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The multi-armed bandit model

K arms = K probability distributions (νa has mean µa)

ν1 ν2 ν3 ν4 ν5

At round t, an agent:

chooses an arm At

observes a sample Xt ∼ νAt

using a sequential sampling strategy (At):

At+1 = Ft(A1,X1, . . . ,At ,Xt).

Generic goal: learn something about the means µ = (µ1, . . . , µK )
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Bernoulli bandit model

K arms = K probability distributions (νa has mean µa)

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

At round t, an agent:

chooses an arm At

observes a sample Xt ∼ B(µAt )

using a sequential sampling strategy (At):

At+1 = Ft(A1,X1, . . . ,At ,Xt).

Generic goal: learn something about the means µ = (µ1, . . . , µK )
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Bernoulli bandit model

K arms = K probability distributions (νa has mean µa)

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

For the t-th patient in a clinical study,

choose a treatment At

observe a response Xt ∈ {0, 1} : P(Xt = 1|At = a) = µa

using a sequential sampling strategy (At):

At+1 = Ft(A1,X1, . . . ,At ,Xt).

Possible goals:

identify the best treatment, i.e. a∗ = argmaxa µa
maximize the number of healed patients,

∑K
t=1 Xt
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Active Identification in a Bandit Model

Assumption: arms belong to a one-dimensional exponential family
→ each arm is parameterized by its mean µa ∈ I

(Bernoulli, Gaussian with known variance, Poisson...)

Active identification: µ = (µ1, . . . , µK )
Given M regions of IK , R1, . . . ,RM , the goal is to identify one
region to which µ belongs.

Formalization: build a

sampling rule (At)

stopping rule τ

recommendation rule ı̂τ ∈ {1, . . . ,M}
such that, for some risk parameter δ,

Pµ (µ /∈ Rı̂τ ) ≤ δ and Eµ[τ ] is small.
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Example: A/B/C Testing

Probability that some version of a website generates a conversion:

. . .

µ1 µ2 µK

Best version: i∗ = argmax
a

µa

Active identification of the best version:

which version At should be displayed to the t-th visitor?

when to stop the test (after τ visitors)?

which version should be recommend as the best one (̂ıτ )?

Goal:

small error probability: P (̂ıτ 6= i∗) ≤ 0.05

test as short as possible: E[τ ] small
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Example: A/B/C Testing

Mean of each arm:

. . .

µ1 µ2 µK

Best arm: i∗ = argmax
a

µa

Best arm identification: Ri = {µ : µi > maxa 6=i µa}
sampling rule At

stopping rule τ

recommendation rule ı̂τ

Goal:

small error probability: P (̂ıτδ 6= i∗) ≤ δ
test as short as possible: E[τ ] small

Emilie Kaufmann (CNRS) Sequential GLRTs



Example: A/B/C Testing

Mean of each arm:

. . .

µ1 µ2 µK

Best arm: i∗ = argmax
a

µa

ε-Best arm identification: Ri = {µ : µi > maxa 6=i µa − ε}
sampling rule At

stopping rule τ

recommendation rule ı̂τ

Goal:

small error probability: P (µı̂τ ≥ µi∗ − ε) ≤ δ
test as short as possible: E[τ ] small
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Beyond Best Arm Identification

Dose finding in Phase I Clinical Trials

Goal: identify the arm whose mean (= toxicity probability) is
closest to a threshold θ

Ri =

{
µ : i = argmin

k
|µk − θ|

}
Anomaly detection: R1 = {µ : mini µi ≤ γ}, R2 = Rc

1

K., Koolen, Garivier, Sequential Test for the Lowest Mean: From Thompson to

Murphy Sampling, NeurIPS 2018
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Objective

For a given sampling rule, we want to build stopping and
recommendation rules (τδ, ı̂τδ) for the test

H1 : (µ ∈ R1) H2 : (µ ∈ R2) . . . HM : (µ ∈ RM)

(possibly with overlapping hypotheses!)

Assumption: R :=
⋃M

i=1Ri , R = IK (all possible means).

Definition

A δ-correct sequential test is a pair (τδ, ı̂τδ) where

τδ is a stopping time with respect to Ft = σ(X1, . . . ,Xt)

ı̂τδ is Fτδ -measurable

such that

∀µ ∈ R, Pµ

(
τδ <∞,µ /∈ Rı̂τδ

)
≤ δ.
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The parallel GLRT

Idea: run M statistical tests of

H̃0 : (µ ∈ R\Ri ) against H̃1 : (µ ∈ Ri )

in parallel until one of them rejects H̃0.

