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From bandits to RL

Solve a multi-armed bandit problem
' maximize rewards in a MDP with one state

The bandit world
I several principles for

exploration/exploitation

I efficient algorithms
(UCB, Thompson Sampling)

I with regret guarantees

I specific algorithms for best arm
identification

RL algorithms so far

I ε-greedy exploration

I algorithms with (at most)
convergence guarantees, not
very sample efficient

vs. (more) efficient algorithms
(DeepRL) with no theoretical
guarantees

Question : can we be inspired by bandit algorithms to

I propose new RL algorithms

I ... with theoretical guarantees ?
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Four RL frameworks

Discounted MDP

V π(s) = Eπ
[ ∞∑

t=1

γt−1rt

∣∣∣s1 =s

]

Average reward MDP

V π(s) = lim
T→∞

1

T
Eπ
[

T∑
t=1

rt

∣∣∣s1 =s

]

Episodic MDP

V π(s) = Eπ
[

H∑
t=1

rt

∣∣∣s1 =s

]

Goal-oriented MDP

V π(s) = Eπ
 τ∗g∑

t=1

rt

∣∣∣s1 =s


∗ g is an absorbing goal state, and τg is the time to reach the goal
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Eπ
[
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∣∣∣s1 =s

]
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V π(s) = Eπ
[

H∑
t=1

rt

∣∣∣s1 =s

]

Goal-oriented MDP

V π(s) = Eπ
 τ∗g∑

t=1

rt

∣∣∣s1 =s


∗ g is an absorbing goal state, and τg is the time to reach the goal

Question 1 : How many interactions with the MDPs (or episodes) are
needed to find a good policy ?

P
(
V ? − V π̂ ≤ ε

)
≥ 1− δ

while minimizing the sample complexity
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Four RL frameworks

Discounted MDP

V π(s) = Eπ
[ ∞∑

t=1

γt−1rt

∣∣∣s1 =s

]

Average reward MDP

V π(s) = lim
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1
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Eπ
[
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∣∣∣s1 =s

]
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V π(s) = Eπ
[
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rt
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]

Goal-oriented MDP

V π(s) = Eπ
 τ∗g∑

t=1

rt

∣∣∣s1 =s


∗ g is an absorbing goal state, and τg is the time to reach the goal

Question 2 : Can the algorithm learn to behave optimally ?
Can be measured by the number of sub-optimal plays or the regret

N =
∞∑
t=1

1 (V ?(st)− V πt (st) > ε)

(PAC-MDP framework, discounted MDP, see [Kakade, 2003])
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rt
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Question 2 : Can the algorithm learn to behave optimally ?
Can be measured by the number of sub-optimal plays or the regret

RT = TV ? −
T∑
t=1

rt in average-reward MDPs

[Jaksch et al., 2010]
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in episodic MDPs

regret after K episodes, sk1 : first state of episode K [Azar et al., 2017]
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(Reminder :) How to solve an episodic MDP ?

V π(s) = V π
1 (s), introducing the value function from step h :

V π
h (s) = Eπ

[
H∑

t=h

rt

∣∣∣∣∣ sh = s

]

Non-stationary policies π = (π1, . . . , πH) can be of interest

πh(s) : action chosen if we are in state s at step h of the episode

Bellman equations for a (deterministic) policy π

For all h ∈ {1, . . . ,H}, for all s ∈ S,

V π
h (s) = r(s, πh(s)) +

∑
s′∈S

p(s ′|s, πh(s))V π
h+1(s ′),

with V π
H+1(s) = 0 for all s ∈ S.

Ü policy evaluation using backwards induction
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(Reminder :) How to solve an episodic MDP ?

