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RL : Taking a step back

RL ↔ Learn a good policy in an unknown Markov Decision Process

Good policy : according to some notion of value

V π(s) = Eπ
[ ∞∑

t=1

γt−1rt

∣∣∣∣∣ s1 = s

]

or V π(s) = Eπ
[

H∑
t=1

rt

∣∣∣∣∣ s1 = s

]

Learn : with what constraints ?

I learn a good policy using few interactions

I learn a good policy while maximizing rewards

Both notions have been mathematically formalized in the (theoretical)
RL literature, and mostly studied for tabular MDPs
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]

or V π(s) = Eπ
[

H∑
t=1

rt

∣∣∣∣∣ s1 = s

]

Learn : with what constraints ?

I learn a good policy using few interactions (sample complexity)

I learn a good policy while maximizing rewards (regret)

Both notions have been mathematically formalized in the (theoretical)
RL literature, and mostly studied for tabular MDPs
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Outline of the last two sessions

I In-depth study of the simplest MDP : the multi-armed bandit

Ü Stochastic bandit algorithms (and their theoretical guarantees)
Ü Towards a more realistic model : contextual bandits
Ü Regret or Sample complexity ?

I Bandit tools for reinforcement learning (next week)

Ü (Bandit-based) exploration in RL
Ü (Bandit-based) Monte-Carlo Tree Search
Ü AlphaZero
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Stochastic bandit : a simple MDP

A stochastic multi-armed bandit model is an MDP with a single state s0

I unknown reward distribution νs0,a with mean r(s0, a)

I transition p(s0|s0, a) = 1

I the agent repeatedly chooses between the same set of actions

an agent facing arms in a Multi-Armed Bandit
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Typical applications

Clinical trials

I K treatments for a given symptom (with unknown effect)

I What treatment should be allocated to the next patient based on
responses observed on previous patients ?

Online advertisement

I K adds that can be displayed

I Which add should be displayed for a user, based on the previous
clicks of previous (similar) users ?
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The Multi-Armed Bandit Setup

K arms ↔ K rewards streams (Xa,t)t∈N

At round t, an agent :

I chooses an arm At

I receives a reward Rt = XAt ,t

Sequential sampling strategy (bandit algorithm) :

At+1 = Ft(A1,R1, . . . ,At ,Rt).

Goal (for now !) : Maximize
∑T

t=1 Rt .
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The Stochastic Multi-Armed Bandit Setup

K arms ↔ K probability distributions : νa has mean µa

ν1 ν2 ν3 ν4 ν5

At round t, an agent :

I chooses an arm At

I receives a reward Rt = XAt ,t ∼ νAt

Sequential sampling strategy (bandit algorithm) :

At+1 = Ft(A1,R1, . . . ,At ,Rt).

Goal (for now !) : Maximize E
[∑T

t=1 Rt

]
Ü a particular reinforcement learning problem

.
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Clinical trials

Historical motivation [Thompson, 1933]

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

For the t-th patient in a clinical study,

I chooses a treatment At

I observes a response Rt ∈ {0, 1} : P(Rt = 1|At = a) = µa

Goal : maximize the expected number of patients healed
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Online content optimization

Modern motivation ($$) [Li et al., 2010]
(recommender systems, online advertisement)

ν1 ν2 ν3 ν4 ν5

For the t-th visitor of a website,

I recommend a movie At

I observe a rating Rt ∼ νAt (e.g. Rt ∈ {1, . . . , 5})

Goal : maximize the sum of ratings
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Regret of a bandit algorithm

Bandit instance : ν = (ν1, ν2, . . . , νK ), mean of arm a : µa = EX∼νa [X ].

µ? = max
a∈{1,...,K}

µa a? = argmax
a∈{1,...,K}

µa.

Maximizing rewards ↔ selecting a? as much as possible
↔ minimizing the regret [Robbins, 1952]

Rν(A,T ) := Tµ?︸︷︷︸
sum of rewards of
an oracle strategy

always selecting a?

− E

[
T∑
t=1

Rt

]
︸ ︷︷ ︸

sum of rewards of
the strategyA

What regret rate can we achieve ?

Ü consistency : Rν(A,T )
T → 0

Ü can we be more precise ?
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Regret decomposition

Na(t) : number of selections of arm a in the first t rounds
∆a := µ? − µa : sub-optimality gap of arm a

Regret decomposition

Rν(A,T ) =
K∑

a=1

∆aE [Na(T )] .

Proof.

Emilie Kaufmann |CRIStAL - 11



Regret decomposition

Na(t) : number of selections of arm a in the first t rounds
∆a := µ? − µa : sub-optimality gap of arm a

Regret decomposition

Rν(A,T ) =
K∑

a=1

∆aE [Na(T )] .

