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Classical framework in stochastic optimization

f : X −→ R max
a∈X

f (a) ?

Sequential observations: at time t, choose at ∈ X , observe

xt = f (at) + εt

After T observations,

Minimize the optimization error

If ãT is a guess of the argmax

minimize E [f (ãT )− f (a∗)]

Minimize the regret

minimize E

[
T∑
t=1

(f (a∗)− f (at))

]
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A particular case: the bandit model

f : {1, . . . ,K} −→ R max
a=1,...,K

f (a) ?

Sequential observations: at time t, choose At ∈ {1, . . . ,K},
observe Xt ∼ νAt where νa has mean f (a)

After T observations,

Minimize the probability of error

If ÃT is a guess of the argmax

minimize P
(
ÃT 6= A∗

)
Minimize the regret

minimize E

[
T∑
t=1

(f (A∗)− f (At))

]
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Two bandit problems

A binary bandit model is a set of K arms, where

I arm a is a Bernoulli distribution with mean µa
I drawing arm a is observing a realization of B(µa)

I arms are assumed to be independent

In a bandit game, at round t, an agent

I chooses arm At based on past observations, according to his
sampling strategy, or bandit algorithm

I observes a sample Xt ∼ B(µAt )

Two possible objectives can be considered

I best arm identification

I regret minimization
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Zoom on an application

A doctor can choose between K different treatments

I treatment number a: (unknown) probability of sucess µa
I (unknown) best treatment: a∗ = argmaxa µa
I If treatment a is given to patient t, he is cured with

probability µa

The doctor:
I chooses treatment At to give to patient t
I observes whether the patient is healed : Xt ∼ B(µAt )

His goal: ajust (At) so that to

Regret minimization Best arm identification

maximize the number of patients identify the best treatment
healed during a study involving with high probability

T patients (and always give this one later)
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Asymptotically optimal algorithms

Na(t) be the number of draws of arm a up to time t

RT = E

[
T∑
t=1

(µ∗ − µAt )

]
=

K∑
a=1

(µ∗ − µa)E[Na(T )]

I [Lai and Robbins,1985]: every consistent algorithm satisfies

µa < µ∗ ⇒ lim inf
T→∞

E[Na(T )]

logT
≥ 1

d(µa, µa∗)

I A bandit algorithm is asymptotically optimal if

µa < µ∗ ⇒ lim sup
n→∞

E[Na(T )]

logT
≤ 1

d(µa, µa∗)

where
d(x , y) = KL(B(x),B(y)).
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A family of optimistic index policies

I For each arm a, compute a confidence interval on µa:

µa ≤ UCBa(t) w .h.p

I Act as if the best possible model was the true model
(optimism-in-face-of-uncertainty):

At = argmaxa UCBa(t)

Example UCB1 [Auer et al. 02] uses Hoeffding bounds:

UCBa(t) =
Sa(t)

Na(t)
+

√
2 log(t)

Na(t)
.

Sa(t): sum of the rewards collected from arm a up to time t.

E[Na(T )] ≤ 8

(µ∗ − µa)2
logT + C .
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KL-UCB: an asymptotically optimal algorithm

I KL-UCB [Cappé et al. 2013] uses the index:

ua(t) = argmax
x> Sa(t)

Na(t)

{
d

(
Sa(t)

Na(t)
, x

)
≤ log(t) + c log log(t)

Na(t)

}
with d(p, q) = KL (B(p),B(q)).
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E[Na(T )] ≤ 1

d(µa, µ∗)
logT + o(log log(T )).
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m best arms identification

Assume µ1 ≥ · · · ≥ µm > µm+1 ≥ . . . µK (Bernoulli bandit model)

Parameters and notations

I m the number of arms to find

I δ ∈]0, 1[ a risk parameter

I S∗m = {1, . . . ,m} the set of m optimal arms

The forecaster

I chooses at time t one (or several) arms to draw

I decides to stop after a (possibly random) total number of
samples from the arms τ

I recommends a set Ŝ of m arms

His goal (in the fixed-confidence setting)

I P(Ŝ = S∗m) ≥ 1− δ (the algorithm is δ-PAC)

I The sample complexity E[τ ] is small
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Challenges for m best arm identification

The regret minimization problem is ’solved’ in some sense:

I A lower bound on the regret of any good algorithm

lim inf
T→∞

RT

log(T )
≥

K∑
a=2

µ1 − µa
d(µa, µ1)

I Algorithms matching this bound, notably KL-UCB

For m best arm identification, we would want to give:

