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A/B Testing

A way to do A/B Testing:

allocate nA users to page A and nB users to page B

perform a statistical test of “A better than B”

A variant: fully adaptive A/B Testing

sequentially choose which version to allocate to each visitor

adaptively choose when to stop the experiment

Ü multi-armed bandit model
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A/B/C... testing as a Best Arm Identification problem

K arms = K probability distributions (νa has mean µa)

ν1 ν2 ν3 ν4 ν5

a∗ = argmax
a=1,...,K

µa

For the t-th user,

allocate a version (arm) At ∈ {1, . . . ,K}
observe a feedback Xt ∼ νAt

Goal: design

a sequential sampling rule: At+1 = Ft(A1,X1, . . . ,At ,Xt),
a stopping rule τ
a recommendation rule âτ

such that P(âτ = a∗) ≥ 1− δ and τ is as small as possible.
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1 Optimal algorithms for best-arm identification
Lower bounds
The Track-and-Stop strategy

2 A/B Testing
Bernoulli distribution
Gaussian distribution

3 Practical performance
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PAC algorithms in one-parameter bandit models

P = {νµ, µ ∈ I} set of distributions parametrized by their mean

Example: Bernoulli, Poisson, Gaussian (known variance)

νµ1 , . . . , νµK ∈ P
K ⇔ µ = (µ1, . . . , µK ) ∈ IK

S =

{
µ ∈ IK : ∃a ∈ {1, . . . ,K} : µa > max

i 6=a
µi

}

A strategy is δ-PAC (on S) if

∀ν ∈ S, Pν(âτ = a∗) ≥ 1− δ.

Ü What is the optimal sample complexity of a δ-PAC strategy?

inf
δ-PAC

Eµ[τ ]?
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The optimal sample complexity

To answer this question, we need

Ü a lower bound on Eν [τ ] for any δ-PAC strategy

Ü a δ-PAC strategy such that Eν [τ ] matches this bound

State-of-the-art: δ-PAC algorithms for which

Eµ[τ ] = O

(
H(µ) log

1

δ

)
, H(µ) =

1

(µ2 − µ1)2
+

K∑
a=2

1

(µa − µ1)2

[Even Dar et al. 2006, Kalyanakrishnan et al. 2012]

Ü the optimal sample complexity is not identified...

Notation: Kullback-Leibler divergence

d(µ, µ′) := KL(νµ, νµ
′
) = EX∼νµ

[
log

dνµ

dνµ′
(X )

]
is the KL-divergence between the distributions of mean µ and µ′.
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Lower bound

A first (easy to interpret) result

Theorem [Kaufmann, Cappé, Garivier 2015]

For any δ-PAC algorithm,

Eµ[τ ] ≥

(
1

d(µ1, µ2)
+

K∑
a=2

1

d(µa, µ1)

)
log

(
1

2.4δ

)

A tighter (non explicit) lower bound

Theorem [Kaufmann and Garivier, 2016]

Alt(µ) := {λ : a∗(λ) 6= a∗(µ)}. For any δ-PAC algorithm,

Eµ[τ ] ≥ T ∗(µ) log

(
1

2.4δ

)
,

where

T ∗(µ)−1 = sup
w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)
.
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A vector of optimal proportions

w∗(µ) := argmax
w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)
is unique and represents the optimal proportions of draws: a
strategy matching the lower bound should satisfy

∀a ∈ {1, . . . ,K}, Eµ[Na(τ)]

Eµ[τ ]
= w∗a (µ).