Individual test: a Generalized Likelihood Ratio rejects H̃0 for
large values of the Generalized Likelihood Ratio

ˆGLR(t) =
supλ∈R `(X1, . . . ,Xt ;λ)

supλ∈R\Ri
`(X1, . . . ,Xt ;λ)

where `(X1, . . . ,Xt ;λ) is the likelihood of the observations under a
bandit model with means λ = (λ1, . . . , λK ).
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The parallel GLRT

ˆGLR(t) =
supλ∈R `(X1, . . . ,Xt ;λ)

supλ∈R\Ri
`(X1, . . . ,Xt ;λ)

= inf
λ∈R\Ri

`(X1, . . . ,Xt ; µ̂(t))

`(X1, . . . ,Xt ;λ)

where µ̂(t) = (µ̂1(t), . . . , µ̂K (t)) is the MLE.

With arms in a one-dimensional exponential family,

ln
`(X1, . . . ,Xτ ; µ̂(t))

`(X1, . . . ,Xt ;λ)
=

K∑
a=1

Na(t)d(µ̂a(t), λa)

with the Kullback-Leibler divergence

d(µ, λ) = KL(νµ, νλ) = EX∼νµ

[
ln

fµ(X )

fλ(X )

]
and

fµ is the density of an arm with mean µ

Na(t) : number of selections of arm a up to time t

µ̂a(t): empirical mean of the observation received from arm a
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The parallel GLRT

ˆGLR(t) =
supλ∈R `(X1, . . . ,Xt ;λ)

supλ∈R\Ri
`(X1, . . . ,Xt ;λ)

= inf
λ∈R\Ri

`(X1, . . . ,Xt ; µ̂(t))

`(X1, . . . ,Xt ;λ)

where µ̂(t) = (µ̂1(t), . . . , µ̂K (t)) is the MLE.

With arms in a one-dimensional exponential family,

ln
`(X1, . . . ,Xτ ; µ̂(t))

`(X1, . . . ,Xt ;λ)
=

K∑
a=1

Na(t)d(µ̂a(t), λa)

with the Kullback-Leibler divergence

d(µ, λ) =
(µ− λ)2

2σ2
(Gaussian distributions)

and

fµ is the density of an arm with mean µ

Na(t) : number of selections of arm a up to time t

µ̂a(t): empirical mean of the observation received from arm a
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The parallel GLRT
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(Bernoulli distributions)

and

fµ is the density of an arm with mean µ

Na(t) : number of selections of arm a up to time t

µ̂a(t): empirical mean of the observation received from arm a

Emilie Kaufmann (CNRS) Sequential GLRTs



The parallel GLRT

Idea: run M statistical tests of
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The parallel GLRT

Idea: run M GLR tests of

H̃0 : (µ ∈ R\Ri ) against H̃1 : (µ ∈ Ri )

in parallel until one of them rejects H̃0.

Global test:

τδ = inf

{
t ∈ N : max

i=1,...,M
inf

λ∈R\Ri

K∑
a=1

Na(t)d(µ̂a(t), λa) > β(t, δ)

}

ı̂τδ ∈ argmax
i=1,...,M

inf
λ∈R\Ri

K∑
a=1

Na(t)d(µ̂a(t), λa).

depends on a threshold function β(t, δ).
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A closer look at the stopping rule

τδ = inf

{
t ∈ N : max

i=1,...,M
inf

λ∈R\Ri

K∑
a=1

Na(t)d(µ̂a(t), λa) > β(t, δ)

}

Interpretation:
∑K

a=1 Na(t)d(µ̂a(t), λa) measures a distance
between µ̂(t) and λ = (λ1, . . . , λK ).

Ü we stop when there exists a region Ri such that µ̂(t) ∈ Ri

and µ̂(t) is “far enough” from all instances λ ∈ R\Ri .

