

Two optimization problems in a stochastic bandit model

Emilie Kaufmann

joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan

Journées MAS 2014, Toulouse

From stochastic optimization to bandit problems

Regret minimization

Best arm identification

2/22 08.2014

Emilie Kaufmann

From stochastic optimization to bandit problems

Regret minimization Best arm identification Stochastic optimization Bandit models: classical framework

Classical framework in stochastic optimization

$$f: \mathcal{X} \longrightarrow \mathbb{R} \qquad \max_{a \in \mathcal{X}} f(a) ?$$

Sequential observations: at time t, choose $a_t \in \mathcal{X}$, observe

$$x_t = f(a_t) + \epsilon_t$$

After T observations,

Minimize the optimization error

If $\tilde{a_T}$ is a guess of the argmax

minimize
$$\mathbb{E}\left[f(\tilde{a_T}) - f(a^*)\right]$$

Minimize the regret

minimize
$$\mathbb{E}\left[\sum_{t=1}^{T}(f(a^*) - f(a_t))\right]$$

3/22 08.2014 Emilie Kaufmann

From stochastic optimization to bandit problems

Regret minimization Best arm identification Stochastic optimization Bandit models: classical framework

A particular case: the bandit model

$$f: \{1, \ldots, K\} \longrightarrow \mathbb{R} \qquad \max_{a=1, \ldots, K} f(a) ?$$

Sequential observations: at time t, choose $A_t \in \{1, \dots, K\}$,

observe $X_t \sim \nu_{A_t}$ where ν_a has mean f(a)

After T observations,

Minimize the probability of error

If $\tilde{A_T}$ is a guess of the argmax minimize

inimize
$$\mathbb{P}\left(\tilde{A_T} \neq A^*\right)$$

Minimize the regret

minimize
$$\mathbb{E}\left[\sum_{t=1}^{T}(f(A^*) - f(A_t))\right]$$

4/22 08.2014

Two bandit problems

A binary bandit model is a set of K arms, where

- arm a is a Bernoulli distribution with mean μ_a
- drawing arm *a* is observing a realization of $\mathcal{B}(\mu_a)$
- arms are assumed to be independent

In a bandit game, at round t, an agent

- chooses arm A_t based on past observations, according to his sampling strategy, or bandit algorithm
- observes a sample $X_t \sim \mathcal{B}(\mu_{A_t})$

Two possible objectives can be considered

- best arm identification
- regret minimization

Zoom on an application

A doctor can choose between *K* different treatments

- treatment number a: (unknown) probability of sucess μ_a
- (unknown) best treatment: $a^* = \operatorname{argmax}_a \mu_a$
- If treatment a is given to patient t, he is cured with probability μ_a

The doctor:

- chooses treatment A_t to give to patient t
- observes whether the patient is healed : $X_t \sim \mathcal{B}(\mu_{A_t})$

His goal: ajust (A_t) so that to

Regret minimization	Best arm identification
maximize the number of patients	identify the best treatment
healed during a study involving	with high probability
${\mathcal T}$ patients	(and always give this one later)
	TEL

08.2014

Performance criterion Bandit algorithms for regret minimization

From stochastic optimization to bandit problems

Regret minimization

Best arm identification

Performance criterion Bandit algorithms for regret minimization

Asymptotically optimal algorithms

 $N_a(t)$ be the number of draws of arm a up to time t

$$R_{T} = \mathbb{E}\left[\sum_{t=1}^{T} (\mu^{*} - \mu_{A_{t}})\right] = \sum_{a=1}^{K} (\mu^{*} - \mu_{a})\mathbb{E}[N_{a}(T)]$$

▶ [Lai and Robbins,1985]: every consistent algorithm satisfies

$$\mu_a < \mu^* \Rightarrow \liminf_{T \to \infty} \frac{\mathbb{E}[N_a(T)]}{\log T} \ge \frac{1}{d(\mu_a, \mu_{a^*})}$$

A bandit algorithm is asymptotically optimal if

$$\mu_{a} < \mu^{*} \Rightarrow \limsup_{n \to \infty} \frac{\mathbb{E}[N_{a}(T)]}{\log T} \leq \frac{1}{d(\mu_{a}, \mu_{a^{*}})}$$

where

$$d(x,y) = \mathsf{KL}(\mathcal{B}(x),\mathcal{B}(y)).$$

A family of optimistic index policies

For each arm a, compute a confidence interval on μ_a :

$$\mu_{a} \leq \textit{UCB}_{a}(t) \; w.h.p$$

Act as if the best possible model was the true model (optimism-in-face-of-uncertainty):

 $A_t = \operatorname{argmax}_a UCB_a(t)$

Example UCB1 [Auer et al. 02] uses Hoeffding bounds:

$$UCB_a(t) = rac{S_a(t)}{N_a(t)} + \sqrt{rac{2\log(t)}{N_a(t)}}.$$

 $S_a(t)$: sum of the rewards collected from arm a up to time t.