A strategy with small regret should :

I select not too often arms for which ∆a > 0

I ... which requires to try all arms to estimate the values of the ∆a’s

⇒ Exploration / Exploitation trade-off
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The greedy strategy

Select each arm once, then exploit the current knowledge :

At+1 = argmax
a∈[K ]

µ̂a(t)

where

I Na(t) =
∑t

s=1 1(As = a) is the number of selections of arm a

I µ̂a(t) = 1
Na(t)

∑t
s=1 Xs1(As = a) is the empirical mean of the

rewards collected from arm a

Thre greedy strategy can fail ! ν1 = B(µ1), ν2 = B(µ2), µ1 > µ2

E[N2(T )] ≥ (1− µ1)µ2 × (T − 1)

Ü Exploitation is not enough, we need to add some exploration
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Outline

1 Fixing the greedy strategy

2 Optimistic Exploration
A simple UCB algorithm
Towards optimal algorithms

3 Randomized Exploration : Thompson Sampling

4 Contextual Bandits
Lin-UCB
Linear Thompson Sampling

5 Bandits beyond Regret
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Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
I draw each arm m times

I compute the empirical best arm â = argmaxa µ̂a(Km)

I keep playing this arm until round T

At+1 = â for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Rν(ETC,T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× P (µ̂2,m ≥ µ̂1,m)

µ̂a,m : empirical mean of the first m observations from arm a
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Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Rν(ETC,T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× P (µ̂2,m ≥ µ̂1,m)

µ̂a,m : empirical mean of the first m observations from arm a
→ requires a concentration inequality
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A Concentration Inequality

Sub-Gaussian random variables : Z − µ is σ2-subGaussian if

E[Z ] = µ and E
[
eλ(Z−µ)

]
≤ e

λ2σ2

2 . (1)

Hoeffding inequality

Zi i.i.d. satisfying (1). For all s ≥ 1

P
(
Z1 + · · ·+ Zs

s
≥ µ+ x

)
≤ e−

sx2

2σ2

I νa bounded in [a, b] : (b − a)2/4 sub-Gaussian (Hoeffding’s lemma)

I νa = N (µa, σ
2) : σ2 sub-Gaussian

Emilie Kaufmann |CRIStAL - 15



A Concentration Inequality

Sub-Gaussian random variables : Z − µ is σ2-subGaussian if

E[Z ] = µ and E
[
eλ(Z−µ)

]
≤ e

λ2σ2

2 . (1)

Hoeffding inequality

Zi i.i.d. satisfying (1). For all s ≥ 1

P
(
Z1 + · · ·+ Zs

s
≤ µ− x

)
≤ e−

sx2

2σ2

I νa bounded in [a, b] : (b − a)2/4 sub-Gaussian (Hoeffding’s lemma)

I νa = N (µa, σ
2) : σ2 sub-Gaussian

Emilie Kaufmann |CRIStAL - 15



Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
I draw each arm m times

I compute the empirical best arm â = argmaxa µ̂a(Km)

I keep playing this arm until round T

At+1 = â for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Assumption : ν1, ν2 are bounded in [0, 1].

Rν(T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× P (µ̂2,m ≥ µ̂1,m)

µ̂a,m : empirical mean of the first m observations from arm a
→ Hoeffding’s inequality
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Rν(T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× exp(−m∆2/2)

µ̂a,m : empirical mean of the first m observations from arm a
→ Hoeffding’s inequality
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Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
I draw each arm m times

I compute the empirical best arm â = argmaxa µ̂a(Km)

I keep playing this arm until round T

At+1 = â for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Assumption : ν1, ν2 are bounded in [0, 1].

For m = 2
∆2 log

(
T∆2

2

)
,

Rν(ETC,T ) ≤ 2

∆

[
log

(
T∆2

2

)
+ 1

]
.

+ logarithmic regret !

− requires the knowledge of T and ∆
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Sequential Explore-Then-Commit

I explore uniformly until a random time of the form

τ = inf

{
t ∈ N : |µ̂1(t)− µ̂2(t)| >

√
c log(T/t)

t

}
I âτ = argmax a µ̂a(τ) and (At+1 = âτ ) for t ∈ {τ + 1, . . . ,T}

0 200 400 600 800 1000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Ü [Garivier et al., 2016] for two Gaussian arms, for c = 8, same regret
as ETC, without the knowledge of ∆

... but larger regret as that of the best fully sequential strategy
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Another possible fix : ε-greedy

The ε-greedy rule [Sutton and Barto, 1998] is a simple randomized way
to alternate exploration and exploitation.

ε-greedy strategy

At round t,

I with probability ε
At ∼ U({1, . . . ,K})

I with probability 1− ε

At = argmax
a=1,...,K

µ̂a(t).

Ü Linear regret : Rν (ε-greedy,T ) ≥ εK−1
K ∆minT .

∆min = min
a:µa<µ?

∆a
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Another possible fix : ε-greedy

εt-greedy strategy

At round t,

I with probability εt := min
(
1, K

d2t

)
At ∼ U({1, . . . ,K})

I with probability 1− εt
At = argmax

a=1,...,K
µ̂a(t − 1).

Theorem [Auer et al., 2002]

If 0 < d ≤ ∆min, Rν (εt-greedy,T ) = O
(

K log(T )
d2

)
.