Example: ε-BAI, Gaussian case

max
a∈Âε(t)

min
b 6=a

Na(t)Nb(t)

2σ2(Na(t) + Nb(t))

(
|µ̂a(t)− µ̂b(t)|+ ε

)2
> β(t, δ)
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A δ-correct parallel GLRT

τδ = inf

{
t ∈ N : max

i=1,...,M
inf

λ∈R\Ri

K∑
a=1

Na(t)d(µ̂a(t), λa) > β(t, δ)

}

ı̂τδ ∈ argmax
i=1,...,M

inf
λ∈R\Ri

K∑
a=1

Na(t)d(µ̂a(t), λa).

Theorem

We can propose a threshold β(t, δ) such that

β(t, δ) ' ln (1/δ) + K ln ln (1/δ) + 3K ln(1 + ln t)

and for all µ ∈ R, Pµ

(
τδ <∞,µ /∈ Rı̂τδ

)
≤ δ.
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Proof (1/2)

Pµ

(
τδ <∞,µ /∈ Rı̂τδ

)
≤ P

(
∃t ∈ N∗, ∃i : µ /∈ Ri , inf

λ∈R\Ri

K∑
a=1

Na(t)d(µ̂a(t), λi ) > β(t, δ)

)

≤ P

(
∃t ∈ N∗, ∃i : µ ∈ R\Ri ,

K∑
a=1

Na(t)d(µ̂a(t), µa) > β(t, δ)

)

≤ P

(
∃t ∈ N∗,

K∑
a=1

Na(t)d(µ̂a(t), µa) > β(t, δ)

)

Need for a deviation inequality with the following properties:

Ü deviations are measured with KL-divergence

Ü deviations are uniform over time

Ü deviations that take into account multiple arms
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Proof (2/2)

Theorem [K. and Koolen, 2018]

There exists T : R+ → R+ a threshold function such that

T (x) ' x + ln(x)

one has

P

(
∃t ∈ N :

K∑
a=1

Na(t)d(µ̂a(t), µa) ≥

3
K∑

a=1

ln(1 + ln(Na(t))) + KT
( x

K

))
≤ e−x .

Consequence:

P

(
∃t :

K∑
a=1

Na(t)d(µ̂a(t), µa) ≥ 3 ln(1 + ln(t)) + KT
(

ln(1/δ)

K

))
≤ δ.
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Optimal Active Identification?

So far we proved, that the parallel GLRT (τ̂δ, ı̂τδ) can be made
δ-correct for active identification for any sampling rule (At).

Question: what about the expected duration of the test Eµ[τδ]?

requires a not too crazy sampling rule

can we find a sampling rule that attains the smallest possible
sample complexity when combined with a parallel GLRT?
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Sample complexity lower bound

Change of distribution argument: pick an alternative λ close
enough to µ such that the behaviour of the algorithm needs to be
different under λ and under µ.

Ü some event C will be very likely under µ, very unlikely under
λ, which gives constraints on the observed samples

Elementary change of distribution: Introducing

Lt(µ,λ) := ln
`(X1, . . . ,Xt ;µ)

`(X1, . . . ,Xt ;λ)
,

for every event C ∈ Fn,

Pλ(C ) = Eµ

[
1C exp

(
− Ln(µ,λ)

)]
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Sample complexity lower bound

More sophisticated change of distribution [Garivier et al. 2016]

Let µ and λ be two bandit models. For any event C ∈ Fτ ,

Eµ[Lτ (µ,λ)] ≥ kl
(
Pµ(C ),Pλ(C )

)
.

where kl(x , y) = x ln(x/y) + (1− x) ln((1− x)/(1− y)).

If µ belongs to a unique region Ri∗(µ), then for all λ ∈ R\Ri∗(µ),
under a δ-correct strategy,

Pµ (̂ıτδ = i∗(µ)) ≥ 1− δ and Pλ (̂ıτδ = i∗(µ)) ≤ δ

For any λ ∈ R\Ri∗(µ),
K∑

a=1

Eµ[Na(τδ)]d(µa, λa) ≥ (1− 2δ) ln

(
1− δ
δ

)
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Sample Complexity Lower Bound

Assumption: the regions form a partition R =
⋃M

i=1Ri .

