in \mathcal{P}^K \quad \Leftrightarrow \quad \boldsymbol{\mu} = (\mu_1, \dots, \mu_K) \in \mathcal{I}^K$$
$$\mathcal{S} = \left\{ \boldsymbol{\mu} \in \mathcal{I}^K : \exists \boldsymbol{a} \in \{1, \dots, K\} : \mu_{\boldsymbol{a}} > \max_{i \neq \boldsymbol{a}} \mu_i \right\}$$

• A strategy is δ -PAC (on S) if

$$orall
u \in \mathcal{S}, \quad \mathbb{P}_{
u}(\hat{a}_{ au} = a^*) \geq 1 - \delta.$$

→ What is the optimal sample complexity of a δ -PAC strategy?

$$\inf_{\delta\text{-PAC}} \mathbb{E}_{\mu}[\tau]?$$

The optimal sample complexity

To answer this question, we need

- → a lower bound on $\mathbb{E}_{\nu}[\tau]$ for any δ -PAC strategy
- → a δ -PAC strategy such that $\mathbb{E}_{\nu}[\tau]$ matches this bound

State-of-the-art: δ -PAC algorithms for which

$$\mathbb{E}_{\boldsymbol{\mu}}[\tau] = O\left(H(\boldsymbol{\mu})\lograc{1}{\delta}
ight), \ \ H(\boldsymbol{\mu}) = rac{1}{(\mu_2-\mu_1)^2} + \sum_{s=2}^{K}rac{1}{(\mu_s-\mu_1)^2}$$

[Even Dar et al. 2006, Kalyanakrishnan et al. 2012]

→ the optimal sample complexity is not identified...

Notation: Kullback-Leibler divergence

$$d(\mu,\mu'):=\mathsf{KL}(
u^\mu,
u^{\mu'})=\mathbb{E}_{X\sim
u^\mu}\left[\lograc{d
u^\mu}{d
u^{\mu'}}(X)
ight]$$

is the KL-divergence between the distributions of mean μ and $\mu'.$

Outline

Optimal algorithms for best-arm identification

- Lower bounds
- The Track-and-Stop strategy

2 A/B Testing

- Bernoulli distribution
- Gaussian distribution
- 3 Practical performance

Lower bound

• A first (easy to interpret) result

Theorem [Kaufmann, Cappé, Garivier 2015]

For any δ -PAC algorithm,

$$\mathbb{E}_{\boldsymbol{\mu}}[\tau] \geq \left(\frac{1}{d(\mu_1,\mu_2)} + \sum_{\boldsymbol{a}=2}^{\mathcal{K}} \frac{1}{d(\mu_{\boldsymbol{a}},\mu_1)}\right) \log\left(\frac{1}{2.4\delta}\right)$$

Lower bound

• A first (easy to interpret) result

Theorem [Kaufmann, Cappé, Garivier 2015]

For any δ -PAC algorithm,

$$\mathbb{E}_{\boldsymbol{\mu}}[\tau] \geq \left(\frac{1}{d(\mu_1,\mu_2)} + \sum_{\boldsymbol{a}=2}^{\mathcal{K}} \frac{1}{d(\mu_{\boldsymbol{a}},\mu_1)}\right) \log\left(\frac{1}{2.4\delta}\right)$$

• A tighter (non explicit) lower bound

Theorem [Kaufmann and Garivier, 2016]

Alt $(\mu) := \{ \lambda : a^*(\lambda) \neq a^*(\mu) \}$. For any δ -PAC algorithm, $\mathbb{E}_{\mu}[\tau] \geq \mathcal{T}^*(\mu) \log \left(\frac{1}{2.4\delta}\right),$

where

$$T^*(\boldsymbol{\mu})^{-1} = \sup_{\boldsymbol{w} \in \boldsymbol{\Sigma}_{\boldsymbol{K}}} \inf_{\boldsymbol{\lambda} \in \operatorname{Alt}(\boldsymbol{\mu})} \left(\sum_{a=1}^{\boldsymbol{K}} w_a d(\mu_a, \lambda_a) \right)$$

A vector of optimal proportions

$$w^*(\mu) := \operatorname*{argmax}_{w \in \Sigma_K} \inf_{\lambda \in \operatorname{Alt}(\mu)} \left(\sum_{a=1}^K w_a d(\mu_a, \lambda_a) \right)$$

is unique and represents the optimal proportions of draws: a strategy matching the lower bound should satisfy

$$\forall a \in \{1, \dots, K\}, \ rac{\mathbb{E}_{\mu}[N_{a}(\tau)]}{\mathbb{E}_{\mu}[\tau]} = w_{a}^{*}(\mu).$$