Ü requires the knowledge of a lower bound on ∆min
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Outline

1 Fixing the greedy strategy

2 Optimistic Exploration
A simple UCB algorithm
Towards optimal algorithms

3 Randomized Exploration : Thompson Sampling

4 Contextual Bandits
Lin-UCB
Linear Thompson Sampling

5 Bandits beyond Regret
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The optimism principle

Step 1 : construct a set of statistically plausible models

I For each arm a, build a confidence interval on the mean µa :

Ia(t) = [LCBa(t),UCBa(t)]

LCB = Lower Confidence Bound
UCB = Upper Confidence Bound

Figure – Confidence intervals on the means after t rounds
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The optimism principle

Step 2 : act as if the best possible model were the true model
(optimism in face of uncertainty)

Figure – Confidence intervals on the means after t rounds

I That is, select

At+1 = argmax
a=1,...,K

UCBa(t).
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How to build confidence intervals ?

We need UCBa(t) such that

P (µa ≤ UCBa(t)) & 1− t−1.

Ü tool : concentration inequalities

Example : rewards are σ2 sub-Gaussian

Reminder : Hoeffding inequality

Zi i.i.d. with mean µ s.t. E[eλ(Z1−µ)] ≤ e
λ2σ2

2 . For all s ≥ 1

P
(
Z1 + · · ·+ Zs

s
< µ− x

)
≤ e−

sx2

2σ2

Emilie Kaufmann |CRIStAL - 25



How to build confidence intervals ?

We need UCBa(t) such that

P (µa ≤ UCBa(t)) & 1− t−1.

Ü tool : concentration inequalities

Example : rewards are σ2 sub-Gaussian

Reminder : Hoeffding inequality

Zi i.i.d. with mean µ s.t. E[eλ(Z1−µ)] ≤ e
λ2σ2

2 . For all s ≥ 1

P
(
Z1 + · · ·+ Zs

s
< µ− x

)
≤ e−

sx2

2σ2

"Cannot be used directly in a bandit model as the number of
observations from each arm is random !
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How to build confidence intervals ?

I Na(t) =
∑t

s=1 1(As=a) number of selections of a after t rounds

I µ̂a,s = 1
s

∑s
k=1 Ya,k average of the first s observations from arm a

I µ̂a(t) = µ̂a,Na(t) empirical estimate of µa after t rounds

Hoeffding inequality + union bound

P

(
µa ≤ µ̂a(t) +

√
6σ2 log(t)

Na(t)

)
≥ 1− 1

t2

Proof.

P

(
µa > µ̂a(t) +

√
6σ2 log(t)

Na(t)

)
≤ P

(
∃s ≤ t : µa > µ̂a,s +

√
6σ2 log(t)

s

)

≤
t∑

s=1

P

(
µ̂a,s < µa −

√
6σ2 log(t)

s

)
≤

t∑
s=1

1

t3
=

1

t2
.
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A first UCB algorithm

UCB(α) selects At+1 = argmaxa UCBa(t) where

UCBa(t) = µ̂a(t)︸ ︷︷ ︸
exploitation term

+

√
α log(t)

Na(t)︸ ︷︷ ︸
exploration bonus

.

I this form of UCB was first proposed for Gaussian rewards
[Katehakis and Robbins, 1995]

I popularized by [Auer et al., 2002] for bounded rewards :
UCB1, for α = 2

I the analysis of UCB(α) was further refined to hold for α > 1/2 in
that case [Bubeck, 2010, Cappé et al., 2013]
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A UCB algorithm in action
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A regret bound for UCB(α)

Theorem

For σ2-subGaussian rewards, the UCB algorithm with parameter α = 6σ2

satisfies, for any sub-optimal arm a,

Eµ[Na(T )] ≤ 24σ2

∆2
a

log(T ) + 1 +
π2

3

where ∆a = µ? − µa.

Consequence :

Rν(UCB(6σ2),T ) ≤

( ∑
a:µa<µ?

24σ2

∆a

)
log(T ) +

(
1 +

π2

3

) K∑
a=1

∆a
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Proof (1/2)

For each arm i ∈ {1, a}, define the two ends of the confidence interval :

UCBi (t) = µ̂i (t) +

√
6σ2 log(t)

Ni (t)

LCBi (t) = µ̂i (t)−

√
6σ2 log(t)

Ni (t)

and the good event

Et = (µ1 < UCB1(t)) ∩ (µa > LCBa(t))

I Step 1 : Hoeffding inequality + union bound :

P (Ect ) ≤ P

(
µ1 > µ̂1(t) +

√
6σ2 log(t)

N1(t)

)
+P

(
µa < µ̂a(t)−

√
6σ2 log(t)

Na(t)

)
≤ 2

t2
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Proof (2/2)

I Step 2 : What happens on the good event ?

