
Reinforcement Learning
Lecture 8 : Bandit tools for Reinforcement Learning

Emilie Kaufmann

M2 MVA, 2023/2024

Emilie Kaufmann |CRIStAL - 1

From bandits to RL

Solve a multi-armed bandit problem
' maximize rewards in a MDP with one state

The bandit world
I several principles for

exploration/exploitation

I efficient algorithms
(UCB, Thompson Sampling)

I with regret guarantees

I specific algorithms for best arm
identification

RL algorithms so far

I ε-greedy exploration

I algorithms with (at most)
convergence guarantees, not
very sample efficient

vs. (more) efficient algorithms
(DeepRL) with no theoretical
guarantees

Question : can we be inspired by bandit algorithms to

I propose new RL algorithms

I ... with theoretical guarantees ?

Emilie Kaufmann |CRIStAL - 2

Four RL frameworks

Discounted MDP

V π(s) = Eπ
[∞∑

t=1

γt−1rt

∣∣∣s1 =s

]

Average reward MDP

V π(s) = lim
T→∞

1

T
Eπ
[

T∑
t=1

rt

∣∣∣s1 =s

]

Episodic MDP

V π(s) = Eπ
[

H∑
t=1

rt

∣∣∣s1 =s

]

Goal-oriented MDP

V π(s) = Eπ
 τ∗g∑

t=1

rt

∣∣∣s1 =s

∗ g is an absorbing goal state, and τg is the time to reach the goal

Emilie Kaufmann |CRIStAL - 3

Four RL frameworks

Discounted MDP

V π(s) = Eπ
[∞∑

t=1

γt−1rt

∣∣∣s1 =s

]

Average reward MDP

V π(s) = lim
T→∞

1

T
Eπ
[

T∑
t=1

rt

∣∣∣s1 =s

]

Episodic MDP

V π(s) = Eπ
[

H∑
t=1

rt

∣∣∣s1 =s

]

Goal-oriented MDP

V π(s) = Eπ
 τ∗g∑

t=1

rt

∣∣∣s1 =s

∗ g is an absorbing goal state, and τg is the time to reach the goal

Question 1 : How many interactions with the MDPs (or episodes) are
needed to find a good policy ?

P
(
V ? − V π̂ ≤ ε

)
≥ 1− δ

while minimizing the sample complexity
Emilie Kaufmann |CRIStAL - 3

Four RL frameworks

Discounted MDP

V π(s) = Eπ
[∞∑

t=1

γt−1rt

∣∣∣s1 =s

]

Average reward MDP

V π(s) = lim
T→∞

1

T
Eπ
[

T∑
t=1

rt

∣∣∣s1 =s

]

Episodic MDP

V π(s) = Eπ
[

H∑
t=1

rt

∣∣∣s1 =s

]

Goal-oriented MDP

V π(s) = Eπ
 τ∗g∑

t=1

rt

∣∣∣s1 =s

∗ g is an absorbing goal state, and τg is the time to reach the goal

Question 2 : Can the algorithm learn to behave optimally ?
Can be measured by the number of sub-optimal plays or the regret

N =
∞∑
t=1

1 (V ?(st)− V πt (st) > ε)

(PAC-MDP framework, discounted MDP, see [Kakade, 2003])

Emilie Kaufmann |CRIStAL - 3

Four RL frameworks

Discounted MDP

V π(s) = Eπ
[∞∑

t=1

γt−1rt

∣∣∣s1 =s

]

Average reward MDP

V π(s) = lim
T→∞

1

T
Eπ
[

T∑
t=1

rt

∣∣∣s1 =s

]

Episodic MDP

V π(s) = Eπ
[

H∑
t=1

rt

∣∣∣s1 =s

]

Goal-oriented MDP

V π(s) = Eπ
 τ∗g∑

t=1

rt

∣∣∣s1 =s

∗ g is an absorbing goal state, and τg is the time to reach the goal

Question 2 : Can the algorithm learn to behave optimally ?
Can be measured by the number of sub-optimal plays or the regret

RT = TV ? −
T∑
t=1

rt in average-reward MDPs

[Jaksch et al., 2010]

Emilie Kaufmann |CRIStAL - 3

Four RL frameworks

Discounted MDP

V π(s) = Eπ
[∞∑

t=1

γt−1rt

∣∣∣s1 =s

]

Average reward MDP

V π(s) = lim
T→∞

1

T
Eπ
[

T∑
t=1

rt

∣∣∣s1 =s

]

Episodic MDP

V π(s) = Eπ
[

H∑
t=1

rt

∣∣∣s1 =s

]

Goal-oriented MDP

V π(s) = Eπ
 τ∗g∑

t=1

rt

∣∣∣s1 =s

∗ g is an absorbing goal state, and τg is the time to reach the goal

Question 2 : Can the algorithm learn to behave optimally ?
Can be measured by the number of sub-optimal plays or the regret

RK =
K∑

k=1

(
V ?(sk1)− V πk (sk1)

)
in episodic MDPs

regret after K episodes, sk1 : first state of episode K [Azar et al., 2017]

Emilie Kaufmann |CRIStAL - 3

Four RL frameworks

Discounted MDP

V π(s) = Eπ
[∞∑

t=1

γt−1rt

∣∣∣s1 =s

]

Average reward MDP

V π(s) = lim
T→∞

1

T
Eπ
[

T∑
t=1

rt

∣∣∣s1 =s

]

Episodic MDP

V π(s) = Eπ
[

H∑
t=1

rt

∣∣∣s1 =s

]

Goal-oriented MDP

V π(s) = Eπ
 τ∗g∑

t=1

rt

∣∣∣s1 =s

∗ g is an absorbing goal state, and τg is the time to reach the goal

Question 2 : Can the algorithm learn to behave optimally ?
Can be measured by the number of sub-optimal plays or the regret

RK =
K∑

k=1

(
V ?(sk1)− V πk (sk1)

)
in episodic MDPs

regret after K episodes, sk1 : first state of episode K [Azar et al., 2017]

Emilie Kaufmann |CRIStAL - 3

(Reminder :) How to solve an episodic MDP ?