I A lower bound on the sample complexity E[τ ] of any δ-PAC
algorithm, featuring informational quantities

I δ-PAC algorithms matching this bound
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A general lower bound

Theorem [K.,Cappé, Garivier 14]

Any algorithm that is δ-PAC on every binary bandit model such
that µm > µm+1 satisfies, for δ ≤ 0.15,

E[τ ] ≥

(
m∑
t=1

1

d(µa, µm+1)
+

K∑
t=m+1

1

d(µa, µm)

)
log

1

2δ

This result follows from changes of distributions:

Lemma

ν = (ν1, ν2, . . . , νK ), ν ′ = (ν ′1, ν
′
2, . . . , ν

′
K ) two bandit models,

A ∈ Fτ , K∑
a=1

Eν [Na]KL(νa, ν
′
a) ≥ d(Pν(A),Pν′(A)).

14/22 08.2014 Emilie Kaufmann Two optimization problems in a stochastic bandit model



From stochastic optimization to bandit problems
Regret minimization

Best arm identification

m best arm identification
Sample complexity bounds
The particular case of two-armed bandits

An algorithm: KL-LUCB

Generic notation:

I confidence interval (C.I.) on the mean of arm a at round t:

Ia(t) = [La(t),Ua(t)]

I J(t) the set of m arms with highest empirical means

Our contribution: Introduce KL-based confidence intervals

Ua(t) = max {q ≥ µ̂a(t) : Na(t)d(µ̂a(t), q) ≤ β(t, δ)}
La(t) = min {q ≤ µ̂a(t) : Na(t)d(µ̂a(t), q) ≤ β(t, δ)}

for β(t, δ) some exploration rate.
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An algorithm: KL-LUCB

At round t, the algorithm:
I draws two well-chosen arms: ut and lt (in bold)
I stops when C.I. for arms in J(t) and J(t)c are separated

0

1

58 118 346 330 120 72

m = 3,K = 6
Set J(t), arm lt in bold Set J(t)c , arm ut in bold
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Theoretical guarantees

Theorem [K.,Kalyanakrishnan 2013]

KL-LUCB using the exploration rate

β(t, δ) = log

(
k1Kt

α

δ

)
,

with α > 1 and k1 > 1 + 1
α−1 satisfies P(Ŝ = S∗m) ≥ 1− δ.

For α > 2,

E[τ ] ≤ 4αH∗
[

log

(
k1K (H∗)α

δ

)
+ log log

(
k1K (H∗)α

δ

)]
+ Cα,

with
H∗ = min

c∈[µm+1;µm]

K∑
a=1

1

d∗(µa, c)
.
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Theoretical guarantees

I Another informational quantity: Chernoff information

d∗(x , y) := d(z∗, x) = d(z∗, y),

where z∗ is defined by the equality

d(z∗, x) = d(z∗, y).
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Summary

Lower bound

lim sup
δ→0

Eν [τ ]

log 1
δ

≥
m∑
t=1

1

d(µa, µm+1)
+

K∑
t=m+1

1

d(µa, µm)

Upper bound (for KL-UCB)

lim sup
δ→0

Eν [τ ]

log 1
δ

≤ 8 min
c∈[µm+1;µm]

K∑
a=1

1

d∗(µa, c)
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Refined results for two-armed bandits

A tighter lower bound [K.,Cappé, Garivier 14]

Any algorithm that is δ-PAC on every two-armed bandit model
such that µ1 > µ2 satisfies, for δ ≤ 0.15,

E[τ ] ≥ 1

d∗(µ1, µ2)
log

1

2δ

where d∗(µ1, µ2) := d(µ1, z∗) = d(µ2, z
∗), with z∗ defined by

d(µ1, z
∗) = d(µ2, z

∗).

Matching algorithms?

I Uniform sampling is (almost) optimal

I A stopping rule τ based on the difference of empirical means
is not optimal (and we propose a new one)
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Conclusion

I KL-based confidence intervals are useful in both settings,
though KL-UCB and KL-LUCB draw the arms differently

0

1

1289 111 22 36 19 22

0

1

771 459 200 45 48 23

(m=1)
I Do the complexity of these two problems feature the same

information-theoretic quantities?

inf
consistent
algorithms

lim sup
T→∞

RT

logT
=

K∑
a=2

µ1 − µa
d(µa, µ1)

inf
δ−PAC
algorithms

lim sup
δ→∞

E[τ ]

log(1/δ)
≥

K∑
a=1

1

d(µa, µm+1)
+

K∑
a=m+1

1

d(µa, µm)
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