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Motivation

Visitor for testing 8

Website version A Website version B

}

10 Conversions 5 Conversions
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A/B Testing

A way to do A/B Testing:
@ allocate np users to page A and ng users to page B

e perform a statistical test of “A better than B”
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A/B Testing

A way to do A/B Testing:
@ allocate np users to page A and ng users to page B

e perform a statistical test of “A better than B”

A variant: fully adaptive A/B Testing
@ sequentially choose which version to allocate to each visitor

@ adaptively choose when to stop the experiment

=» multi-armed bandit model
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A/B/C... testing as a Best Arm ldentification problem

K arms = K probability distributions (v, has mean pu,)

a* = argmax i,
a=1,...,.K

For the t-th user,
o allocate a version (arm) A, < {1..... K}
@ observe a feedback X; ~ v,

Goal: design
@ a sequential sampling rule: A, = F.(AL X, .. Ae, Xt),
@ a stopping rule 7
@ a recommendation rule 3,

such that (3, = 2") > 1 —0 and 7 is as small as possible.
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@ Optimal algorithms for best-arm identification
@ Lower bounds
@ The Track-and-Stop strategy

© A/B Testing
@ Bernoulli distribution
@ Gaussian distribution

© Practical performance
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@ Optimal algorithms for best-arm identification
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PAC algorithms in one-parameter bandit models

P = {v,, pu € I} set of distributions parametrized by their mean

Example: Bernoulli, Poisson, Gaussian (known variance)
K K
Vigs - Ve €EPY & p=(pm1,...,uk) €L

S{HEIK:]aE{l ..... K}:/13>ma><//,}

e A strategy is 6-PAC (on S) if

VvveS, Py(a;r=a")>1-0.
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PAC algorithms in one-parameter bandit models

P = {v,, pu € I} set of distributions parametrized by their mean

Example: Bernoulli, Poisson, Gaussian (known variance)
Vis - > Vg ePK o pw=(u,...,pux) eIl
S{HEIK:]aE{l ..... K}:/13>ma><//,}
o A strategy is 0-PAC (on S) if
VvveS, Py(a;r=a")>1-0.
=» What is the optimal sample complexity of a -PAC strategy?
inf E,[7]?
5PAC ul7]
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The optimal sample complexity

To answer this question, we need

=» a lower bound on E,[7] for any §-PAC strategy
=» a §-PAC strategy such that E,[7] matches this bound

State-of-the-art: 5-PAC algorithms for which

1 L L
Eu[r] =0 (H(#) log 5) » Hw) = (o — ) ; (1ta — p1)?

[Even Dar et al. 2006, Kalyanakrishnan et al. 2012]

=¥ the optimal sample complexity is not identified...

Notation: Kullback-Leibler divergence

N . W dv#
d(p, i) = KL, ") = Expn (log -5 (X)

is the KL-divergence between the distributions of mean p and p/.
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@ Optimal algorithms for best-arm identification
@ Lower bounds
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@ A first (easy to interpret) result

For any 9-PAC algorithm,

1 AN 1
el (d(ul,m) t2 d(#a,u1)> s (525

Emilie Kaufmann Improved A/B Testing



@ A first (easy to interpret) result

For any §-PAC algorithm,

1 AN 1
el (d(ul,m) t2 d(#a,u1)> s (525

@ A tighter (non explicit) lower bound

Theorem
Alt(p) :=={A: a*(A) # a*(p)}. For any 0-PAC algorithm,

Eulr] = 77 (1) log (225)

T*(p)~" = sup _ inf <Z wad (fa, Aa ))

WEY K A€Alt(p)
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A vector of optimal proportions

K
w*(p) := argmax  inf <Z wad(fa, )\a)>
a=1

wer,  AEAlt(p)

is unique and represents the optimal proportions of draws: a
strategy matching the lower bound should satisfy

Ep[Na(7)]

Vae{l,...,K}, B[]

= Wi ().

N,(t) : number of draws of arm a up to time t

=» we propose an efficient algorithm to compute w*(u)
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@ Optimal algorithms for best-arm identification

@ The Track-and-Stop strategy
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Sampling rule: Tracking the optimal proportions

o(t) = (fua(t), ..., fik(t)): vector of empirical means
@ Introducing

Ur = {a: Ny(t) < Vt},

the arm sampled at round t + 1 is

argmin N,(t) if Ur #0 (forced exploration)
At+1 c ae U .l .

argmax [t wX(fu(t)) — Na(t)] (tracking)

1<a<K

Under the Tracking sampling rule,
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Stopping rule: performing statistical tests

High values of the Generalized Likelihood Ratio

Max{x:a,>xp} 0 X1, oy Xes )
max{A;)\agAb} K(Xl, e ,Xt; )\)’

Z, b(t) := log

reject the hypothesis that (s < pp).