V π(s) = V π
1 (s), introducing the value function from step h :

V π
h (s) = Eπ

[
H∑

t=h

rt

∣∣∣∣∣ sh = s

]

Non-stationary policies π = (π1, . . . , πH) can be of interest

πh(s) : action chosen if we are in state s at step h of the episode

Bellman equations for a (deterministic) policy π

For all h ∈ {1, . . . ,H}, for all s ∈ S,

V π
h (s) = r(s, πh(s)) +

∑
s′∈S

p(s ′|s, πh(s))V π
h+1(s ′),

with V π
H+1(s) = 0 for all s ∈ S.

Ü policy evaluation using backwards induction

Emilie Kaufmann |CRIStAL - 4

(Reminder :) How to solve an episodic MDP ?

V ?(s) = V ?
1 (s), introducing the optimal value function from step h :

V ?
h (s) = max

π
Eπ
[

H∑
t=h

rt

∣∣∣∣∣ sh = s

]

Bellman equations for the optimal policy

For all h ∈ {1, . . . ,H}, for all s ∈ S, letting V ?
H+1 = 0

V ?
h (s) = max

a∈A

[
r(s, a) +

∑
s′∈S

p(s ′|s, a)V ?
h+1(s ′)

]

π?h (s) = argmax
a∈A

[
r(s, a) +

∑
s′∈S

p(s ′|s, a)V ?
h+1(s ′)

]

Ü The optimal policy π? is non-stationnary and can be computed using
backwards induction (dynamic programming)

Emilie Kaufmann |CRIStAL - 5

(Reminder :) How to solve an episodic MDP ?

V ?(s) = V ?
1 (s), introducing the optimal value function from step h :

V ?
h (s) = max

π
Eπ
[

H∑
t=h

rt

∣∣∣∣∣ sh = s

]

Bellman equations for the optimal policy

For all h ∈ {1, . . . ,H}, for all s ∈ S, letting V ?
H+1 = 0

Q?
h (s, a) = r(s, a) +

∑
s′∈S

p(s ′|s, a)
[
max

b
Q?

h+1(s ′, b)
]

π?h (s) = argmax
a∈A

Q?
h (s, a)

Ü The optimal policy π? is non-stationnary and can be computed using
backwards induction (dynamic programming)

Emilie Kaufmann |CRIStAL - 5

(Reminder :) How to solve an episodic MDP ?

V ?(s) = V ?
1 (s), introducing the optimal value function from step h :

V ?
h (s) = max

π
Eπ
[

H∑
t=h

rt

∣∣∣∣∣ sh = s

]

Bellman equations for the optimal policy

For all h ∈ {1, . . . ,H}, for all s ∈ S, letting V ?
H+1 = 0

Q?
h (s, a) = r(s, a) +

∑
s′∈S

p(s ′|s, a)
[
max

b
Q?

h+1(s ′, b)
]

π? = greedy(Q?)

Ü The optimal policy π? is non-stationnary and can be computed using
backwards induction (dynamic programming)

Emilie Kaufmann |CRIStAL - 5

Outline

1 Regret and Sample Complexity in RL

2 Regret minimization in episodic MDPs
Optimism for Reinforcement Learning
Thompson Sampling for Reinforcement Learning

3 Scalable heuristics inspired by those principles

4 Sample complexity

5 (Bandit-based) Monte-Carlo Tree Search
UCB for Trees : UCT
From UCT to Alpha Zero

Emilie Kaufmann |CRIStAL - 6

Learning in episodic MDPs

For each episode t ∈ {1, . . . ,T}, an episodic RL algorithm

I starts in some initial state st1 ∼ ρ (e.g. st1 = s1)

I selects a policy πt (based on observations from past episodes)

I uses this policy to generate an episode of length H :

st1, a
t
1, r

t
1 , s

t
2, . . . , s

t
H , a

t
H , r

t
H

where ath = πt
h(sth) and (r th , s

t
h+1) = step(sth, a

t
h)

Definition

The (pseudo)-regret of an episodic RL algorithm π = (πt)t∈N in T
episodes is

RT (π) =
T∑
t=1

[
V ?(st1)− V πt

(st1)
]
.

Emilie Kaufmann |CRIStAL - 7

Reminder : Minimizing regret in bandits

Small regret requires to introduce the right amount of exploration, which
can be done with

I ε-greedy

explore uniformly with probability ε (or εt), otherwise trust the estimated model

I Upper Confidence Bounds algorithms

act as if the optimistic model were the true model

I Thompson Sampling

act as if a model sampled from the posterior distribution were the true model

Emilie Kaufmann |CRIStAL - 8

What is wrong with ε-greedy in RL ?

Example : Q-Learning with ε-greedy

Ü ε-greedy exploration

at =

{
argmaxa∈A Q̂t(st , a) with probability 1− εt

∼ U(A) with probability εt

Ü Q-Learning update

Q̂t(st , at) = Q̂t−1(st , at) + αt

(
rt + γmax

b
Q̂t−1(st , b)− Q̂t−1(st , at)

)

" Q̂t(s, a) is not an unbiased estimate of Q?(s, a)...
(except in the bandit case)

Emilie Kaufmann |CRIStAL - 9

What is wrong with ε-greedy ?