(At+1 = a) ∩ (µ1 < UCB1(t)) ∩ (µa > LCBa(t))

 µ1 µa

 UCBa LCBa UCB1 LCB1

Δa

⇒ Na(t) ≤ 24σ2 log(t)

∆2
a

I Step 3 : Putting everything together

E[Na(T )] ≤ 1 +
T−1∑
t=K

P (Ect ) +
T−1∑
t=K

P (At+1 = a, Et)

≤ 1 +
π2

3
+

T−1∑
t=K

P
(
At+1 = a,Na(t) ≤ 24σ2 log(T )

∆2
a

)
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(At+1 = a) ∩ (µ1 < UCB1(t)) ∩ (µa > LCBa(t))

 µ1 µa

 UCBa LCBa UCB1 LCB1

Δa

⇒ Na(t) ≤ 24σ2 log(t)

∆2
a

I Step 3 : Putting everything together

E[Na(T )] ≤ 1 +
T−1∑
t=K

P (Ect ) +
T−1∑
t=K

P (At+1 = a, Et)

≤ 1 +
π2

3
+

24σ2 log(T )

∆2
a
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A worse-case regret bound

Corollary

Rν(UCB(6σ2),T ) ≤ 10
√
KT log(T ) +

(
1 +

π2

3

)( K∑
a=1

∆a

)

Proof. For any algorithm satisfying E[Na(T )] ≤ C log(T )
∆a

+ D for all
sub-optimal arm a, for any ∆ > 0,

Rν(T ) =
∑

a:∆a≤∆

∆aE[Na(T )] +
∑

a:∆a≥∆

∆aE[Na(T )]

≤ ∆T +
∑

a:∆a≥∆

(
C

log(T )

∆a
+ D∆a

)

≤ ∆T +
CK log(T )

∆
+ D

(
K∑

a=1

∆a

)

= 2
√

CKT log(T ) + D

(
K∑

a=1

∆a

)
for ∆ =

√
CK log(T )

T

Emilie Kaufmann |CRIStAL - 32



Best known problem-dependent bound

Context : σ2 sub-Gaussian rewards

UCBa(t) = µ̂a(t) +

√
2σ2(log(t) + c log log(t))

Na(t)

(c = 0 corresponds to UCB(α) with α = 2σ2)

Theorem [Cappé et al.’13]

For c ≥ 3, the UCB algorithm associated to the above index satisfy

E[Na(T )] ≤ 2σ2

∆2
a

log(T ) + Cµ

√
log(T ).
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Summary

For UCB(α) applied to σ2-subGaussian reward, setting α = 2σ2 yields

I a problem-dependent regret bound of(
K∑

a=1

2σ2

∆a

)
log(T ) + o(log(T ))

I a worse-case regret of order

O
(√

KT log(T )
)

Ü how good are these regret rates ?
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A worse-case lower bound

Theorem [Cesa-Bianchi and Lugosi, 2006]

Fix T ∈ N. For every bandit algorithm A, there exists a stochastic bandit
model ν with rewards supported in [0, 1] such that

Rν(A,T ) ≥ 1

20

√
KT

I worse-case model :{
νa = B(1/2) for all a 6= i
νi = B(1/2 + ∆)

with ∆ '
√
K/T .

Remark. UCB achieves O(
√

KT log(T )) (near-optimal)
There exists worse-case optimal algorithms, e.g., MOSS or Tsallis-Inf
[Audibert and Bubeck, 2010, Zimmert and Seldin, 2021]
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The Lai and Robbins lower bound

Context : a parametric bandit model where each arm is parameterized
by its mean ν = (νµ1 , . . . , νµK

), µa ∈ I.

ν ↔ µ = (µ1, . . . , µK )

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) := KL (νµ, νµ′) = EX∼νµ

[
log

dνµ
dνµ′

(X )

]

Theorem
For uniformly good algorithm,

µa < µ? ⇒ lim inf
T→∞

Eµ[Na(T )]

logT
≥ 1

kl(µa, µ?)

[Lai and Robbins, 1985]
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Context : a parametric bandit model where each arm is parameterized
by its mean ν = (νµ1 , . . . , νµK

), µa ∈ I.

ν ↔ µ = (µ1, . . . , µK )

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) :=
(µ− µ′)2

2σ2
(Gaussian bandits)

Theorem
For uniformly good algorithm,

µa < µ? ⇒ lim inf
T→∞

Eµ[Na(T )]

logT
≥ 1
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The Lai and Robbins lower bound

Context : a parametric bandit model where each arm is parameterized
by its mean ν = (νµ1 , . . . , νµK

), µa ∈ I.

ν ↔ µ = (µ1, . . . , µK )

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) := µ log

(
µ

µ′

)
+ (1− µ) log

(
1− µ
1− µ′

)
(Bernoulli bandits)

Theorem
For uniformly good algorithm,

µa < µ? ⇒ lim inf
T→∞

Eµ[Na(T )]

logT
≥ 1

kl(µa, µ?)

[Lai and Robbins, 1985]
Emilie Kaufmann |CRIStAL - 37



UCB compared to the lower bound

Gaussian distributions with variance σ2

I Lower bound : E[Na(T )] & 2σ2

(µ?−µa)2 log(T )

I Upper bound : for UCB(α) with α = 2σ2

E[Na(T )] .
2σ2

(µ? − µa)2
log(T )

Ü UCB is asymptotically optimal for Gaussian rewards !