$$\mathbb{E}[N_a(T)] \leq \frac{8}{(\mu^* - \mu_a)^2} \log T + C.$$

Performance criterion Bandit algorithms for regret minimization

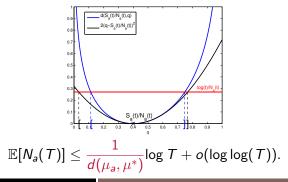
KL-UCB: an asymptotically optimal algorithm

► KL-UCB [Cappé et al. 2013] uses the index:

$$u_{a}(t) = \underset{x > \frac{S_{a}(t)}{N_{a}(t)}}{\operatorname{supp}} \left\{ d\left(\frac{S_{a}(t)}{N_{a}(t)}, x\right) \leq \frac{\log(t) + c\log\log(t)}{N_{a}(t)} \right\}$$

th $d(p, q) = \operatorname{KL}\left(\mathcal{B}(p), \mathcal{B}(q)\right)$

with $d(p,q) = KL(\mathcal{B}(p),\mathcal{B}(q)).$



Outline

m best arm identification Sample complexity bounds The particular case of two-armed bandits

From stochastic optimization to bandit problems

Regret minimization

Best arm identification

11/22 08.2014

Emilie Kaufmann

Two optimization problems in a stochastic bandit model

m best arm identification Sample complexity bounds The particular case of two-armed bandits

m best arms identification

Assume $\mu_1 \geq \cdots \geq \mu_m > \mu_{m+1} \geq \cdots \mid \mu_K$ (Bernoulli bandit model) Parameters and notations

- *m* the number of arms to find
- $\delta \in]0,1[$ a risk parameter
- $\mathcal{S}_m^* = \{1, \ldots, m\}$ the set of m optimal arms

The forecaster

- chooses at time t one (or several) arms to draw
- ► decides to stop after a (possibly random) total number of samples from the arms \u03c6
- recommends a set \hat{S} of *m* arms

His goal (in the fixed-confidence setting)

- $\mathbb{P}(\hat{\mathcal{S}} = \mathcal{S}_m^*) \ge 1 \delta$ (the algorithm is δ -PAC)
- The sample complexity $\mathbb{E}[\tau]$ is small

Challenges for *m* best arm identification

The regret minimization problem is 'solved' in some sense:

A lower bound on the regret of any good algorithm

$$\liminf_{T \to \infty} \frac{R_T}{\log(T)} \ge \sum_{a=2}^{K} \frac{\mu_1 - \mu_a}{d(\mu_a, \mu_1)}$$

Algorithms matching this bound, notably KL-UCB

Challenges for *m* best arm identification

The regret minimization problem is 'solved' in some sense:

A lower bound on the regret of any good algorithm

$$\liminf_{T \to \infty} \frac{R_T}{\log(T)} \ge \sum_{a=2}^K \frac{\mu_1 - \mu_a}{d(\mu_a, \mu_1)}$$

Algorithms matching this bound, notably KL-UCB

For m best arm identification, we would want to give:

- A lower bound on the sample complexity E[τ] of any δ-PAC algorithm, featuring informational quantities
- δ -PAC algorithms matching this bound

m best arm identification Sample complexity bounds The particular case of two-armed bandits

A general lower bound

Theorem [K., Cappé, Garivier 14]

Any algorithm that is $\delta\text{-PAC}$ on every binary bandit model such that $\mu_m>\mu_{m+1}$ satisfies, for $\delta\leq0.15,$

$$\mathbb{E}[\tau] \geq \left(\sum_{t=1}^m \frac{1}{d(\mu_a, \mu_{m+1})} + \sum_{t=m+1}^K \frac{1}{d(\mu_a, \mu_m)}\right) \log \frac{1}{2\delta}$$

This result follows from changes of distributions:

Lemma

$$\begin{split} \nu &= (\nu_1, \nu_2, \dots, \nu_K), \ \nu' = (\nu'_1, \nu'_2, \dots, \nu'_K) \text{ two bandit models,} \\ A &\in \mathcal{F}_{\tau}, \\ &\sum_{a=1}^{K} \mathbb{E}_{\nu}[N_a] \mathrm{KL}(\nu_a, \nu'_a) \geq d(\mathbb{P}_{\nu}(A), \mathbb{P}_{\nu'}(A)). \end{split}$$

m best arm identification **Sample complexity bounds** The particular case of two-armed bandits

An algorithm: KL-LUCB

Generic notation:

▶ confidence interval (C.I.) on the mean of arm *a* at round *t*:

 $\mathcal{I}_{a}(t) = [L_{a}(t), U_{a}(t)]$

• J(t) the set of *m* arms with highest empirical means

Our contribution: Introduce KL-based confidence intervals

$$\begin{aligned} U_a(t) &= \max \left\{ q \geq \hat{\mu}_a(t) : N_a(t) d(\hat{\mu}_a(t), q) \leq \beta(t, \delta) \right\} \\ L_a(t) &= \min \left\{ q \leq \hat{\mu}_a(t) : N_a(t) d(\hat{\mu}_a(t), q) \leq \beta(t, \delta) \right\} \end{aligned}$$

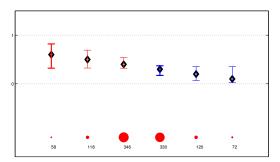
for $\beta(t, \delta)$ some exploration rate.

m best arm identification **Sample complexity bounds** The particular case of two-armed bandits

An algorithm: KL-LUCB

At round *t*, the algorithm:

- draws two well-chosen arms: u_t and l_t (in bold)
- ▶ stops when C.I. for arms in J(t) and $J(t)^c$ are separated



m = 3, K = 6Set J(t), arm I_t in bold Set $J(t)^c$, arm u_t in bold

m best arm identification Sample complexity bounds The particular case of two-armed bandits

Theoretical guarantees

Theorem [K.,Kalyanakrishnan 2013]

KL-LUCB using the exploration rate

$$\beta(t,\delta) = \log\left(\frac{k_1 K t^{\alpha}}{\delta}\right),$$

with $\alpha > 1$ and $k_1 > 1 + \frac{1}{\alpha - 1}$ satisfies $\mathbb{P}(\hat{S} = S_m^*) \ge 1 - \delta$. For $\alpha > 2$,

$$\mathbb{E}[\tau] \leq 4\alpha H^* \left[\log \left(\frac{k_1 \mathcal{K}(H^*)^{\alpha}}{\delta} \right) + \log \log \left(\frac{k_1 \mathcal{K}(H^*)^{\alpha}}{\delta} \right) \right] + C_{\alpha}$$

with

$$H^* = \min_{c \in [\mu_{m+1}; \mu_m]} \sum_{a=1}^{K} \frac{1}{d^*(\mu_a, c)}.$$

. .

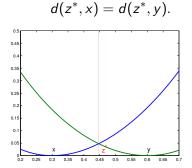
m best arm identification Sample complexity bounds The particular case of two-armed bandits

Theoretical guarantees

Another informational quantity: Chernoff information

$$d^*(x,y) := d(z^*,x) = d(z^*,y),$$

where z^* is defined by the equality



Summary

m best arm identification Sample complexity bounds The particular case of two-armed bandits

Lower bound

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau]}{\log \frac{1}{\delta}} \geq \sum_{t=1}^m \frac{1}{d(\mu_a, \mu_{m+1})} + \sum_{t=m+1}^K \frac{1}{d(\mu_a, \mu_m)}$$

Upper bound (for KL-UCB)

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau]}{\log \frac{1}{\delta}} \leq 8 \min_{c \in [\mu_{m+1}; \mu_m]} \sum_{a=1}^{K} \frac{1}{d^*(\mu_a, c)}$$

Refined results for two-armed bandits

A tighter lower bound [K.,Cappé, Garivier 14]

Any algorithm that is $\delta\text{-PAC}$ on every two-armed bandit model such that $\mu_1>\mu_2$ satisfies, for $\delta\leq0.15,$

$$\mathbb{E}[au] \geq rac{1}{d_*(\mu_1,\mu_2)}\lograc{1}{2\delta}$$

where $d_*(\mu_1,\mu_2):=d(\mu_1,z_*)=d(\mu_2,z^*)$, with z_* defined by

$$d(\mu_1, z^*) = d(\mu_2, z^*).$$

Matching algorithms?

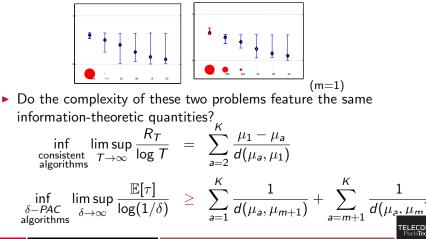
- Uniform sampling is (almost) optimal
- ► A stopping rule \(\tau\) based on the difference of empirical means is not optimal (and we propose a new one)

20/22

m best arm identification Sample complexity bounds The particular case of two-armed bandits

Conclusion

 KL-based confidence intervals are useful in both settings, though KL-UCB and KL-LUCB draw the arms differently



m best arm identification Sample complexity bounds The particular case of two-armed bandits

References

- <u>KL-UCB</u>: Cappé, Garivier, Maillard, Munos, Stoltz, Kulbback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation, Annals of Statistics, 2013
- KL-LUCB: Kaufmann and Kalyanakrishanan, Information Complexity in Bandit Subset Selection, COLT 2013
- The complexity of best arm identification: Kaufmann, Cappé, Garivier, On the Complexity of Best Arm Identification in Multi-Armed Bandit Models, arXiv:1407.4443, 2014