The RiverSwim MDP :

" ε can be hard to tune...

Emilie Kaufmann |CRIStAL - 10

What is wrong with ε-greedy ?

εt = 0.5 εt =
ε0

(N(st)− 1000)2/3 εt =

{
1 if t < 7000
ε0√
N(st)

otherwise

credit : Alessandro Lazaric

" ε-greedy performs undirected exploration

I alternative : model-based methods in which exploration is targeted
towards uncertain regions of the state/action space

Emilie Kaufmann |CRIStAL - 11

Other sparse rewards environments

Moutain Car Montezuma Revenge (Atari)

Emilie Kaufmann |CRIStAL - 12

Outline

1 Regret and Sample Complexity in RL

2 Regret minimization in episodic MDPs
Optimism for Reinforcement Learning
Thompson Sampling for Reinforcement Learning

3 Scalable heuristics inspired by those principles

4 Sample complexity

5 (Bandit-based) Monte-Carlo Tree Search
UCB for Trees : UCT
From UCT to Alpha Zero

Emilie Kaufmann |CRIStAL - 13

Towards an optimistic learning algorithm

I Reminder : Optimistic Bandit model

set of possible bandit models µ = (µ1, µ2, µ3, µ4) :

Mt = I1(t)× I2(t)× I3(t)× I4(t)

An optimistic bandit model is

µ+
t ∈ argmax

µ∈Mt

µ?

Ü the best arm (optimal policy) in µ+
t is

At+1 = argmax
a∈A

UCBa(t)

Emilie Kaufmann |CRIStAL - 14

Towards an optimistic learning algorithm

I Extension : Optimistic Markov Decision Process

set of possible MDPs M = 〈S,A, r , p〉 :

Mt = {〈S,A, r , p〉 : r , p ∈ Brt × B
p
t }

An optimistic Markov Decision Process is

M+
t ∈ argmax

M∈Mt

V ?,M

Ü Explore the MDP using the optimistic policy

π+
t : optimal policy in M+

t

First proposed for average-rewards MDPs (UCRL [Jaksch et al., 2010])

Challenges
1 How to construct the set Mt of possible MDPs ?

2 How to numerically compute π+
t ?

Emilie Kaufmann |CRIStAL - 15

Towards an optimistic learning algorithm

I Extension : Optimistic Markov Decision Process

set of possible MDPs M = 〈S,A, r , p〉 :

Mt = {〈S,A, r , p〉 : r , p ∈ Brt × B
p
t }

An optimistic Markov Decision Process is

M+
t ∈ argmax

M∈Mt

V ?,M

Ü Explore the MDP using the optimistic policy

π+
t : optimal policy in M+

t

First proposed for average-rewards MDPs (UCRL [Jaksch et al., 2010])

Challenges
1 How to construct the set Mt of possible MDPs ?

2 How to numerically compute π+
t ?

Emilie Kaufmann |CRIStAL - 15

Optimistic algorithm for episodic MDPs
We are interested in π+

t the optimal policy in

M+
t ∈ argmax

M∈Mt

V ?,M(s1)

ie

π+
t,h(s) = argmax

a∈A
Q
?,M+

t

h (s, a)

= argmax
a∈A

max
M∈Mt

Q?,M
h (s, a)

Let’s relax this a little bit and define

πt
h(s) = argmax

a∈A
Q

t

h(s, a)

where Q
t

satisfies

∀M ∈Mt ,∀(h, s, a), Q?,M
h (s, a) ≤ Q

t

h(s, a)

Ü If the true MDP belongs to Mt , π
t is the greedy policy wrt an

upper bound on the optimal Q value function
Emilie Kaufmann |CRIStAL - 16

Step 1 : Constructing Mt

Mt =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}
Idea : build individual confidence regions

I on the average reward r(s, a) : Brt (s, a) ⊆ R
I on the transition probability vector p(·|s, a) : Bpt (s, a) ⊆ ∆(S)

that rely on the empirical estimates

r̂t(s, a) =
1

nt(s, a)

nt(s,a)∑
i=1

r [i] and p̂t(s
′|s, a) =

nt(s, a, s
′)

nt(s, a)

nt(s, a) : number of visits of (s, a) before episode t

nt(s, a, s
′) : number of times s ′ was the next state when the transition (s, a)

was performed before episode t

Goal : PM (M ∈Mt) is close to 1

Emilie Kaufmann |CRIStAL - 17

Step 1 : Constructing Mt

Mt =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}
Idea : build individual confidence regions

I on the average reward r(s, a) : Brt (s, a) ⊆ R

Assuming rewards that are bounded in [0, 1],

Br
t (s, a) =

[
r̂t(s, a)−

√
log(8SA(nt(s, a))2/δ)

2nt(s, a)
; r̂t(s, a)+

√
log(8SA(nt(s, a))2/δ)

2nt(s, a)

]

satisfies

P
(
∃t ∈ N : ∃(s, a) ∈ S ×A, r(s, a) /∈ Brt (s, a)

)
≤ δ

2
.

(Hoeffding inequality + union bounds)

Emilie Kaufmann |CRIStAL - 18

Step 1 : Constructing Mt

Mt =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}
Idea : build individual confidence regions

I on the average reward r(s, a) : Brt (s, a) ⊆ R

Assuming rewards that are bounded in [0, 1],

Br
t (s, a) =

[
r̂t(s, a)− βr

t (s, a); r̂t(s, a) + βr
t (s, a)

]

satisfies

P
(
∃t ∈ N : ∃(s, a) ∈ S ×A, r(s, a) /∈ Brt (s, a)

)
≤ δ

2
.