Bernoulli distributions (bounded, σ2 = 1/4)

I Lower bound : E[Na(T )] & 1
kl(µa,µ?) log(T )

I Upper bound : for UCB(α) with α = 1/2

E[Na(T )] .
1

2(µ? − µa)2
log(T )

Pinsker’s inequality : kl(µa, µ?) > 2(µ? − µa)2

Ü UCB is not asymptotically optimal for Bernoulli rewards...
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The kl-UCB algorithm

Exploits the KL-divergence in the lower bound !

UCBa(t) = max

{
q ∈ [0, 1] : kl (µ̂a(t), q) ≤ log(t)

Na(t)

}
.

q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ
a
(t)

[ ]
u

a
(t)

log(t)/N
a
(t)

d(µ
a
(t),q)

A tighter concentration inequality [Garivier and Cappé, 2011]

For rewards in a one-dimensional exponential family a,

P(UCBa(t) > µa) & 1− 1

t log(t)
.

a. e.g., Bernoulli, Gaussian with known variances, Poisson, Exponential
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An asymptotically optimal algorithm

kl-UCB selects At+1 = argmaxa UCBa(t) with

UCBa(t) = max

{
q ∈ [0, 1] : kl (µ̂a(t), q) ≤ log(t) + c log log(t)

Na(t)

}
.

Theorem [Cappé et al., 2013]

If c ≥ 3, for every arm such that µa < µ?,

Eµ[Na(T )] ≤ 1

kl(µa, µ?)
log(T ) + Cµ

√
log(T ).

I asymptotically optimal for Bernoulli rewards (and one-dimenionsal
exponential families) :

Rµ(kl-UCB,T ) '

( ∑
a:µa<µ?

∆a

kl(µa, µ?)

)
log(T ).
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A Bayesian algorithm

πa(0) : prior distribution on µa

πa(t) = L(µa|Ya,1, . . . ,Ya,Na(t)) : posterior distribution on µa

0

1

2 4 346 107 40

Two equivalent interpretations :

I [Thompson, 1933] : “randomize the arms according to their posterior
probability being optimal”

I modern view : “draw a possible bandit model from the posterior
distribution and act optimally in this sampled model”

Russo et al. 2018, A Tutorial on Thompson SamplingEmilie Kaufmann |CRIStAL - 42



Thompson Sampling

Input : a prior distribution π(0){
∀a ∈ {1..K}, θa(t) ∼ πa(t)
At+1 = argmax

a=1...K
θa(t).

Thompson Sampling for Bernoulli distributions νa = B(µa)

I πa(0) = U([0, 1])

I πa(t) = Beta (Sa(t) + 1;Na(t)− Sa(t) + 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

μ
1

θ
1
(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

μ
2

θ
2
(t)
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Thompson Sampling

Input : a prior distribution π(0){
∀a ∈ {1..K}, θa(t) ∼ πa(t)
At+1 = argmax

a=1...K
θa(t).

Thompson Sampling for Bernoulli distributions νa = B(µa)

I πa(0) = U([0, 1])

I πa(t) = Beta (Sa(t) + 1;Na(t)− Sa(t) + 1)

Thompson Sampling for Gaussian distributions νa = N (µa, σ
2)

I πa(0) ∝ 1

I πa(t) = N
(
µ̂a(t); σ2

Na(t)

)
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Regret bounds

Upper bound on sub-optimal selections

∀a 6= a?, Eµ[Na(T )] ≤ log(T )

kl(µa, µ?)
+ oµ(log(T )).

where kl(µa, µ?) is the KL divergence between νa and νa?

I proved for Bernoulli bandits, with a uniform prior

[Kaufmann et al., 2012, Agrawal and Goyal, 2013a]

I for 1-dimensional exponential families, with a conjuguate prior

[Agrawal and Goyal, 2017, Korda et al., 2013]

Ü Thompson Sampling is asymptotically optimal in these cases

I beyond 1-parameter models, the prior has to be well chosen...

[Honda and Takemura, 2014]
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Practical performance

Regret curves for UCB (α = 1/2) and Thompson Sampling on two
Bernoulli bandit problems, averaged over 500 runs.

Who is who ? Try it out !

µA = [0.45 0.5 0.6] µB = [0.1 0.05 0.02 0.01]
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Summary so far

Several important ideas to tackle the exploration/exploitation challenge
in a simple multi-armed bandit model with independent arms :

I Explore then Commit

I ε-greedy

I Optimistic algorithms : Upper Confidence Bounds strategies

I Randomized (Bayesian) exploration : Thompson Sampling

Can these ideas be extended to more structured models that are better
suited for applications ?
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Motivation

Which movie should Netflix recommend to a particular user, given the
ratings provided by previous users ?