V ?(s) = V ?
1 (s), introducing the optimal value function from step h :

V ?
h (s) = max

π
Eπ
[

H∑
t=h

rt

∣∣∣∣∣ sh = s

]

Bellman equations for the optimal policy

For all h ∈ {1, . . . ,H}, for all s ∈ S, letting V ?
H+1 = 0

V ?
h (s) = max

a∈A

[
r(s, a) +

∑
s′∈S

p(s ′|s, a)V ?
h+1(s ′)

]

π?h (s) = argmax
a∈A

[
r(s, a) +

∑
s′∈S

p(s ′|s, a)V ?
h+1(s ′)

]

Ü The optimal policy π? is non-stationnary and can be computed using
backwards induction (dynamic programming)
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∑
s′∈S
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Ü The optimal policy π? is non-stationnary and can be computed using
backwards induction (dynamic programming)
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Outline

1 Regret and Sample Complexity in RL

2 Regret minimization in episodic MDPs
Optimism for Reinforcement Learning
Thompson Sampling for Reinforcement Learning

3 Scalable heuristics inspired by those principles

4 Sample complexity

5 (Bandit-based) Monte-Carlo Tree Search
UCB for Trees : UCT
From UCT to Alpha Zero
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Learning in episodic MDPs

For each episode t ∈ {1, . . . ,T}, an episodic RL algorithm

I starts in some initial state st1 ∼ ρ (e.g. st1 = s1)

I selects a policy πt (based on observations from past episodes)

I uses this policy to generate an episode of length H :

st1, a
t
1, r

t
1 , s

t
2, . . . , s

t
H , a

t
H , r

t
H

where ath = πt
h(sth) and (r th , s

t
h+1) = step(sth, a

t
h)

Definition

The (pseudo)-regret of an episodic RL algorithm π = (πt)t∈N in T
episodes is

RT (π) =
T∑
t=1

[
V ?(st1)− V πt

(st1)
]
.
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Reminder : Minimizing regret in bandits

Small regret requires to introduce the right amount of exploration, which
can be done with

I ε-greedy

explore uniformly with probability ε (or εt), otherwise trust the estimated model

I Upper Confidence Bounds algorithms

act as if the optimistic model were the true model

I Thompson Sampling

act as if a model sampled from the posterior distribution were the true model
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What is wrong with ε-greedy in RL ?

Example : Q-Learning with ε-greedy

Ü ε-greedy exploration

at =

{
argmaxa∈A Q̂t(st , a) with probability 1− εt

∼ U(A) with probability εt

Ü Q-Learning update

Q̂t(st , at) = Q̂t−1(st , at) + αt

(
rt + γmax

b
Q̂t−1(st , b)− Q̂t−1(st , at)

)

" Q̂t(s, a) is not an unbiased estimate of Q?(s, a)...
(except in the bandit case)
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What is wrong with ε-greedy ?

The RiverSwim MDP :

" ε can be hard to tune...
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What is wrong with ε-greedy ?

εt = 0.5 εt =
ε0

(N(st)− 1000)2/3 εt =

{
1 if t < 7000
ε0√
N(st )

otherwise

credit : Alessandro Lazaric

" ε-greedy performs undirected exploration

I alternative : model-based methods in which exploration is targeted
towards uncertain regions of the state/action space
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Other sparse rewards environments

Moutain Car Montezuma Revenge (Atari)
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Outline

1 Regret and Sample Complexity in RL
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UCB for Trees : UCT
From UCT to Alpha Zero
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Towards an optimistic learning algorithm

I Reminder : Optimistic Bandit model

set of possible bandit models µ = (µ1, µ2, µ3, µ4) :

Mt = I1(t)× I2(t)× I3(t)× I4(t)

An optimistic bandit model is

µ+
t ∈ argmax

µ∈Mt

µ?

Ü the best arm (optimal policy) in µ+
t is

At+1 = argmax
a∈A

UCBa(t)
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Towards an optimistic learning algorithm

I Extension : Optimistic Markov Decision Process

set of possible MDPs M = 〈S,A, r , p〉 :

Mt = {〈S,A, r , p〉 : r , p ∈ Brt × B
p
t }

An optimistic Markov Decision Process is

M+
t ∈ argmax

M∈Mt

V ?,M

Ü Explore the MDP using the optimistic policy

π+
t : optimal policy in M+

t

First proposed for average-rewards MDPs (UCRL [Jaksch et al., 2010])

Challenges
1 How to construct the set Mt of possible MDPs ?