(Hoeffding inequality + union bounds)

Emilie Kaufmann |CRIStAL - 18

Step 1 : Constructing Mt

Mt =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}
Idea : build individual confidence regions

I on the transition probability vector p(·|s, a) : Bpt (s, a) ⊆ ∆(S)

Bp
t (s, a) =

{
p(·|s, a) ∈ ∆(S) : ‖p(·|s, a)− p̂t(·|s, a)‖1 ≤ C

√
S log(nt(s, a)/δ)

nt(s, a)

}
satisfies

P
(
∃t ∈ N : ∃(s, a) ∈ S,A, p(·|s, a) /∈ Bpt (s, a)

)
≤ δ

2
.

(Freedman inequality + union bounds)
[Jaksch et al., 2010]

Emilie Kaufmann |CRIStAL - 19

Step 1 : Constructing Mt

Mt =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}
Idea : build individual confidence regions

I on the transition probability vector p(·|s, a) : Bpt (s, a) ⊆ ∆(S)

Bp
t (s, a) =

{
p(·|s, a) ∈ ∆(S) : ‖p(·|s, a)− p̂t(·|s, a)‖1 ≤ β

p
t (s, a)

}
satisfies

P
(
∃t ∈ N : ∃(s, a) ∈ S,A, p(·|s, a) /∈ Bpt (s, a)

)
≤ δ

2
.

(Freedman inequality + union bounds)
[Jaksch et al., 2010]

Emilie Kaufmann |CRIStAL - 19

Step 1 : Constructing Mt

Mt =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}

Brt (s, a) =
[
r̂t(s, a)− βr

t (s, a); r̂t(s, a) + βr
t (s, a)

]
Bpt (s, a) =

{
p(·|s, a) ∈ ∆(S) : ‖p(·|s, a)− p̂t(·|s, a)‖1 ≤ β

p
t (s, a)

}
with exploration bonuses :

βr
t (s, a) ∝

√
log(nt(s, a)/δ)

nt(s, a)

βp
t (s, a) ∝

√
S log(nt(s, a)/δ)

nt(s, a)

PM (∀t ∈ N,M ∈Mt) ≥ 1− δ
Emilie Kaufmann |CRIStAL - 20

Step 2 : Finding the upper bound

For some appropriate exploration bonus βt(s, a) the function Q
t

defined

inductively by Q
t

H+1 = 0, and for all h ∈ [H], (s, a) ∈ S ×A,

Q
t

h(s, a) = r̂t(s, a) + βt(s, a) +
∑
s′∈S

p̂t(s
′|s, a) max

b
V

t

h+1(s ′)

V
t

h(s) = min

[
H − h; max

b
Q

t

h(s, b)

]
,

satisfies ∀M ∈Mt , Q
?,M
h (s, a) ≤ Qh(s, a).

Proof : (in class)

βt(s, a) = βr
t (s, a) + Hβp

t (s, a) ' CH

√
S log(nt(s, a))

nt(s, a)

Ü βt(s, a) scales in 1/
√
nt(s, a) where nt(s, a) is the number of

previous visits to (s, a).

Emilie Kaufmann |CRIStAL - 21

Optimistic algorithms

An optimistic algorithm uses in episode t the policy πt = greedy(Q
t
)

with Q
t

h(s, a) an upper confidence bound on Q?
h (s, a).

Different choices of Mt and/or Q
t

lead to different optimistic
algorithms. The one we described is close to the UCB-VI algorithm
proposed by [Azar et al., 2017] (with Hoeffding bonuses).

UCB-VI
The exporation policy in episode t is greedy wrt to

Q
t

h(s, a) = r̂t(s, a) + βt(s, a) +
∑
s′∈S

p̂t(s
′|s, a) max

b
V

t

h+1(s ′)

V
t

h(s) = min

[
H − h; max

b
Q

t

h(s, b)

]
,

for some exploration bonus βt(s, a) .

Emilie Kaufmann |CRIStAL - 22

Theoretical guarantees

Theorem [Azar et al., 2017]

UCB-VI (with a slightly more complicated bonus) satisfies

P
(
RT (UCB-VI) = O

(√
H2SAT log(T/δ)

))
≥ 1− δ.

(Worse case) Lower bound

For every algorithm A, there exists an MDP M for which

EM [RT (A)] ≥ c
√
H2SAT

for some constant c .

I UCB-VI is nearly optimal in the worse-case.

I Problem-dependent results also exist for (more complex) optimistic
algorithms, see e.g. [Simchowitz and Jamieson, 2019]

Emilie Kaufmann |CRIStAL - 23

Outline

1 Regret and Sample Complexity in RL

2 Regret minimization in episodic MDPs
Optimism for Reinforcement Learning
Thompson Sampling for Reinforcement Learning

3 Scalable heuristics inspired by those principles

4 Sample complexity

5 (Bandit-based) Monte-Carlo Tree Search
UCB for Trees : UCT
From UCT to Alpha Zero

Emilie Kaufmann |CRIStAL - 24

Posterior Sampling for RL

Bayesian assumption : M is drawn from some prior distribution ν0.

νt ∈ ∆(M) : posterior distribution over the set of MDPs

Optimism Posterior Sampling
Set of possible MDPs Posterior distribution over MDPs

Compute the optimistic MDP Sample from the posterior distribution

Emilie Kaufmann |CRIStAL - 25

Prior and posterior for MDPs

In the tabular case, there are natural conjuguate priors.