 $N_a(t)$: number of draws of arm a up to time t

→ we propose an efficient algorithm to compute $w^*(\mu)$

Optimal algorithms for best-arm identification Lower bounds

• The Track-and-Stop strategy

2 A/B Testing

- Bernoulli distribution
- Gaussian distribution
- 3 Practical performance

Sampling rule: Tracking the optimal proportions

$$U_t = \{a : N_a(t) < \sqrt{t}\},\$$

the arm sampled at round t + 1 is

$$A_{t+1} \in \begin{cases} \underset{a \in U_t}{\operatorname{argmax}} \left[t \ w_a^*(\hat{\mu}(t)) - N_a(t) \right] & (tracking) \\ \underset{1 \leq a \leq K}{\operatorname{argmax}} \left[t \ w_a^*(\hat{\mu}(t)) - N_a(t) \right] & (tracking) \end{cases}$$

Lemma

Under the Tracking sampling rule,

$$\mathbb{P}_{\mu}\left(\lim_{t\to\infty}rac{N_{a}(t)}{t}=w_{a}^{*}(\mu)
ight)=1.$$

Stopping rule: performing statistical tests

High values of the Generalized Likelihood Ratio

$$Z_{a,b}(t) := \log \frac{\max_{\{\boldsymbol{\lambda}: \lambda_a \geq \lambda_b\}} \ell(X_1, \dots, X_t; \boldsymbol{\lambda})}{\max_{\{\boldsymbol{\lambda}: \lambda_a \leq \lambda_b\}} \ell(X_1, \dots, X_t; \boldsymbol{\lambda})},$$

reject the hypothesis that ($\mu_a < \mu_b$).

We stop when one arm is accessed to be significantly larger than all other arms, according to a GLR Test:

$$\tau_{\delta} = \inf \left\{ t \in \mathbb{N} : \exists a \in \{1, \dots, K\}, \forall b \neq a, Z_{a,b}(t) > \beta(t, \delta) \right\}$$
$$= \inf \left\{ t \in \mathbb{N} : \max_{a \in \{1, \dots, K\}} \min_{b \neq a} Z_{a,b}(t) > \beta(t, \delta) \right\}$$

Chernoff stopping rule [Chernoff 59]

Stopping rule: an alternative interpretation

One has
$$Z_{a,b}(t) = -Z_{b,a}(t)$$
 and, if $\hat{\mu}_a(t) \ge \hat{\mu}_b(t)$,

 $Z_{a,b}(t) = N_{a}(t) d(\hat{\mu}_{a}(t), \hat{\mu}_{a,b}(t)) + N_{b}(t) d(\hat{\mu}_{b}(t), \hat{\mu}_{a,b}(t)),$

where
$$\hat{\mu}_{a,b}(t) := \frac{N_a(t)}{N_a(t)+N_b(t)}\hat{\mu}_a(t) + \frac{N_b(t)}{N_a(t)+N_b(t)}\hat{\mu}_b(t).$$

A link with the lower bound

$$\begin{array}{ll} \max_{a} \min_{b \neq a} Z_{a,b}(t) &= t \times \inf_{\lambda \in \operatorname{Alt}(\hat{\mu}(t))} \sum_{a=1}^{K} \frac{N_{a}(t)}{t} d(\hat{\mu}_{a}(t), \lambda_{a}) \\ &\simeq \frac{t}{T^{*}(\mu)} \end{array}$$

under a "good" sampling strategy (for t large)

Theorem

The Track-and-Stop strategy, that uses

- the Tracking sampling rule
- the Chernoff stopping rule with $\beta(t, \delta) = \log\left(\frac{2(K-1)t}{\delta}\right)$
- and recommends $\hat{a}_{\tau} = \operatorname*{argmax}_{a=1...K} \hat{\mu}_{a}(\tau)$

is $\delta\text{-PAC}$ for every $\delta\in]0,1[$ and satisfies

$$\limsup_{\delta o 0} rac{\mathbb{E}_{oldsymbol{\mu}}[au_{\delta}]}{\log(1/\delta)} = \mathcal{T}^{*}(oldsymbol{\mu}).$$

Optimal algorithms for best-arm identification

- Lower bounds
- The Track-and-Stop strategy

2 A/B Testing

- Bernoulli distribution
- Gaussian distribution
- Operation Practical performance