Ü to make good recommendation, we should take into account the
characteristics of the movies / users

Arm in {1, 2, . . . ,K} ↔ Context vector in some space X

A contextual bandit model incorporates two components :

I a sequential interaction protocol :
pick an arm, receive a reward

I a regression model for the dependency between context and reward
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Generic Contextual Bandit Model

In each round t, the agent

I is given a set of arms Xt ⊆ X (can be different in each round)

I selects an arm xt ∈ Xt

I receives a reward
rt = f?(xt) + εt

where

• f? : X → R is an unknown regression function

• εt is a centered noise, independent from previous data

Example

• user t : descriptor ct ∈ Rp

• item a : descriptor xa ∈ Rp′

Ü build a user-item feature vector for (t, a) : xt,a ∈ Rd

Xt = {xt,a, a ∈ Kt}
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Contextual linear bandits

In each round t, the agent

I receives a (finite) set of arms Xt ⊆ Rd

I chooses an arm xt ∈ Xt

I gets a reward rt = θ>? xt + εt

where

• θ? ∈ Rd is an unknown regression vector

• εt is a centered noise, independent from past data

Assumption : σ2- sub-Gaussian noise

∀λ ∈ R, E
[
eλεt |Ft−1, xt

]
≤ e

λ2σ2

2

e.g., Gaussian noise, bounded noise.
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Contextual linear bandits

In each round t, the agent

I receives a (finite) set of arms Xt ⊆ Rd

I chooses an arm xt ∈ Xt

I gets a reward rt = θ>? xt + εt

where

• θ? ∈ Rd is an unknown regression vector

• εt is a centered noise, independent from past data

(Pseudo)-regret for contextual bandit

maximizing expected total reward ↔ minimizing the (expectation of)

RT (A) =
T∑
t=1

(
max
x∈Xt

θ>? x − θ>? xt
)

Ü in each round, comparison to a possibly different optimal action !
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Tools

Algorithms will rely on estimates / confidence regions / posterior
distributions for θ? ∈ Rd .

I design matrix (with regularization parameter λ > 0)

Bλt = λId +
t∑

s=1

xsx
>
s

I regularized least-square estimate

θ̂λt =
(
Bλt
)−1

(
t∑

s=1

rtxt

)

I estimate of the expected reward of an arm x ∈ Rd : x>θ̂λt
Ü sufficient for ε-greedy or ETC, but not for smarter algorithms...
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How to build (tight) confidence interval on
the mean rewards ?

Idea : rely on a confidence ellispoid around θ̂λt

θ? ∈
{
θ ∈ Rd : ‖θ − θ̂λt ‖A ≤ βt

}
Why ? For all invertible matrix positive semi-definite matrix A,

∀x ∈ Rd ,
∣∣∣x>θ? − x>θ̂λt

∣∣∣ ≤ ‖x‖A−1

∥∥∥θ? − θ̂λt ∥∥∥
A

‖x‖A =
√
x>Ax
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How to build (tight) confidence interval on
the mean rewards ?

Wanted : θ? ∈
{
θ ∈ Rd : ‖θ − θ̂λt ‖A ≤ βt

}
Example of threshold [Abbasi-Yadkori et al., 2011]

Assuming that the noise εt is σ2-sub-Gaussian, and that for all t and
x ∈ Xt , ‖x‖ ≤ L, we have

P
(
∃t ∈ N? : ‖θ? − θ̂λt ‖Bλt > β(t, δ)

)
≤ δ

with β(t, δ) = σ
√

2 log (1/δ) + d log
(
1 + t L

dλ

)
+
√
λ‖θ?‖.

Ü Letting

Ct(δ) =
{
θ ∈ Rd : ‖θ − θ̂λt ‖Bλt ≤ β(t, δ)

}
,

one has P (∀t ∈ N, θ? ∈ Ct(δ)) ≥ 1− δ.
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A Lin-UCB algorithm

Consequence :

P
(
∀t ∈ N∗,∀x ∈ Xt+1, x>θ?︸ ︷︷ ︸

unknown mean
of arm x

≤ x>θ̂λt + ‖x‖(Bλt )−1β(t, δ)︸ ︷︷ ︸
Upper Confidence Bound

)
≥ 1− δ.

One can assign to each arm x ∈ Xt+1

UCBx(t) = x>θ̂λt︸ ︷︷ ︸
empirical mean

(exploitation term)

+ ‖x‖(Bλt )−1β(t, δ)︸ ︷︷ ︸
exploration bonus

Lin-UCB
In each round t + 1, the algorithm selects

xt+1 = argmax
x∈Xt+1

[
x>θ̂λt + ‖x‖(Bλt )−1β(t, δ)

]
(many algorithms of this style, with different choices of β(t, δ))
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Theoretical guarantees

We want to bound the pseudo-regret

RT (Lin-UCB) =
T∑
t=1

(
max
x∈Xt

θ>? x − θ>? xt
)

or its expectation, the regret RT (Lin-UCB) = E[RT (Lin-UCB)].