Rewards

I If the rewards are binary, use a uniform prior r(s, a) ∼ U([0, 1])
→ Beta posterior (see previous class)

I Otherwise, either use an appropriate parameteric prior, or a
binarization trick rt ∈ [0, 1]→ r̃t = 1(Ut ≤ rt)

Transitions

I Dirichlet prior : p(·|s, a) ∼ Dir(1, . . . , 1) (S ones)

I The posterior is

p(·|s, a) ∼ Dir
(
(1 + nt(s, a, s

′))s′∈S
)

Emilie Kaufmann |CRIStAL - 26

Posterior Sampling for Episodic RL

Algorithm 1: PSRL

Input : Prior distribution ν0

1 for t = 1, 2, . . . do
2 s1 ∼ ρ \\ get the starting state of episode t

3 Sample M̃t ∼ νt−1 \\ sample an MDP from the current posterior distribution

4 Compute π̃t an optimal policy for M̃t \\ backwards induction

5 for h = 1, . . . ,H do
6 ah = π̃t

h(sh) \\ choose next action according to π̃t

7 rh, sh+1 = step(sh, ah)

8 end

9 Update νt based on νt−1 and {(sh, ah, rh, sh+1)}Hh=1

10 end

[Strens, 2000, Osband et al., 2013]

Emilie Kaufmann |CRIStAL - 27

Theoretical guarantees

I A Bayesian analysis of PSRL = regret integrated over the prior

Theorem [Osband et al., 2013]

E[RT (PSRL)] =
∫
EM [RT (PSRL)]dν0(M) = O(S

√
H2AT)

I Frequentist guarantees

Only variants of PSRL have been analyzed in the frequentist setting :

Ü posterior inflation (augmenting the variance of the posterior)

Ü drawing J samples from the posterior and taking the best one
(which is some form of optimism)

Theorem [Tiapkin et al., 2022]

There is a tuning of Optimistic PSRL for which

P
(
RT (OPSRL) = O

(√
H3SAT

))
≥ 1− δ.

Emilie Kaufmann |CRIStAL - 28

Outline

1 Regret and Sample Complexity in RL

2 Regret minimization in episodic MDPs
Optimism for Reinforcement Learning
Thompson Sampling for Reinforcement Learning

3 Scalable heuristics inspired by those principles

4 Sample complexity

5 (Bandit-based) Monte-Carlo Tree Search
UCB for Trees : UCT
From UCT to Alpha Zero

Emilie Kaufmann |CRIStAL - 29

Limitations of optimistic approaches

An important message from optimistic approaches :

Ü Do not only trust the estimated MDP M̂t , but take into account the
uncertainty in the underlying estimate

Brt (s, a) =
[
r̂t(s, a)− βr

t (s, a); r̂t(s, a) + βr
t (s, a)

]
Bpt (s, a) =

{
p(·|s, a) ∈ ∆(S) : ‖p(·|s, a)− p̂t(·|s, a)‖ 1 ≤ βp

t (s, a)
}

expressed by exploration bonuses scaling in
√

1
nt(s,a) where nt(s, a) is the

count (=number of visits) of (s, a).

Scaling for large state action spaces ?

I each state action pair may be visited only very little...

I UCB-VI is quite inefficient in practice for very large state-spaces

Emilie Kaufmann |CRIStAL - 30

Extrinsic versus intrisic reward

UCB-VI is a model-based approach.

I a pure model-based algorithm would estimate the model (r̂ , p̂) and
play the optimal policy in the estimated model

I instead, it plays the optimal policy in a modified model where the
reward is replaced by

r̂ th(s, a) + βt(s, a)︸ ︷︷ ︸
add some reward for the

visitation of undervisited states
= intrisic reward

More general idea : run any (possibly model-free) RL algorithm
replacing the collected (extrinsic) reward rt by

r+
t = rt + r I

t

where r I
t is some form of intrinsic reward.

Emilie Kaufmann |CRIStAL - 31

Count-based exploration

General principle
1 Estimate a “proxi” for the number of visits of a state ñt(s)

2 Add an exploration bonus directly to the collected rewards :

r+
t = rt + c

√
1

ñt(st)

3 Run any (Deep)RL algorithm on D =
⋃

t

{
(st , at , r

+
t , st+1)

}
.

Example of pseudo-counts :

I use density estimation [Bellemare et al., 2016]

I use a hash function, e.g. φ : S → {−1, 1}k [Tang et al., 2017]
n(φ(st))← n(φ(st)) + 1

I use kernels n(st) =
∑

s∈Ht
K (st , s) [Badia et al., 2020]

Emilie Kaufmann |CRIStAL - 32

Count-based exploration

General principle
1 Estimate a “proxi” for the number of visits of a state ñt(s)

2 Add an exploration bonus directly to the collected rewards :

r+
t = rt + c

√
1

ñt(st)

3 Run any (Deep)RL algorithm on D =
⋃

t

{
(st , at , r

+
t , st+1)

}
.

Example of pseudo-counts :

I use density estimation [Bellemare et al., 2016]

I use a hash function, e.g. φ : S → {−1, 1}k [Tang et al., 2017]
n(φ(st))← n(φ(st)) + 1

I use kernels n(st) =
∑

s∈Ht
K (st , s) [Badia et al., 2020]

Emilie Kaufmann |CRIStAL - 32

Other forms of intrisic rewards

Other forms of intrisic rewards have been proposed in the literature, some
of which driven by curiosity.

Ü make the agent willing to discover new parts of the space

Typical example :

I learn to predict the next state (e.g. with a neural network), and use
the prediction error as a reward

(e.g., [Burda et al., 2018])

Limitation :

I can attract the agent towards highly stochastic parts of the
environment (“noisy TV” issue)

Emilie Kaufmann |CRIStAL - 33

Random Network Distillation

Idea : change the prediction problem to be fixed and deterministic
Draw a random neural network f̃ at the beginning, and learn to predict
f̃ (s) in each state s, use the error as intrisic reward.