We stop when one arm is accessed to be significantly larger than
all other arms, according to a GLR Test:

75 = inf{teN:Jae{l,... K},Vb# a,Z,,(t) > B(t,0)}

= | f t e N: i Za t) > t75
n { ae{r?’?.?fK} rg;lég ,b( ) 5( )}

Chernoff stopping rule [Chernoff 59]
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Stopping rule: an alternative interpretation

One has Z, p(t) = —Zp 4(t) and, if fi,(t) > fip(t),

Zop(t) = Na(t) d(f1a(t), flap(t)) + Nu(t) d(fin(t), flap(t)),

where fi, p(t) := W(t,\zb(t)ﬂa( ) + #(t/\zb(t)ﬁb(t)-

A link with the lower bound

. _ . N (t)
maxrlgiQZa’b(t) = terAll?{ﬂ(t))Z " d(fa(t), Aa)

a
a=1

t
()

under a “good” sampling strategy (for t large)
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An asymptotically optimal algorithm

The Track-and-Stop strategy, that uses

@ the Tracking sampling rule
@ the Chernoff stopping rule with 5(t,4) = log (M)

@ and recommends &, = argmax [i,(7)
a=1..K

is 0-PAC for every ¢ €]0, 1] and satisfies

: Eulrs] .
i sUp fog(1/a) — | (M)
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© A/B Testing
@ Bernoulli distribution
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Optimal sample complexity

Two arms, (1) and B(s)
N 1
Bylr] > T () 1o 5755 ).

with

T*(N)_l = sup [O‘d(:ula o1 + (]- — oz),u2)—|—

a€l0,1]
(1 — a)d(p2, opir + (1 — a)p2)]
= du(p1, p2),

di(pa, p2) = d(p1, z%)
with z* defined by

d(pr,2") = d(jiz. 2°) :
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Algorithms

Track-and-Stop

@ Sampling rule:

A¢y1 = argmax d
a=1,2

. Ni(t)fa(t) + No(t)fo(t)
<“a(t” Ma(2) + Na(2) )

@ Stopping rule: stop after t samples if

()1 (t) + Na(t)f2(t)
azlzN ( () = Ni(t)+Nz(t) 2 >>/3(t,5)

E,[r] ~ M log <(15>
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Algorithms

Uniform sampling (and optimal stopping)

@ Sampling rule:
Atfl =t [2]

@ Stopping rule: stop after t samples if

3 o (o MR e

E,[r] ~ I(mlm) log (;)

d</[1 patp2 // )+d( /!13/!2)
5 .

with

L(pa, o) =

Remark: /.(u1,12) very close to dy(p1, p2)
=?» uniform sampling is close to optimal
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© A/B Testing

@ Gaussian distribution
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An optimal algorithm

Two arms, N (111, 07) and N(p2.03) 01,02 known

2(02 + 03) 1
Eulrl = (11 — p2)? log (2.45)

W*(H):[ 2L & ]

and

o1+ 02 01+ 02

=¥ allocate the arms proportionaly to the standard deviations
(no uniform sampling if o1 # 037)

Optimal algorithm:
@ Sampling rule:

Nq(t
Arp1 =1 1()< 2

t 01+ 02
@ Stopping rule: stop after t samples if

n(e) — fn(®)] > 1/2 (< + 22 a(e.0)




© Practical performance
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State-of-the-art algorithms

An algorithm based on confidence intervals : KL-LUCB
[K., Kalyanakrishnan 13]

us(t) = max{q: Na(t)d(fa(t), q) < 5(¢,0)}
la(t) = min{q: Na(t)d(fia(t), q) < B(t,6)}

¢

RN

. . S . )
459 200 45 48 23

e sampling rule: Ai1 = argmax fis(t), Bey1 = argmax up(t)
a b#A¢ 1
o stopping rule: 7 = inf{t € N : I5(t) > upg,(t)}
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State-of-the-art algorithms

A Racing-type algorithm: KL-Racing [K., Kalyanakrishnan 13]

R ={1,...,K} set of remaining arms.
r = 0 current round
while |R| > 1
@ r=r+1
e draw each a € R, compute [i, ,, the empirical mean of the r

samples observed sofar
@ compute the empirical best and empirical worst arms:

b, = argmax fi, , w, = argmin [l ,
acR aER

o Elimination step: if

lbr(r) > uWr(r)?
eliminate w, : R = R\{w, }
end

Outpout: 3 the single element in R.
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The Chernoff-Racing algorithm

R ={1,...,K} set of remaining arms.
r = 0 current round
while |R| > 1
o r=r+1
e draw each a € R, compute [i,,, the empirical mean of the r
samples observed sofar
@ compute the empirical best and empirical worst arms:

b, = argmax fi, , w, = argmin fi,
aER acR

o Elimination step: if (Zp w,(r) > 5(r,9)), or
rd <M “;“) +rd <m,,,, ’“‘2“") > (1),

eliminate w, : R = R\{w,}
end

Outpout: 3 the single element in R.
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Numerical experiments

Experiments on two Bernoulli bandit models:
@ p1 =[0.50.45 0.43 0.4], such that

w*(p1) = [0.417 0.390 0.136 0.057]
o po =1[0.30.21 0.2 0.19 0.18], such that
w*(p2) = [0.336 0.251 0.177 0.132 0.104]

In practice, set the threshold to 7(t.0) = log (%) .

Track-and-Stop | Chernoff-Racing | KL-LUCB | KL-Racing
u1 4052 4516 8437 9590
7 1406 3078 2716 3334

Table : Expected number of draws E,,[r5] for 6 = 0.1, averaged over
N = 3000 experiments.
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Take-home message

Useful tools for sequential A/B Testing:
@ stop using Sequential Generalized Likelihood Ratio tests
@ sample the arms to match the optimal proportions w* ()

@ ... which can be approximated by uniform sampling for
Bernoulli distribution

Final remark:

Good algorithms for best arm identification are very different for
bandit algorithms designed for regret minimization
(UCB, Thompson Sampling)
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