Na(t) : number of draws of arm a up to time t

Ü we propose an efficient algorithm to compute w∗(µ)
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Sampling rule: Tracking the optimal proportions

µ̂(t) = (µ̂1(t), . . . , µ̂K (t)): vector of empirical means

Introducing

Ut = {a : Na(t) <
√

t},

the arm sampled at round t + 1 is

At+1 ∈


argmin
a∈Ut

Na(t) if Ut 6= ∅ (forced exploration)

argmax
1≤a≤K

[t w∗a (µ̂(t))− Na(t)] (tracking)

Lemma

Under the Tracking sampling rule,

Pµ

(
lim
t→∞

Na(t)

t
= w∗a (µ)

)
= 1.
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Stopping rule: performing statistical tests

High values of the Generalized Likelihood Ratio

Za,b(t) := log
max{λ:λa≥λb} `(X1, . . . ,Xt ;λ)

max{λ:λa≤λb} `(X1, . . . ,Xt ;λ)
,

reject the hypothesis that (µa < µb).

We stop when one arm is accessed to be significantly larger than
all other arms, according to a GLR Test:

τδ = inf {t ∈ N : ∃a ∈ {1, . . . ,K}, ∀b 6= a,Za,b(t) > β(t, δ)}

= inf

{
t ∈ N : max

a∈{1,...,K}
min
b 6=a

Za,b(t) > β(t, δ)

}
Chernoff stopping rule [Chernoff 59]
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Stopping rule: an alternative interpretation

One has Za,b(t) = −Zb,a(t) and, if µ̂a(t) ≥ µ̂b(t),

Za,b(t) = Na(t) d
(
µ̂a(t), µ̂a,b(t)

)
+ Nb(t) d

(
µ̂b(t), µ̂a,b(t)

)
,

where µ̂a,b(t) := Na(t)
Na(t)+Nb(t) µ̂a(t) + Nb(t)

Na(t)+Nb(t) µ̂b(t).

A link with the lower bound

max
a

min
b 6=a

Za,b(t) = t × inf
λ∈Alt(µ̂(t))

K∑
a=1

Na(t)

t
d(µ̂a(t), λa)

' t

T ∗(µ)

under a “good” sampling strategy (for t large)
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An asymptotically optimal algorithm

Theorem

The Track-and-Stop strategy, that uses

the Tracking sampling rule

the Chernoff stopping rule with β(t, δ) = log
(

2(K−1)t
δ

)
and recommends âτ = argmax

a=1...K
µ̂a(τ)

is δ-PAC for every δ ∈]0, 1[ and satisfies

lim sup
δ→0

Eµ[τδ]

log(1/δ)
= T ∗(µ).
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Optimal sample complexity

Two arms, B(µ1) and B(µ2)

Eµ[τ ] ≥ T ∗(µ) log

(
1

2.4δ

)
,

with

T ∗(µ)−1 = sup
α∈[0,1]

[αd(µ1, αµ1 + (1− α)µ2)+

(1− α)d(µ2, αµ1 + (1− α)µ2)]

= d∗(µ1, µ2),

d∗(µ1, µ2) = d(µ1, z
∗)

with z∗ defined by

d(µ1, z
∗) = d(µ2, z

∗)
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Algorithms

Track-and-Stop

Sampling rule:

At+1 = argmax
a=1,2

d

(
µ̂a(t),

N1(t)µ̂1(t) + N2(t)µ̂2(t)

N1(t) + N2(t)

)
Stopping rule: stop after t samples if∑

a=1,2

Na(t)d

(
µ̂a(t),

N1(t)µ̂1(t) + N2(t)µ̂2(t)

N1(t) + N2(t)

)
> β(t, δ)

Eµ[τ ] ' 1

d∗(µ1, µ2)
log

(
1

δ

)
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Algorithms

Uniform sampling (and optimal stopping)

Sampling rule:
At+1 = t [2]

Stopping rule: stop after t samples if∑
a=1,2

Na(t)d

(
µ̂a(t),

N1(t)µ̂1(t) + N2(t)µ̂2(t)

N1(t) + N2(t)

)
> β(t, δ)

Eµ[τ ] ' 1

I∗(µ1, µ2)
log

(
1

δ

)
with

I∗(µ1, µ2) =
d
(
µ1,

µ1+µ2
2

)
+ d

(
µ1,

µ1+µ2
2

)
2

.