Optimal sample complexity

Two arms,
$$\mathcal{B}(\mu_1)$$
 and $\mathcal{B}(\mu_2)$
$$\mathbb{E}_{\mu}[\tau] \geq T^*(\mu) \log\left(\frac{1}{2.4\delta}\right),$$

with

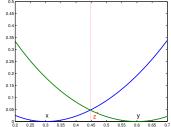
$$T^{*}(\mu)^{-1} = \sup_{\alpha \in [0,1]} [\alpha d(\mu_{1}, \alpha \mu_{1} + (1 - \alpha) \mu_{2}) + (1 - \alpha) d(\mu_{2}, \alpha \mu_{1} + (1 - \alpha) \mu_{2})]$$

= $d_{*}(\mu_{1}, \mu_{2}),$

$$d_*(\mu_1,\mu_2) = d(\mu_1,z^*)$$

with z^* defined by

$$d(\mu_1,z^*)=d(\mu_2,z^*)$$



Track-and-Stop

• Sampling rule:

$$A_{t+1} = \underset{a=1,2}{\operatorname{argmax}} d\left(\hat{\mu}_{a}(t), \frac{N_{1}(t)\hat{\mu}_{1}(t) + N_{2}(t)\hat{\mu}_{2}(t)}{N_{1}(t) + N_{2}(t)}\right)$$

• Stopping rule: stop after t samples if

$$\sum_{a=1,2} N_a(t) d\left(\hat{\mu}_a(t), \frac{N_1(t)\hat{\mu}_1(t) + N_2(t)\hat{\mu}_2(t)}{N_1(t) + N_2(t)}\right) > \beta(t, \delta)$$

$$\mathbb{E}_{oldsymbol{\mu}}[au] \simeq rac{1}{d_*(\mu_1,\mu_2)}\log\left(rac{1}{\delta}
ight)$$

Algorithms

Uniform sampling (and optimal stopping)

• Sampling rule:

$$A_{t+1} = t \ [2]$$

• Stopping rule: stop after t samples if

$$\sum_{a=1,2} N_a(t) d\left(\hat{\mu}_a(t), \frac{N_1(t)\hat{\mu}_1(t) + N_2(t)\hat{\mu}_2(t)}{N_1(t) + N_2(t)}\right) > \beta(t, \delta)$$

$$\mathbb{E}_{oldsymbol{\mu}}[au] \simeq rac{1}{l_*(\mu_1,\mu_2)}\log\left(rac{1}{\delta}
ight)$$

with

$$I_*(\mu_1,\mu_2) = \frac{d(\mu_1,\frac{\mu_1+\mu_2}{2}) + d(\mu_1,\frac{\mu_1+\mu_2}{2})}{2}.$$

Remark: $I_*(\mu_1, \mu_2)$ very close to $d_*(\mu_1, \mu_2)$ \rightarrow uniform sampling is close to optimal

Optimal algorithms for best-arm identification

- Lower bounds
- The Track-and-Stop strategy

A/B Testing Bernoulli distribution

- Gaussian distribution
- 8 Practical performance

An optimal algorithm

Two arms, $\mathcal{N}(\mu_1, \sigma_1^2)$ and $\mathcal{N}(\mu_2, \sigma_2^2)$ σ_1, σ_2 known

$$\mathbb{E}_{\mu}[\tau] \geq \frac{2(\sigma_1^2 + \sigma_2^2)}{(\mu_1 - \mu_2)^2} \log\left(\frac{1}{2.4\delta}\right)$$

and

$$w_*(\boldsymbol{\mu}) = \left[rac{\sigma_1}{\sigma_1 + \sigma_2}; rac{\sigma_2}{\sigma_1 + \sigma_2}
ight]$$

 → allocate the arms proportionaly to the standard deviations (no uniform sampling if σ₁ ≠ σ₂)

Optimal algorithm:

• Sampling rule:

$$A_{t+1} = 1 \hspace{0.1in} \Leftrightarrow \hspace{0.1in} rac{N_1(t)}{t} < rac{\sigma_1}{\sigma_1 + \sigma_2}$$

• Stopping rule: stop after t samples if

$$|\hat{\mu}_1(t)-\hat{\mu}_2(t)|>\sqrt{2\left(rac{\sigma_1^2}{ extsf{N}_1(t)}+rac{\sigma_2^2}{ extsf{N}_2(t)}
ight)eta(t,\delta)}$$