2 How to numerically compute π+
t ?
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Optimistic algorithm for episodic MDPs
We are interested in π+

t the optimal policy in

M+
t ∈ argmax

M∈Mt

V ?,M(s1)

ie

π+
t,h(s) = argmax

a∈A
Q
?,M+

t

h (s, a)

= argmax
a∈A

max
M∈Mt

Q?,M
h (s, a)

Let’s relax this a little bit and define

πt
h(s) = argmax

a∈A
Q

t

h(s, a)

where Q
t

satisfies

∀M ∈Mt ,∀(h, s, a), Q?,M
h (s, a) ≤ Q

t

h(s, a)

Ü If the true MDP belongs to Mt , π
t is the greedy policy wrt an

upper bound on the optimal Q value function
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Step 1 : Constructing Mt

Mt =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}
Idea : build individual confidence regions

I on the average reward r(s, a) : Brt (s, a) ⊆ R
I on the transition probability vector p(·|s, a) : Bpt (s, a) ⊆ ∆(S)

that rely on the empirical estimates

r̂t(s, a) =
1

nt(s, a)

nt(s,a)∑
i=1

r [i ] and p̂t(s
′|s, a) =

nt(s, a, s
′)

nt(s, a)

nt(s, a) : number of visits of (s, a) before episode t

nt(s, a, s
′) : number of times s ′ was the next state when the transition (s, a)

was performed before episode t

Goal : PM (M ∈Mt) is close to 1
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Step 1 : Constructing Mt

Mt =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}
Idea : build individual confidence regions

I on the average reward r(s, a) : Brt (s, a) ⊆ R

Assuming rewards that are bounded in [0, 1],

Br
t (s, a) =

[
r̂t(s, a)−

√
log(8SA(nt(s, a))2/δ)

2nt(s, a)
; r̂t(s, a)+

√
log(8SA(nt(s, a))2/δ)

2nt(s, a)

]

satisfies

P
(
∃t ∈ N : ∃(s, a) ∈ S ×A, r(s, a) /∈ Brt (s, a)

)
≤ δ

2
.

(Hoeffding inequality + union bounds)
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Step 1 : Constructing Mt

Mt =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}
Idea : build individual confidence regions

I on the transition probability vector p(·|s, a) : Bpt (s, a) ⊆ ∆(S)

Bp
t (s, a) =

{
p(·|s, a) ∈ ∆(S) : ‖p(·|s, a)− p̂t(·|s, a)‖1 ≤ C

√
S log(nt(s, a)/δ)

nt(s, a)

}
satisfies

P
(
∃t ∈ N : ∃(s, a) ∈ S,A, p(·|s, a) /∈ Bpt (s, a)

)
≤ δ

2
.

(Freedman inequality + union bounds)
[Jaksch et al., 2010]
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Mt =
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Bp
t (s, a) =

{
p(·|s, a) ∈ ∆(S) : ‖p(·|s, a)− p̂t(·|s, a)‖1 ≤ β

p
t (s, a)

}
satisfies

P
(
∃t ∈ N : ∃(s, a) ∈ S,A, p(·|s, a) /∈ Bpt (s, a)

)
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.
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Step 1 : Constructing Mt

Mt =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}

Brt (s, a) =
[
r̂t(s, a)− βr

t (s, a); r̂t(s, a) + βr
t (s, a)

]
Bpt (s, a) =

{
p(·|s, a) ∈ ∆(S) : ‖p(·|s, a)− p̂t(·|s, a)‖1 ≤ β

p
t (s, a)

}
with exploration bonuses :

βr
t (s, a) ∝

√
log(nt(s, a)/δ)

nt(s, a)

βp
t (s, a) ∝

√
S log(nt(s, a)/δ)

nt(s, a)

PM (∀t ∈ N,M ∈Mt) ≥ 1− δ
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Step 2 : Finding the upper bound

For some appropriate exploration bonus βt(s, a) the function Q
t

defined

inductively by Q
t

H+1 = 0, and for all h ∈ [H], (s, a) ∈ S ×A,

Q
t

h(s, a) = r̂t(s, a) + βt(s, a) +
∑
s′∈S

p̂t(s
′|s, a) max

b
V

t

h+1(s ′)

V
t

h(s) = min

[
H − h; max

b
Q

t

h(s, b)

]
,

satisfies ∀M ∈Mt , Q
?,M
h (s, a) ≤ Qh(s, a).