[Burda et al., 2019]

source : OpenAI, see their nice blog article

Emilie Kaufmann |CRIStAL - 34

https://openai.com/research/reinforcement-learning-with-prediction-based-rewards

Random Network Distillation

Other trick : smarter combination of the extrinsic and intrinsic reward,
with two heads in the global neural network

I Solving Montezuma !

Emilie Kaufmann |CRIStAL - 35

Never Give Up

Idea : The RND bonus is still vanishing. Couple it with a non-vanishing
count-based intrisic reward, taking into account the last episode only.

[Badia et al., 2020]
For the state visited at time t, the intrisic reward is

r It = f (r I ,RND
t)× 1√∑

s′∈NNepisode
k (st)

Kg (st , s ′) + c

where

I f (r) is some clipping function

I NNepisode
k (st) is the set of k nearest neighbors among the states

visited within the last episode, according to the kernel function Kg

I Kg is a kernel function depending on the distance between state
representations, Kg (s, s ′) = h(||g(s)− g(s ′)||)

Emilie Kaufmann |CRIStAL - 36

Limitations of Posterior Sampling

An important message from posterior sampling :

Ü Adding some noise to the estimated MDP M̂t is helpful !

r̃t(s, a) = r̂t(s, a) + εt(s, a)

p̃t(s
′|s, a) = p̂t(·|s, a) + ε′t(s, a).

Scaling for large state action spaces ?

I maintaining independent posterior over all state action rewards and
transitions can be costly

I more sophisticated prior distributions encoding some structure and
the associated posteriors can be hard to sample from

Ü use other type of randomized exploration, not necessarily Bayesian

Emilie Kaufmann |CRIStAL - 37

Bootstrap DQN

Idea : maintain a “distribution of Q-values”
(6= model-based method)

K “bootstrap” heads to generate K different estimated Q-values
Q1(s, a), . . . ,QK (s, a)

[Osband et al., 2016]

Emilie Kaufmann |CRIStAL - 38

Bootstrap DQN

mt ∈ {0, 1}k determines which heads will be updated with the gradient

gk
t = mk

t

(
rt + γmax

b
Q(st , b; θ−)− Qk(st , at ; θ))

)
∇θQk(st , at ; θ)

Emilie Kaufmann |CRIStAL - 39

Bootstrap DQN

“Deep Exploration” occurs with Bootstrap DQN

Another possible idea :

Ü add noise in the neural network parameters

(e.g. Noisy Networks [Fortunato et al., 2017])
Emilie Kaufmann |CRIStAL - 40

Outline

1 Regret and Sample Complexity in RL

2 Regret minimization in episodic MDPs
Optimism for Reinforcement Learning
Thompson Sampling for Reinforcement Learning

3 Scalable heuristics inspired by those principles

4 Sample complexity

5 (Bandit-based) Monte-Carlo Tree Search
UCB for Trees : UCT
From UCT to Alpha Zero

Emilie Kaufmann |CRIStAL - 41

Best Policy Identification

Best policy identification algorithm :

I πt : exploratory policy used for episode t

I τ : stopping rule (should we stop exploration ?)

I π̂ : guess for a good policy

Goal : (ε, δ)-PAC algorithm with small sample complexity τ

P
(
V ?(s1)− V π̂(s1) ≤ ε

)
≥ 1− δ.

(Worse case) lower bound [Domingues et al., 2021]

For every (ε, δ)-PAC algorithm, there exists an MDP M for which

EM [τ] ≥ c
SAH2

ε2
log

(
1

δ

)
for some constant c .

Emilie Kaufmann |CRIStAL - 42

Matching the lower bound with UCB-VI

Idea 1 : when UCB-VI is run long enough, it starts using good policies
→ output one of the policies used in the past, chosen at random

[Jin et al., 2018]

Idea 2 : couple UCB-VI with an adaptive stopping rule

τ = inf{t ∈ N : V
t

1(s1)− V t
1(s1) ≤ ε}

and output π̂ = greedy(Qτ) where V t ,Qt are lower confidence bounds
on the optimal values

[Kaufmann et al., 2021]
[Ménard et al., 2021]

Ü nearly matching the lower bound

Question : Beyond worse-case guarantees ? Best results obtained for
algorithms quite different from UCB-VI [Wagenmaker et al., 2022]

Emilie Kaufmann |CRIStAL - 43

Reward-free exploration

I πt : exploratory policy used in episode t

I τ : stopping rule

I output : database of transitions D =

{
(sth, a

t
h, s

t
h+1) t≤τ

h≤H

}
Goal : Given any reward function r given after exploration, output a
guess π̂r of the optimal policy in MDP when the reward function is r .
(e.g. the optimal policy in the MDP with parameters (p̂, r))

Formalization : minimize the sample complexity τ while ensuring

P
(
∀r ,V ?(s1; r)− V π̂r (s1; r) ≤ ε

)
≥ 1− δ

[Jin et al., 2020]

Emilie Kaufmann |CRIStAL - 44

Using UCB-VI for reward-free exploration

Use a UCB-VI like exploration policy ignoring the rewards, i.e.