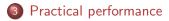
Emilie Kaufmann

Optimal algorithms for best-arm identification

- Lower bounds
- The Track-and-Stop strategy

2 A/B Testing

- Bernoulli distribution
- Gaussian distribution

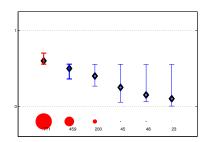


State-of-the-art algorithms

An algorithm based on confidence intervals : **KL-LUCB** [K., Kalyanakrishnan 13]

$$u_{a}(t) = \max \{q : N_{a}(t)d(\hat{\mu}_{a}(t),q) \le \beta(t,\delta)\}$$

$$l_{a}(t) = \min \{q : N_{a}(t)d(\hat{\mu}_{a}(t),q) \le \beta(t,\delta)\}$$



• sampling rule: $A_{t+1} = \underset{a}{\operatorname{argmax}} \hat{\mu}_a(t), B_{t+1} = \underset{b \neq A_{t+1}}{\operatorname{argmax}} u_b(t)$ • stopping rule: $\tau = \inf\{t \in \mathbb{N} : I_{A_t}(t) > u_{B_t}(t)\}$

State-of-the-art algorithms

A Racing-type algorithm: KL-Racing [K., Kalyanakrishnan 13]

 $\mathcal{R} = \{1, \dots, K\}$ set of remaining arms. r = 0 current round

while $|\mathcal{R}| > 1$

- r=r+1
- draw each a ∈ R, compute µ̂_{a,r}, the empirical mean of the r samples observed sofar
- compute the empirical best and empirical worst arms:

$$b_r = \operatorname*{argmax}_{a \in \mathcal{R}} \hat{\mu}_{a,r}$$
 $w_r = \operatorname*{argmin}_{a \in \mathcal{R}} \hat{\mu}_{a,r}$

Elimination step: if

 $I_{b_r}(r) > u_{w_r}(r),$

eliminate w_r : $\mathcal{R} = \mathcal{R} \setminus \{w_r\}$

end

Outpout: \hat{a} the single element in \mathcal{R} .

The Chernoff-Racing algorithm

$$\mathcal{R} = \{1, \dots, K\}$$
 set of remaining arms.
 $r = 0$ current round
while $|\mathcal{R}| > 1$

- r=r+1
- draw each a ∈ R, compute µ̂_{a,r}, the empirical mean of the r samples observed sofar
- compute the empirical best and empirical worst arms:

$$b_r = \operatorname*{argmax}_{a \in \mathcal{R}} \hat{\mu}_{a,r}$$
 $w_r = \operatorname*{argmin}_{a \in \mathcal{R}} \hat{\mu}_{a,r}$

• Elimination step: if $(Z_{b_r,w_r}(r) > \beta(r,\delta))$, or

$$rd\left(\hat{\mu}_{a,r},\frac{\hat{\mu}_{a,r}+\hat{\mu}_{b,r}}{2}\right)+rd\left(\hat{\mu}_{b,r},\frac{\hat{\mu}_{a,r}+\hat{\mu}_{b,r}}{2}\right)>\beta(r,\delta),$$

eliminate w_r : $\mathcal{R} = \mathcal{R} \setminus \{w_r\}$ end

Outpout: \hat{a} the single element in \mathcal{R} .

Numerical experiments

Experiments on two Bernoulli bandit models:

•
$$\mu_1 = [0.5 \ 0.45 \ 0.43 \ 0.4]$$
, such that
 $w^*(\mu_1) = [0.417 \ 0.390 \ 0.136 \ 0.057]$
• $\mu_2 = [0.3 \ 0.21 \ 0.2 \ 0.19 \ 0.18]$, such that
 $w^*(\mu_2) = [0.336 \ 0.251 \ 0.177 \ 0.132 \ 0.104]$

In practice, set the threshold to $\beta(t, \delta) = \log\left(\frac{\log(t)+1}{\delta}\right)$.

	Track-and-Stop	Chernoff-Racing	KL-LUCB	KL-Racing
μ_1	4052	4516	8437	9590
μ_2	1406	3078	2716	3334

Table : Expected number of draws $\mathbb{E}_{\mu}[\tau_{\delta}]$ for $\delta = 0.1$, averaged over N = 3000 experiments.

Useful tools for sequential A/B Testing:

- stop using Sequential Generalized Likelihood Ratio tests
- sample the arms to match the optimal proportions $w^*(\mu)$
- ... which can be approximated by uniform sampling for Bernoulli distribution

Final remark:

Good algorithms for best arm identification are very different for bandit algorithms designed for regret minimization (UCB, Thompson Sampling) This talk is based on

- A. Garivier, E. Kaufmann. *Optimal Best Arm Identification with Fixed Confidence*, arXiv:1602.04589, 2016
- E. Kaufmann, O. Cappé, A. Garivier. On the Complexity of A/B Testing. COLT, 2014
- E. Kaufmann, O. Cappé, A. Garivier. On the Complexity of Best Arm Identification in Multi-Armed Bandit Models. JMLR, 2015