Theorem

Any δ-correct algorithm satisfies

E[τδ] ≥ T ∗(µ) ln

(
1

3δ

)
where

T ∗(µ)−1 = sup
w∈ΣK

inf
λ∈R\Ri∗(µ)

K∑
a=1

wad(µa, λa)

ΣK = {w ∈ [0, 1]K :
∑K

i=1 wi = 1}

Proof.

inf
λ∈R\Ri∗(µ)

K∑
a=1

Eµ[Na(τ)]d(µa, λa) ≥ (1− 2δ) ln

(
1− δ
δ

)

Eµ[τ ]× inf
λ∈R\Ri∗(µ)

K∑
a=1

Eµ[Na(τ)]

Eµ[τ ]
d(µa, λa) ≥ ln(1/(3δ))
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Sample Complexity Lower Bound

Assumption: the regions form a partition R =
⋃M

i=1Ri .

Theorem
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Sample Complexity Lower Bound

An algorithm matching the lower bound should satisfy

∀a ∈ {1, . . . ,K}, Eµ[Na(τδ)]

Eµ[τ ]
' w∗a (µ)

for a vector of optimal proportions

w∗(µ) ∈ argmax
w∈ΣK

inf
λ∈R\Ri∗(µ)

K∑
a=1

wad(µa, λa).

Remark: in general w∗(µ)

Ü may be non unique

Ü may be hard to compute
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Parallel GLRT can match the lower bound

If R =
⋃M

i=1Ri forms a partition,

τδ = inf

{
t ∈ N : inf

λ∈R\Rı̂(t)

K∑
a=1

Na(t)d(µ̂a(t), λa) > β(t, δ)

}

= inf

{
t ∈ N : t × inf

λ∈R\Rı̂(t)

K∑
a=1

Na(t)

t
d(µ̂a(t), λa) > β(t, δ)

}

' inf

{
t ∈ N : t × inf

λ∈R\Ri∗(µ)

K∑
a=1

w∗a (µ)d(µa, λa)︸ ︷︷ ︸
T∗(µ)−1

> β(t, δ)

}

under a good sampling rule satisfying

∀a, lim
t→∞

Na(t)

t
= w∗a (µ) a.s.

Ü τδ ' inf{t ∈ N : t > T ∗(µ)β(t, δ)} ' T ∗(µ) ln 1
δ .

Emilie Kaufmann (CNRS) Sequential GLRTs



Outline

1 The bandit framework for sequential decision making

2 Active identification in a bandit model
A generic δ-correct stopping rule
Towards optimal sample complexity
the Best Arm Identification example

3 Rewards maximization in a non-stationary bandit model
The kl-UCB algorithm in the stationary case
A non-parametric sequential change point detector
kl-UCB meets the Bernoulli-GLRT

Emilie Kaufmann (CNRS) Sequential GLRTs



The Best Arm Identification problem

R1 :

{
µ : µ1 > max

a 6=1
µa

}
. . . RK :

{
µ : µK > max

a 6=K
µa

}

A Best Arm Identification algorithm (At , τ, ı̂τδ) made of a

sampling rule At

stopping rule τδ and recommendation rule ı̂τδ
is δ- correct if

∀µ ∈ R, Pµ

(
ı̂τδ = arg max

a
µa

)
≥ 1− δ.

Goal: A δ-correct algorithm with small sample complexity
[Even Dar et al. 06, Kalyanakrishanan et al. 12, Gabillon et al. 12]
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A good sampling rule for BAI

Theorem [Garivier and K. 2016]

For any δ-correct algorithm,

Eµ[τ ] ≥ T ∗(µ) ln

(
1

3δ

)
,

where

T ∗(µ)−1 = sup
w∈ΣK

inf
λ∈R\Ri∗(µ)

K∑
a=1

wad(µa, λa)

ΣK = {w ∈ [0, 1]K :
∑K

i=1 wi = 1}.

Moreover, the vector of optimal proportions

w∗(µ) = argmax
w∈ΣK

inf
λ∈R\Ri∗(µ)

K∑
a=1

wad(µa, λa)

is well-defined, and we propose an efficient way to compute it.
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The Tracking sampling rule

µ̂(t) = (µ̂1(t), . . . , µ̂K (t)): vector of empirical means

Introducing

Ut = {a : Na(t) <
√
t},

the arm sampled at round t + 1 is

At+1 ∈


argmin
a∈Ut

Na(t) if Ut 6= ∅ (forced exploration)

argmax
1≤a≤K

[
w∗a (µ̂(t))− Na(t)

t

]
(tracking)

Lemma

Under the Tracking sampling rule,

Pµ

(
lim
t→∞

Na(t)

t
= w∗a (µ)

)
= 1.
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The Parallel GLRT for BAI