Proof : (in class)

βt(s, a) = βr
t (s, a) + Hβp

t (s, a) ' CH

√
S log(nt(s, a))

nt(s, a)

Ü βt(s, a) scales in 1/
√
nt(s, a) where nt(s, a) is the number of

previous visits to (s, a).
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Optimistic algorithms

An optimistic algorithm uses in episode t the policy πt = greedy(Q
t
)

with Q
t

h(s, a) an upper confidence bound on Q?
h (s, a).

Different choices of Mt and/or Q
t

lead to different optimistic
algorithms. The one we described is close to the UCB-VI algorithm
proposed by [Azar et al., 2017] (with Hoeffding bonuses).

UCB-VI
The exporation policy in episode t is greedy wrt to

Q
t

h(s, a) = r̂t(s, a) + βt(s, a) +
∑
s′∈S

p̂t(s
′|s, a) max

b
V

t

h+1(s ′)

V
t

h(s) = min

[
H − h; max

b
Q

t

h(s, b)

]
,

for some exploration bonus βt(s, a) .
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Theoretical guarantees

Theorem [Azar et al., 2017]

UCB-VI (with a slightly more complicated bonus) satisfies

P
(
RT (UCB-VI) = O

(√
H2SAT log(T/δ)

))
≥ 1− δ.

(Worse case) Lower bound

For every algorithm A, there exists an MDP M for which

EM [RT (A)] ≥ c
√
H2SAT

for some constant c .

I UCB-VI is nearly optimal in the worse-case.

I Problem-dependent results also exist for (more complex) optimistic
algorithms, see e.g. [Simchowitz and Jamieson, 2019]
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Outline

1 Regret and Sample Complexity in RL

2 Regret minimization in episodic MDPs
Optimism for Reinforcement Learning
Thompson Sampling for Reinforcement Learning

3 Scalable heuristics inspired by those principles

4 Sample complexity

5 (Bandit-based) Monte-Carlo Tree Search
UCB for Trees : UCT
From UCT to Alpha Zero
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Posterior Sampling for RL

Bayesian assumption : M is drawn from some prior distribution ν0.

νt ∈ ∆(M) : posterior distribution over the set of MDPs

Optimism Posterior Sampling
Set of possible MDPs Posterior distribution over MDPs

Compute the optimistic MDP Sample from the posterior distribution
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Prior and posterior for MDPs

In the tabular case, there are natural conjuguate priors.

Rewards

I If the rewards are binary, use a uniform prior r(s, a) ∼ U([0, 1])
→ Beta posterior (see previous class)

I Otherwise, either use an appropriate parameteric prior, or a
binarization trick rt ∈ [0, 1]→ r̃t = 1(Ut ≤ rt)

Transitions

I Dirichlet prior : p(·|s, a) ∼ Dir(1, . . . , 1) (S ones)

I The posterior is

p(·|s, a) ∼ Dir
(
(1 + nt(s, a, s

′))s′∈S
)
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Posterior Sampling for Episodic RL

Algorithm 1: PSRL

Input : Prior distribution ν0

1 for t = 1, 2, . . . do
2 s1 ∼ ρ \\ get the starting state of episode t

3 Sample M̃t ∼ νt−1 \\ sample an MDP from the current posterior distribution

4 Compute π̃t an optimal policy for M̃t \\ backwards induction

5 for h = 1, . . . ,H do
6 ah = π̃t

h(sh) \\ choose next action according to π̃t

7 rh, sh+1 = step(sh, ah)

8 end

9 Update νt based on νt−1 and {(sh, ah, rh, sh+1)}Hh=1

10 end

[Strens, 2000, Osband et al., 2013]
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Theoretical guarantees