Remark: I∗(µ1, µ2) very close to d∗(µ1, µ2)

Ü uniform sampling is close to optimal
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An optimal algorithm

Two arms, N (µ1, σ
2
1) and N (µ2, σ

2
2) σ1, σ2 known

Eµ[τ ] ≥ 2(σ2
1 + σ2

2)

(µ1 − µ2)2
log

(
1

2.4δ

)
and

w∗(µ) =

[
σ1

σ1 + σ2
;

σ2

σ1 + σ2

]
Ü allocate the arms proportionaly to the standard deviations

(no uniform sampling if σ1 6= σ2)

Optimal algorithm:

Sampling rule:

At+1 = 1 ⇔ N1(t)

t
<

σ1

σ1 + σ2

Stopping rule: stop after t samples if

|µ̂1(t)− µ̂2(t)| >

√
2

(
σ2

1

N1(t)
+

σ2
2

N2(t)

)
β(t, δ)
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State-of-the-art algorithms

An algorithm based on confidence intervals : KL-LUCB
[K., Kalyanakrishnan 13]

ua(t) = max {q : Na(t)d(µ̂a(t), q) ≤ β(t, δ)}
la(t) = min {q : Na(t)d(µ̂a(t), q) ≤ β(t, δ)}

0

1

771 459 200 45 48 23

sampling rule: At+1 = argmax
a

µ̂a(t), Bt+1 = argmax
b 6=At+1

ub(t)

stopping rule: τ = inf{t ∈ N : lAt (t) > uBt (t)}
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State-of-the-art algorithms

A Racing-type algorithm: KL-Racing [K., Kalyanakrishnan 13]

R = {1, . . . ,K} set of remaining arms.
r = 0 current round

while |R| > 1

r=r+1
draw each a ∈ R, compute µ̂a,r , the empirical mean of the r
samples observed sofar
compute the empirical best and empirical worst arms:

br = argmax
a∈R

µ̂a,r wr = argmin
a∈R

µ̂a,r

Elimination step: if

lbr (r) > uwr (r),

eliminate wr : R = R\{wr}
end

Outpout: â the single element in R.
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The Chernoff-Racing algorithm

R = {1, . . . ,K} set of remaining arms.
r = 0 current round
while |R| > 1

r=r+1

draw each a ∈ R, compute µ̂a,r , the empirical mean of the r
samples observed sofar

compute the empirical best and empirical worst arms:

br = argmax
a∈R

µ̂a,r wr = argmin
a∈R

µ̂a,r

Elimination step: if (Zbr ,wr (r) > β(r , δ)), or

rd

(
µ̂a,r ,

µ̂a,r + µ̂b,r
2

)
+ rd

(
µ̂b,r ,

µ̂a,r + µ̂b,r
2

)
> β(r , δ),

eliminate wr : R = R\{wr}
end

Outpout: â the single element in R.
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Numerical experiments

Experiments on two Bernoulli bandit models:

µ1 = [0.5 0.45 0.43 0.4], such that

w∗(µ1) = [0.417 0.390 0.136 0.057]

µ2 = [0.3 0.21 0.2 0.19 0.18], such that

w∗(µ2) = [0.336 0.251 0.177 0.132 0.104]

In practice, set the threshold to β(t, δ) = log
(

log(t)+1
δ

)
.

Track-and-Stop Chernoff-Racing KL-LUCB KL-Racing

µ1 4052 4516 8437 9590

µ2 1406 3078 2716 3334

Table : Expected number of draws Eµ[τδ] for δ = 0.1, averaged over
N = 3000 experiments.
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Take-home message

Useful tools for sequential A/B Testing:

stop using Sequential Generalized Likelihood Ratio tests

sample the arms to match the optimal proportions w∗(µ)

... which can be approximated by uniform sampling for
Bernoulli distribution

Final remark:

Good algorithms for best arm identification are very different for
bandit algorithms designed for regret minimization

(UCB, Thompson Sampling)
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