Letting â(t) = argmax
a

µ̂a(t),

τδ = inf

{
t ∈ N : inf

λ:λâ(t)<maxa λa

K∑
a=1

Na(t)d(µ̂a(t), λa) > β(t, δ)

}

= inf

{
t ∈ N : min

b 6=â(t)
inf

λ:λâ<λb

K∑
a=1

Na(t)d(µ̂a(t), λa) > β(t, δ)

}

= inf

{
t : min

b 6=â(t)
inf
λ

[
Nâ(t)(t)d(µ̂â(t), λ) + Nb(t)d(µ̂b(t), λ)

]
︸ ︷︷ ︸

λmin=
Nâ(t)µ̂â(t)+Nb(t)µ̂b(t)

Nâ(t)+Nb(t)

> β(t, δ)

}

Ü explicit expression featuring only pairs of arms
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An asymptotically optimal algorithm for BAI

Theorem [Garivier and K., 2016]

The Track-and-Stop strategy, that uses

the Tracking sampling rule

the Parallel GLRT stopping rule with

β(t, δ) ' ln

(
K − 1

δ

)
+ 2 ln ln(1/δ) + 6 ln(1 + ln t)

and recommends ı̂τδ = argmax
a=1...K

µ̂a(τ)

is δ-correct for every δ ∈]0, 1[ and satisfies

lim sup
δ→0

Eµ[τδ]

ln(1/δ)
= T ∗(µ).
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A different objective

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

At round t, an agent:

chooses an arm At

observes a reward Xt ∼ B(µAt )

using a sequential sampling strategy (At):

At+1 = Ft(A1,X1, . . . ,At ,Xt).

Goal: maximize the expected sum of rewards Eµ

[∑T
t=1 Xt

]
.
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Regret

Samples = rewards, (At) is adjusted to

maximize the (expected) sum of rewards,

E

[
T∑
t=1

Xt

]

or equivalently minimize the regret:

RT = Tµ∗ − E

[
T∑
t=1

Xt

]
=

K∑
a=1

(µ∗ − µa)E[Na(T )]

Na(T ) : number of draws of arm a up to time T

⇒ Exploration/Exploitation tradeoff
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Piecewise stationary bandit model

Sequence of means (µa(t))t for each arm a
a∗t = argmaxa µa(t): optimal arm at time t

0 1000 2000 3000 4000 5000
Time steps t= 1. . . T, horizon T= 5000
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History of means for Non-Stationary MAB, Bernoulli with 4 break-points
Arm #0
Arm #1
Arm #2

few breakpoints: ΥT = 4

Goal: minimize the dynamic regret RT = E
[∑T

t=1(µa∗t − µAT
)
]

Assumption: bounded rewards, Xt ∈ [0, 1].
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Positioning

(Quick) related work

Existing guarantees for an adversarial bandit algorithm
EXP3.S [Auer et al. 2002]

Many recent attempts to adapt stochastic bandit algorithms
to this problem: CUSUM-UCB [Liu et al, 2018],
Monitored-UCB [Cao et al, 2019]

Those attemps require the knowledge of

the number of breakpoints + a lower bound on the minimal
magnitude of change

Our contributions:

kl-UCB + un efficient adaptive sliding window

no need to know anything about the size of a change
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The kl-UCB algorithm

A UCB-type (or optimistic) algorithm chooses at round t

At+1 = argmax
a=1...K

UCBa(t).

where UCBa(t) is an Upper Confidence Bound on µa.

q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.8

0.9

1

µ
a
(t)

[ ]
u

a
(t)

log(t)/N
a
(t)

d(µ
a
(t),q)

The kl-UCB index

UCBa(t) := max

{
q : d (µ̂a(t), q) ≤ log(t)

Na(t)

}
,

satisfies P(µa ≤ UCBa(t)) & 1− t−1.
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The kl-UCB index [Cappé et al. 13]: kl-UCB satisfies

Eµ[Na(T )] ≤ 1

d(µa, µ∗)
logT + O(

√
log(T )).

Ü matching a lower bound by [Lai and Robbins 1985]
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The Bernoulli GLRT

Question: How to detect a change in the mean of a stream of
independent observations (Xt) bounded in [0, 1]?