I A Bayesian analysis of PSRL = regret integrated over the prior

Theorem [Osband et al., 2013]

E[RT (PSRL)] =
∫
EM [RT (PSRL)]dν0(M) = O(S

√
H2AT )

I Frequentist guarantees

Only variants of PSRL have been analyzed in the frequentist setting :

Ü posterior inflation (augmenting the variance of the posterior)

Ü drawing J samples from the posterior and taking the best one
(which is some form of optimism)

Theorem [Tiapkin et al., 2022]

There is a tuning of Optimistic PSRL for which

P
(
RT (OPSRL) = O

(√
H3SAT

))
≥ 1− δ.
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Limitations of optimistic approaches

An important message from optimistic approaches :

Ü Do not only trust the estimated MDP M̂t , but take into account the
uncertainty in the underlying estimate

Brt (s, a) =
[
r̂t(s, a)− βr

t (s, a); r̂t(s, a) + βr
t (s, a)

]
Bpt (s, a) =

{
p(·|s, a) ∈ ∆(S) : ‖p(·|s, a)− p̂t(·|s, a)‖ 1 ≤ βp

t (s, a)
}

expressed by exploration bonuses scaling in
√

1
nt(s,a) where nt(s, a) is the

count (=number of visits) of (s, a).

Scaling for large state action spaces ?

I each state action pair may be visited only very little...

I UCB-VI is quite inefficient in practice for very large state-spaces
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Extrinsic versus intrisic reward

UCB-VI is a model-based approach.

I a pure model-based algorithm would estimate the model (r̂ , p̂) and
play the optimal policy in the estimated model

I instead, it plays the optimal policy in a modified model where the
reward is replaced by

r̂ th(s, a) + βt(s, a)︸ ︷︷ ︸
add some reward for the

visitation of undervisited states
= intrisic reward

More general idea : run any (possibly model-free) RL algorithm
replacing the collected (extrinsic) reward rt by

r+
t = rt + r I

t

where r I
t is some form of intrinsic reward.
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Count-based exploration

General principle
1 Estimate a “proxi” for the number of visits of a state ñt(s)

2 Add an exploration bonus directly to the collected rewards :

r+
t = rt + c

√
1

ñt(st)

3 Run any (Deep)RL algorithm on D =
⋃

t

{
(st , at , r

+
t , st+1)

}
.

Example of pseudo-counts :

I use density estimation [Bellemare et al., 2016]

I use a hash function, e.g. φ : S → {−1, 1}k [Tang et al., 2017]
n(φ(st))← n(φ(st)) + 1

I use kernels n(st) =
∑

s∈Ht
K (st , s) [Badia et al., 2020]
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Other forms of intrisic rewards

Other forms of intrisic rewards have been proposed in the literature, some
of which driven by curiosity.

Ü make the agent willing to discover new parts of the space

Typical example :

I learn to predict the next state (e.g. with a neural network), and use
the prediction error as a reward

(e.g., [Burda et al., 2018])

Limitation :

I can attract the agent towards highly stochastic parts of the
environment (“noisy TV” issue)
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Random Network Distillation

Idea : change the prediction problem to be fixed and deterministic
Draw a random neural network f̃ at the beginning, and learn to predict
f̃ (s) in each state s, use the error as intrisic reward.

[Burda et al., 2019]

source : OpenAI, see their nice blog article
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Random Network Distillation

Other trick : smarter combination of the extrinsic and intrinsic reward,
with two heads in the global neural network

I Solving Montezuma !
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Never Give Up

Idea : The RND bonus is still vanishing. Couple it with a non-vanishing
count-based intrisic reward, taking into account the last episode only.

[Badia et al., 2020]
For the state visited at time t, the intrisic reward is

r It = f (r I ,RND
t )× 1√∑

s′∈NNepisode
k (st)

Kg (st , s ′) + c

where

I f (r) is some clipping function

I NNepisode
k (st) is the set of k nearest neighbors among the states

visited within the last episode, according to the kernel function Kg

I Kg is a kernel function depending on the distance between state
representations, Kg (s, s ′) = h(||g(s)− g(s ′)||)
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Limitations of Posterior Sampling

An important message from posterior sampling :

Ü Adding some noise to the estimated MDP M̂t is helpful !

r̃t(s, a) = r̂t(s, a) + εt(s, a)

p̃t(s
′|s, a) = p̂t(·|s, a) + ε′t(s, a).