πt = greedy(Q
t
) where

Q
t

h(s, a) = β̃t(s, a) +
∑
s′∈S

p̂t(s
′|s, a) max

b
V

t

h+1(s ′)

V
t

h(s) = min

[
H − h; max

b
Q

t

h(s, b)

]
,

and stop when maxa Q
t

1(s, a) ≤ ε/2.
[Kaufmann et al., 2021]

Ü using intrinsic rewards only can help learn good exploratory policies

Emilie Kaufmann |CRIStAL - 45

Outline

1 Regret and Sample Complexity in RL

2 Regret minimization in episodic MDPs
Optimism for Reinforcement Learning
Thompson Sampling for Reinforcement Learning

3 Scalable heuristics inspired by those principles

4 Sample complexity

5 (Bandit-based) Monte-Carlo Tree Search
UCB for Trees : UCT
From UCT to Alpha Zero

Emilie Kaufmann |CRIStAL - 46

Monte-Carlo Tree Search

MCTS is a family of methods that adaptively explore the tree of possible
next states in a given state s1, in order to find the best action in s1.

Figure – A generic MCTS algorithm for a game

MCTS requires a generative model (to sample trajectories from s1)

Emilie Kaufmann |CRIStAL - 47

Outline

1 Regret and Sample Complexity in RL

2 Regret minimization in episodic MDPs
Optimism for Reinforcement Learning
Thompson Sampling for Reinforcement Learning

3 Scalable heuristics inspired by those principles

4 Sample complexity

5 (Bandit-based) Monte-Carlo Tree Search
UCB for Trees : UCT
From UCT to Alpha Zero

Emilie Kaufmann |CRIStAL - 48

The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MAX node s (= root player move), select an action

argmax
a∈C(s)

S(s, a)

N(s, a)
+ c

√
log (

∑
b N(s, b))

N(s, a)

N(s, a) : number of visits of (s, a)

S(s, a) : number of visits of (s, a) ending with the root player winning

8/11

2/6 2/3 4/2

N=19 visits

n3=6 visits
UCB3 = 4/6 + c√log(N)/n3

Emilie Kaufmann |CRIStAL - 49

The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MIN node s (= adversary move), select an action

argmin
a∈C(s)

S(s, a)

N(s, a)
− c

√
log (

∑
b N(s, b))

N(s, a)

N(s, a) : number of visits of (s, a)

S(s, a) : number of visits of (s, a) ending with the root player winning

8/11

2/6 2/3 4/2

N=19 visits

n3=6 visits
UCB3 = 4/6 + c√log(N)/n3

Emilie Kaufmann |CRIStAL - 49

The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MAX node s (= root player move), select an action

argmax
a∈C(s)

S(s, a)

N(s, a)
+ c

√
log (

∑
b N(s, b))

N(s, a)

N(s, a) : number of visits of (s, a)

S(s, a) : number of visits of (s, a) ending with the root player winning

When a leaf (or some maximal depth) is reached :

I a playout is performed (play the game until the end with a simple heuristic,

or produce a random evaluation of the leaf position)

I the outcome of the playout (typically 1/0) is stored in all the nodes
visited in the previous trajectory

Emilie Kaufmann |CRIStAL - 49

The UCT algorithm

I first good AIs for Go where based on variants on UCT

I it remains a heuristic (no sample complexity guarantees, parameter c
fined-tuned for each application)

I many variants have been proposed

[Browne et al., 2012]

Emilie Kaufmann |CRIStAL - 50

Outline

1 Regret and Sample Complexity in RL

2 Regret minimization in episodic MDPs
Optimism for Reinforcement Learning
Thompson Sampling for Reinforcement Learning

3 Scalable heuristics inspired by those principles

4 Sample complexity

5 (Bandit-based) Monte-Carlo Tree Search
UCB for Trees : UCT
From UCT to Alpha Zero

Emilie Kaufmann |CRIStAL - 51

Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Selection step : in some state s, choose the next action to be

argmax
a∈C(s)

[
S(s, a)

N(s, a)
+ c × P(s, a)

√
N(s)

1 + N(s, a)

]
for some (fine-tuned) constant c .

Emilie Kaufmann |CRIStAL - 52

Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Selection step : in some state s, choose the next action to be

argmax
a∈C(s)

[
S(s, a)

N(s, a)
+ c × P(s, a)

√
N(s)

1 + N(s, a)

]
for some (fine-tuned) constant c .

Emilie Kaufmann |CRIStAL - 52

Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Expansion step : once a leaf sL is reached, compute (p, v) = fθ(sL).

I Set v to be the value of the leaf

I For all possible next actions b :

Ü initialize the count N(sL, b) = 0
Ü initialize the prior probability P(sL, b) = pb (possibly add some noise)

Emilie Kaufmann |CRIStAL - 52

Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Back-up step : for all ancestor st , at in the trajectory that end in leaf sL,

N(st , at) ← N(st , at) + 1

S(st , at) ← S(st , at) + v

Emilie Kaufmann |CRIStAL - 52

Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Output of the planning algorithm ? select an action a at random
according to

π(a) =
N(s0, a)1/τ∑
b N(s0, b)1/τ

for some (fine-tuned) temperature τ .

Emilie Kaufmann |CRIStAL - 52

Training the neural network

I In AlphaGo, fθ was trained on a database of games played by human

I In AlphaZero, the network is trained using only self-play

[Silver et al., 2016, Silver et al., 2017]

Let θ be the current parameter of the network (p, v) = fθ(sL).