Lemma
One can prove that, with probability larger than 1− δ,

∀T ∈ N∗,RT (Lin-UCB) ≤ Cβ(T , δ)
√
dT log(T )

I with the choice of β(t, δ) presented before, with high probability

RT (Lin-UCB) = O(d
√
T log(T ) +

√
dT log(T ) log(1/δ))

I choosing δ = 1/T , RT (Lin-UCB) = O(d
√
T log(T ))
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A Bayesian view on Linear Regression

Bayesian model :

I likelihood : rt = θ>? xt + εt

I prior : θ? ∼ N (0, κ2Id)

Assuming further that the noise is Gaussian : εt ∼ N (0, σ2), the
posterior distribution of θ? has a closed form :

θ?|x1, r1, . . . , xt , rt ∼ N
(
θ̂λt , σ

2
(
Bλt
)−1
)

with

• Bλt = λId +
∑t

s=1 xsx
>
s

• θ̂λt =
(
Bλt
)−1 (∑t

s=1 rsxs
)

is the regularized least square estimate

with a regularization parameter λ = σ2

κ2 .
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Thompson Sampling for Linear Bandits

Recall the Thompson Sampling principle :

“draw a possible model from the posterior distribution and act
optimally in this sampled model”

Thompson Sampling in linear bandits

In each round t + 1,

θ̃t ∼ N
(
θ̂λt , σ

2
(
Bλt
)−1
)

xt+1 = argmax
x∈Xt+1

x>θ̃t

Numerical complexity : one need to draw a sample from a multivariate
Gaussian distribution, e.g.

θ̃t = θ̂λt + σ
(
Bλt
)−1/2

X

where X is a vector with d independent N (0, 1) entries.
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Theoretical guarantees

[Agrawal and Goyal, 2013b] analyze a variant of Thompson Sampling
using some “posterior inflation” :

θ̃t ∼ N
(
θ̂1
t , v

2
(
B1
t

)−1
)

xt+1 = argmax
x∈Xt+1

x>θ̃t

where v = σ
√

9d ln(T/δ).

Theorem

If the noise is σ2-sub-Gaussian, the above algorithm satisfies

P
(
RT (TS) = O

(
d3/2
√
T
[
ln(T ) +

√
ln(T ) ln(1/δ)

]))
≥ 1− δ.

I slightly worse than Lin-UCB... in theory

I do we need the posterior inflation ?
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Beyond linear bandits

Depending on the application, other parameteric models may be better
suited than the simple linear model, for example the logistic model.

P (rt = 1|xt) =
1

1 + e−θ
>
? xt

P (rt = 0|xt) =
e−θ

>
? xt

1 + e−θ
>
? xt

e.g., clic / no-clic on an add depending on a user/add feature xt ∈ Rd

I [Filippi et al., 2010] : first UCB style algorithm for Generalized
Linear Bandit models

I Thompson Sampling for logistic bandits [Dumitrascu et al., 2018]

I going further : UCB/TS for neural bandits !
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Bandits without rewards ?

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

For the t-th patient in a clinical study,

I chooses a treatment At

I observes a response Xt ∈ {0, 1} : P(Xt = 1) = µAt

Maximize rewards ↔ cure as many patients as possible

Alternative goal : identify as quickly as possible the best treatment
(without trying to cure patients during the study)
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Bandits without rewards ?

Probability that some version of a website generates a conversion :

. . .

µ1 µ2 µK

Best version : a? = argmax
a=1,...,K

µa

Sequential protocol : for the t-th visitor :

I display version At

I observe conversion indicator Xt ∼ B(µAt ).

Maximize rewards ↔ maximize the number of conversions

Alternative goal : identify the best version
(without trying to maximize conversions during the test)
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A Pure Exploration Problem

Goal : identify an arm with mean close to µ? as quickly and accurately
as possible ' identify

a? = argmax
a=1,...,K

µa.

Algorithm : made of three components :

Ü sampling rule : At (arm to explore)

Ü recommendation rule : Bt (current guess for the best arm)

Ü stopping rule τ (when do we stop exploring ?)

Probability of error

The probability of error after T rounds is

pν(T ) = Pν (BT 6= a?) .

bla
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a=1,...,K

µa.

Algorithm : made of three components :

Ü sampling rule : At (arm to explore)

Ü recommendation rule : Bt (current guess for the best arm)

Ü stopping rule τ (when do we stop exploring ?)

Simple regret [Bubeck et al., 2011]

The simple regret after n rounds is

rν(n) = µ? − µBn .
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A Pure Exploration Problem

Goal : identify an arm with mean close to µ? as quickly and accurately
as possible ' identify

a? = argmax
a=1,...,K

µa.

Algorithm : made of three components :

Ü sampling rule : At (arm to explore)

Ü recommendation rule : Bt (current guess for the best arm)

Ü stopping rule τ (when do we stop exploring ?)

Simple regret [Bubeck et al., 2011]

The simple regret after n rounds is

rν(n) = µ? − µBn .

∆minpν(T ) ≤ Eν [rν(T )] ≤ ∆maxpν(T )
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Several objectives

Algorithm : made of three components :

Ü sampling rule : At (arm to explore)

Ü recommendation rule : Bt (current guess for the best arm)

Ü stopping rule τ (when do we stop exploring ?)

I Objectives studied in the literature :

Fixed-budget setting Fixed-confidence setting
input : budget T input : risk parameter δ

(tolerance parameter ε)
τ = T minimize E[τ ]

minimize P(BT 6= a?) P(Bτ 6= a?) ≤ δ
or E[rT (ν)] or P(rν(τ) > ε) ≤ δ

[Bubeck et al., 2011] [Even-Dar et al., 2006]
[Audibert et al., 2010]
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Can we use UCB ?