Scaling for large state action spaces ?

I maintaining independent posterior over all state action rewards and
transitions can be costly

I more sophisticated prior distributions encoding some structure and
the associated posteriors can be hard to sample from

Ü use other type of randomized exploration, not necessarily Bayesian
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Bootstrap DQN

Idea : maintain a “distribution of Q-values”
( 6= model-based method)

K “bootstrap” heads to generate K different estimated Q-values
Q1(s, a), . . . ,QK (s, a)

[Osband et al., 2016]
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Bootstrap DQN

mt ∈ {0, 1}k determines which heads will be updated with the gradient

gk
t = mk

t

(
rt + γmax

b
Q(st , b; θ−)− Qk(st , at ; θ))

)
∇θQk(st , at ; θ)
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Bootstrap DQN

“Deep Exploration” occurs with Bootstrap DQN

Another possible idea :

Ü add noise in the neural network parameters

(e.g. Noisy Networks [Fortunato et al., 2017])
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Best Policy Identification

Best policy identification algorithm :

I πt : exploratory policy used for episode t

I τ : stopping rule (should we stop exploration ?)

I π̂ : guess for a good policy

Goal : (ε, δ)-PAC algorithm with small sample complexity τ

P
(
V ?(s1)− V π̂(s1) ≤ ε

)
≥ 1− δ.

(Worse case) lower bound [Domingues et al., 2021]

For every (ε, δ)-PAC algorithm, there exists an MDP M for which

EM [τ ] ≥ c
SAH2

ε2
log

(
1

δ

)
for some constant c .
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Matching the lower bound with UCB-VI

Idea 1 : when UCB-VI is run long enough, it starts using good policies
→ output one of the policies used in the past, chosen at random

[Jin et al., 2018]

Idea 2 : couple UCB-VI with an adaptive stopping rule

τ = inf{t ∈ N : V
t

1(s1)− V t
1(s1) ≤ ε}

and output π̂ = greedy(Qτ ) where V t ,Qt are lower confidence bounds
on the optimal values

[Kaufmann et al., 2021]
[Ménard et al., 2021]

Ü nearly matching the lower bound

Question : Beyond worse-case guarantees ? Best results obtained for
algorithms quite different from UCB-VI [Wagenmaker et al., 2022]
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Reward-free exploration

I πt : exploratory policy used in episode t

I τ : stopping rule

I output : database of transitions D =

{
(sth, a

t
h, s

t
h+1) t≤τ

h≤H

}
Goal : Given any reward function r given after exploration, output a
guess π̂r of the optimal policy in MDP when the reward function is r .
(e.g. the optimal policy in the MDP with parameters (p̂, r))

Formalization : minimize the sample complexity τ while ensuring

P
(
∀r ,V ?(s1; r)− V π̂r (s1; r) ≤ ε

)
≥ 1− δ

[Jin et al., 2020]
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Using UCB-VI for reward-free exploration

Use a UCB-VI like exploration policy ignoring the rewards, i.e.

πt = greedy(Q
t
) where

Q
t

h(s, a) = β̃t(s, a) +
∑
s′∈S

p̂t(s
′|s, a) max

b
V

t

h+1(s ′)

V
t

h(s) = min

[
H − h; max

b
Q

t

h(s, b)

]
,

and stop when maxa Q
t

1(s, a) ≤ ε/2.
[Kaufmann et al., 2021]

Ü using intrinsic rewards only can help learn good exploratory policies
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Monte-Carlo Tree Search

MCTS is a family of methods that adaptively explore the tree of possible
next states in a given state s1, in order to find the best action in s1.