1 generate N games where each player uses MCTS(θ) to select the
next action at (and output a probability over actions πt)

D =

Nb games⋃
i=1

{
(st , πt ,±rTi)

}Ti

i=1

Ti : length of game i , rTi ∈ {−1, 0, 1} outcome of game i for one player

2 Based on a sub-sample of D, train the neural network using
stochastic gradient descent on the loss function

L(s,π, z ; p, v) = (z − v)2 − π> log(p) + c‖θ‖2

Emilie Kaufmann |CRIStAL - 53

A nice actor-critic architecture

AlphaZero alternates between

I The actor : MCTS(θ)
generates trajectories guided by the network fθ but still exploring

Ü act as a policy improvement
(N = 25000 games played, in which the choice of each move uses MCTS with

1600 simulations)

I The critic : neural network fθ
updates θ based on trajectories followed by the critic

Ü evaluate the actor’s policy

Emilie Kaufmann |CRIStAL - 54

Conclusion : Bandits for RL

Bandits tools are useful for Reinforcement Learning :

I UCB-VI, PSRL : bandit-based exploration for tabular MDPs

I ... that can motivate “deeper” heuristics

Bandit tools lead to big success in Monte-Carlo planning

I ... without proper sample complexity guarantees

Ü Unifying theory and practice is a big challenge in RL !

Emilie Kaufmann |CRIStAL - 55

Azar, M. G., Osband, I., and Munos, R. (2017).

Minimax regret bounds for reinforcement learning.

In Proceedings of the 34th International Conference on Machine Learning,
(ICML).

Badia, A. P., Sprechmann, P., Vitvitskyi, A., Guo, Z. D., Piot, B., Kapturowski,
S., Tieleman, O., Arjovsky, M., Pritzel, A., Bolt, A., and Blundell, C. (2020).

Never give up : Learning directed exploration strategies.

In ICLR.

Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and
Munos, R. (2016).

Unifying count-based exploration and intrinsic motivation.

In Advances in Neural Information Processing Systems (NIPS).

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012).

A survey of monte carlo tree search methods.

IEEE Transactions on Computational Intelligence and AI in games,, 4(1) :1–49.

Burda, Y., Edwards, H., Pathak, D., Storkey, A. J., Darrell, T., and Efros, A. A.
(2018).

Large-scale study of curiosity-driven learning.

arxiv :1808.04355.

Burda, Y., Edwards, H., Storkey, A. J., and Klimov, O. (2019).

Exploration by random network distillation.

In ICLR.

Domingues, O. D., Ménard, P., Kaufmann, E., and Valko, M. (2021).

Episodic reinforcement learning in finite mdps : Minimax lower bounds revisited.

In Algorithmic Learning Theory (ALT).

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih,
V., Munos, R., Hassabis, D., Pietquin, O., Blundell, C., and Legg, S. (2017).

Noisy networks for exploration.

arXiv :1706.10295.

Jaksch, T., Ortner, R., and Auer, P. (2010).

Near-Optimal regret bounds for reinforcement learning.

Journal of Machine Learning Research, 11 :1563–1600.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. (2018).

Is Q-learning provably efficient ?

In Advances in Neural Information Processing Systems (NeurIPS).

Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu, T. (2020).

Reward-free exploration for reinforcement learning.

In International Conference on Machine Learning, pages 4870–4879. PMLR.

Kakade, S. (2003).

On the Sample Complexity of Reinforcement Learning.

PhD thesis, University College London.

Kaufmann, E., Ménard, P., Domingues, O. D., Jonsson, A., Leurent, E., and
Valko, M. (2021).

Adaptive reward-free exploration.

In Algorithmic Learning Theory (ALT).

Kocsis, L. and Szepesvári, C. (2006).

Bandit based monte-carlo planning.

In Proceedings of the 17th European Conference on Machine Learning,
ECML’06, pages 282–293, Berlin, Heidelberg. Springer-Verlag.

Ménard, P., Domingues, O. D., Jonsson, A., Kaufmann, E., Leurent, E., and
Valko, M. (2021).

Fast active learning for pure exploration in reinforcement learning.

In International Conference on Machine Learning (ICML).

Osband, I., Blundell, C., Pritzel, A., and Roy, B. V. (2016).

Deep exploration via bootstrapped DQN.

In Advances in Neural Information Processing Systems (NIPS).

Osband, I., Van Roy, B., and Russo, D. (2013).

(More) Efficient Reinforcement Learning Via Posterior Sampling.

In Advances in Neural Information Processing Systems.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016).

Mastering the game of go with deep neural networks and tree search.

Nature, 529 :484–489.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre,
L., van den Driessche, G., Graepel, T., and Hassabis, D. (2017).

Mastering the game of go without human knowledge.

Nature, 550 :354–.

Simchowitz, M. and Jamieson, K. G. (2019).

Non-asymptotic gap-dependent regret bounds for tabular mdps.

In Advances in Neural Information Processing Systems (NeurIPS).

Strens, M. (2000).

A Bayesian Framework for Reinforcement Learning.

In ICML.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schulman,
J., Turck, F. D., and Abbeel, P. (2017).

#exploration : A study of count-based exploration for deep reinforcement
learning.

In Advances in Neural Information Processing Systems (NIPS).

Tiapkin, D., Belomestny, D., Calandriello, D., Moulines, E., Munos, R., Naumov,
A., Rowland, M., Valko, M., and Ménard, P. (2022).

Optimistic posterior sampling for reinforcement learning with few samples and
tight guarantees.

In NeurIPS.

Wagenmaker, A. J., Simchowitz, M., and Jamieson, K. (2022).

Beyond no regret : Instance-dependent PAC reinforcement learning.

In Conference On Learning Theory (COLT).

	Regret and Sample Complexity in RL
	Regret minimization in episodic MDPs
	Optimism for Reinforcement Learning
	Thompson Sampling for Reinforcement Learning

	Scalable heuristics inspired by those principles
	Sample complexity
	(Bandit-based) Monte-Carlo Tree Search
	UCB for Trees: UCT
	From UCT to Alpha Zero