Context : bounded rewards (νa supported in [0, 1])

We know good algorithms to maximize rewards, for example UCB(α)

At+1 = argmax
a=1,...,K

µ̂a(t) +

√
α ln(t)

Na(t)

I How good is it for best arm identification ?

Possible recommendation rules :

Empirical Best Arm Bt = argmaxa µ̂a(t)
(EBA)

Most Played Arm Bt = argmaxa Na(t)
(MPA)

Empirical Distribution of Plays Bt ∼ pt , where

(EDP) pt =
(

N1(t)
t , . . . , NK (t)

t

)
[Bubeck et al., 2011]
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Can we use UCB ?

I UCB + Empirical Distribution of Plays

E [rν(T )] = E [µ? − µBT
] = E

[
K∑

b=1

(µ? − µb)1(BT =b)

]

= E

[
K∑

b=1

(µ? − µb)P(BT = b|FT )

]

= E

[
K∑

b=1

(µ? − µb)
Nb(T )

T

]

=
1

T

K∑
b=1

(µ? − µb)E[Nb(T )]

=
Rν(T )

T
.

Ü a conversion from cumulative regret to simple regret !
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Can we use UCB ?

I UCB + Empirical Distribution of Plays

E [rν (UCB(α),T )] ≤ Rν(UCB(α),T )

T
≤ C (ν) ln(T )

T

I Almost optimal in the worse case

Lower bound [Bubeck et al., 2011]

For every algorithm A, there exists a bandit instance ν in which

E[rν(A,T )] ≥ 1

20

√
K

T
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Can we use UCB ?

I UCB + Empirical Distribution of Plays

E [rν (UCB(α),T )] ≤ Rν(UCB(α),T )

T
≤ C

√
K ln(T )

T

I ... but potentially bad in the problem-dependent regime

The simple regret or the uniform sampling strategy decays exponentially :

Eν [rν (Unif,T )] ≤ (K − 1)∆max exp

(
−1

2

T

K
∆2

min

)

Ü UCB does not always provably outperform uniform sampling...
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(Problem-dependent) sample complexity

With Uniform Sampling, the number of sample needed to get an error
probability smaller than δ is of order

T ' K

∆2
min

log

(
1

δ

)
(assuming, e.g. rewards in [0,1])

I Can be improved for smarter algorithms to

T ' O
(
H(ν) log

(
1

δ

))
where

H(ν) =
K∑

a=1

1

∆2
a

with ∆a? = min
a 6=a?

∆a .

(and more precise complexity measures for parametric distributions
[Garivier and Kaufmann, 2016])
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Fixed Budget : Sequential Halving

Input : total number of plays T

Idea : split the budget in log2(K ) phases of equal length, eliminate the
worst half of the remaining arms after each phase.

Initialisation : S0 = {1, . . . ,K} ;
For r = 0 to dln2(K )e − 1, do

sample each arm a ∈ Sr tr =
⌊

T
|Sr |dlog2(K)e

⌋
times ;

let µ̂r
a be the empirical mean of arm a ;

let Sr+1 be the set of d|Sr |/2e arms with largest µ̂r
a

Output : BT the unique arm in Sdlog2(K)e

Theorem [Karnin et al., 2013]

Pν (BT 6= a?) ≤ 3 log2(K ) exp

(
− T

8 log2(K )H(ν)

)
.
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Fixed Confidence : LUCB

Ia(t) = [LCBa(t),UCBa(t)].

0

1

771 459 200 45 48 23

I At round t, draw

Bt = argmax
b

µ̂b(t)

Ct = argmax
c 6=Bt

UCBc(t)

I Stop at round t if

LCBBt (t) > UCBCt (t)− ε

Theorem [Kalyanakrishnan et al., 2012]

For well-chosen confidence intervals, Pν(µBτ > µ? − ε) ≥ 1− δ and

E [τδ] = O

([
K∑

a=1

1

∆2
a ∨ ε2

]
ln

(
1

δ

))
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(kl)-LUCB in action

UCBa(t) = max
{
q ∈ [0, 1] : Na(t)kl(µ̂a(t), q) ≤ log(Ct2/δ)

}
LCBa(t) = min

{
q ∈ [0, 1] : Na(t)kl(µ̂a(t), q) ≤ log(Ct2/δ)

}
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A comparison with UCB

Regret minimizing algorithms and Best Arm Identification algorithms
behave quite differently

0

1

6 31 436 17 9

0

1

771 459 200 45 48 23

Number of selections and confidence intervals for KL-UCB (left)
and KL-LUCB (right)
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Conclusion

In bandits, ε-greedy can be replaced by smarter algorithms

I both for learning while maximizing rewards (regret)

I and for fast identification of the best action (sample complexity)

Two important tools :

I confidence intervals

I posterior distributions

to better take into account the uncertainty and perform more efficient
(“directed”) exploration.

Those tools can also be used in contextual bandit models.
How about general Markov Decision Processes ?
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Filippi, S., Cappé, O., Garivier, A., and Szepesvári, C. (2010).

Parametric Bandits : The Generalized Linear case.



In Advances in Neural Information Processing Systems.

Garivier, A. and Cappé, O. (2011).
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