Figure – A generic MCTS algorithm for a game

MCTS requires a generative model (to sample trajectories from s1)
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The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MAX node s (= root player move), select an action

argmax
a∈C(s)

S(s, a)

N(s, a)
+ c

√
log (

∑
b N(s, b))

N(s, a)

N(s, a) : number of visits of (s, a)

S(s, a) : number of visits of (s, a) ending with the root player winning

8/11

2/6 2/3 4/2

N=19 visits

n3=6 visits
UCB3 = 4/6 + c√log(N)/n3
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The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MIN node s (= adversary move), select an action

argmin
a∈C(s)

S(s, a)

N(s, a)
− c

√
log (

∑
b N(s, b))

N(s, a)

N(s, a) : number of visits of (s, a)
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The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MAX node s (= root player move), select an action

argmax
a∈C(s)

S(s, a)

N(s, a)
+ c

√
log (

∑
b N(s, b))

N(s, a)

N(s, a) : number of visits of (s, a)

S(s, a) : number of visits of (s, a) ending with the root player winning

When a leaf (or some maximal depth) is reached :

I a playout is performed (play the game until the end with a simple heuristic,

or produce a random evaluation of the leaf position)

I the outcome of the playout (typically 1/0) is stored in all the nodes
visited in the previous trajectory
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The UCT algorithm

I first good AIs for Go where based on variants on UCT

I it remains a heuristic (no sample complexity guarantees, parameter c
fined-tuned for each application)

I many variants have been proposed

[Browne et al., 2012]
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Selection step : in some state s, choose the next action to be

argmax
a∈C(s)

[
S(s, a)

N(s, a)
+ c × P(s, a)

√
N(s)

1 + N(s, a)

]
for some (fine-tuned) constant c .

Emilie Kaufmann |CRIStAL - 52



Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Selection step : in some state s, choose the next action to be

argmax
a∈C(s)

[
S(s, a)

N(s, a)
+ c × P(s, a)

√
N(s)

1 + N(s, a)

]
for some (fine-tuned) constant c .

Emilie Kaufmann |CRIStAL - 52



Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Expansion step : once a leaf sL is reached, compute (p, v) = fθ(sL).

I Set v to be the value of the leaf

I For all possible next actions b :

Ü initialize the count N(sL, b) = 0
Ü initialize the prior probability P(sL, b) = pb (possibly add some noise)
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Back-up step : for all ancestor st , at in the trajectory that end in leaf sL,

N(st , at) ← N(st , at) + 1

S(st , at) ← S(st , at) + v
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Output of the planning algorithm ? select an action a at random
according to

π(a) =
N(s0, a)1/τ∑
b N(s0, b)1/τ

for some (fine-tuned) temperature τ .
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Training the neural network

I In AlphaGo, fθ was trained on a database of games played by human

I In AlphaZero, the network is trained using only self-play

[Silver et al., 2016, Silver et al., 2017]

Let θ be the current parameter of the network (p, v) = fθ(sL).

1 generate N games where each player uses MCTS(θ) to select the
next action at (and output a probability over actions πt)

D =

Nb games⋃
i=1

{
(st , πt ,±rTi )

}Ti

i=1

Ti : length of game i , rTi ∈ {−1, 0, 1} outcome of game i for one player

2 Based on a sub-sample of D, train the neural network using
stochastic gradient descent on the loss function

L(s,π, z ; p, v) = (z − v)2 − π> log(p) + c‖θ‖2
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A nice actor-critic architecture

AlphaZero alternates between

I The actor : MCTS(θ)
generates trajectories guided by the network fθ but still exploring

Ü act as a policy improvement
(N = 25000 games played, in which the choice of each move uses MCTS with

1600 simulations)

I The critic : neural network fθ
updates θ based on trajectories followed by the critic

Ü evaluate the actor’s policy
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Conclusion : Bandits for RL

Bandits tools are useful for Reinforcement Learning :

I UCB-VI, PSRL : bandit-based exploration for tabular MDPs

I ... that can motivate “deeper” heuristics

Bandit tools lead to big success in Monte-Carlo planning

I ... without proper sample complexity guarantees

Ü Unifying theory and practice is a big challenge in RL !
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