Answer: a GLR test assuming a Bernoulli likelihood

H0 :
(
∃µ0 : ∀i ∈ N,Xi

i.i.d.∼ B(µ0)
)

H1 :
(
∃µ0 6= µ1,τ ∈ N∗ :X1, . . . ,Xτ

i.i.d.∼ B(µ0) and Xτ+1, . . .
i.i.d.∼ B(µ1)

)
The Generalized Likelihood Ratio for this test is

ˆGLR(t) =

sup
µ0,µ1,τ≤t

`(X1, . . . ,Xt ;µ0, µ1, τ)

sup
µ0

`(X1, . . . ,Xt ;µ0)

= sup
s∈[1,t]

[s × kl (µ̂1:s , µ̂1:t) + (t − s)× kl (µ̂s+1:t , µ̂1:t)]

with µ̂s:s′ = (
∑s′

k=s Xs)/(s ′ − s + 1).
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The Bernoulli GLR

Definition

Given a stream of samples (Xs) ∈ [0, 1], the Bernoulli-GLRT
detects a change-point after n samples if

sup
s∈[1,n]

[
s × kl (µ̂1:s , µ̂1:n) + (n − s)× kl (µ̂s+1:n, µ̂1:n)

]
≥ β(n, δ)

We let Tδ be the first instant of detection.

asymptotic study by [Lai and Xing, 2010]
(for Bernoulli rewards)

non-asymptotic properties established by [Maillard, 2018] for
the Gaussian-GLR that can also be used for bounded rewards
(sub-Gaussian)

Emilie Kaufmann (CNRS) Sequential GLRTs



Non-asymptotic properties of the Bernoulli-GLRT

Upper bound on the probability of false alarm

Lemma

Assume that there exists µ0 ∈ [0, 1] such that E[Xt ] = µ0 and that
Xi ∈ [0, 1] for all i . Then the Bernoulli GLR test satisfies
Pµ0(Tδ <∞) ≤ δ with the threshold function

β(n, δ) = 2T
(

ln(3n
√
n/δ)

2

)
+ 6 ln(1 + ln(n)).

Proof. require some modification of the martingale tools of [K.
and Koolen 2018]
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Non-asymptotic properties of the Bernoulli GLR

Upper bound on the detection delay

Lemma

Let Pµ0,µ1,τ be a model such that E[Xt ] = µ0 for t ≤ τ , and µ1 for
t > τ , with µ0 6= µ1. The Bernoulli-GLRT satisfies

Pµ0,µ1,τ (Tδ ≥ τ + u)

≤ exp

− 2τu

τ + u

(
max

[
0,∆−

√
τ + u

2τu
β(τ + u, δ)

])2


with ∆ = |µ1 − µ0|.

Proof. Pinsker’s inequality and similar technique as for the
sub-Gaussian case [Maillard 2018].
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The GLR-kl-UCB algorithm

Parameters: α ∈ (0, 1), δ > 0.
Arm selection: at round t,

if α > 0 and t mod bK/αc ∈ {1, . . . ,K},

(forced exploration) At ← t mod bK/αc

else, select

(kl-UCB) At ← arg max a UCBa(t)

τa(t) : instant of the last restart

na(t) : number of selection of arm a since the last restart

µ̂a(t) : empirical mean of samples from arm a since last restart

UCBa(t) := max
{
q ∈ [0, 1] : na(t)× kl (µ̂a(t), q) ≤ f (t − τa(t))

}
.

Restarts: Local or Global after a change is detected by the
Bernoulli-GLRT on the mean of the selected arm
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Results

a unified analysis of Local and Global changes

a tuning of the algorithm that ensures O(ΥT

√
T ) when ΥT is

unknown and O(
√

ΥTT ) regret if ΥT is known

Theorem

For piece-wise stationnary instances in which the breakpoints are
“far enough”

1 Choosing α =
√

ln(T )
T , δ = 1√

T
gives

RT = O

(
K

(∆change)
2 ΥT

√
T ln(T ) + (K−1)

∆opt ΥT ln(T )

)
,

2 Choosing α =
√

ΥT ln(T )
T , δ = 1√

ΥTT
gives

RT = O

(
K

(∆change)
2

√
ΥTT ln(T ) + (K−1)

∆opt ΥT ln(T )

)
.
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Results

Good practical performance!

Algorithmes \ Problèmes Pb 1 Pb 2 Pb 3

Oracle-Restart kl-UCB 37± 37 45± 34 257± 86
kl-UCB 270± 76 162± 59 529± 148

Discounted- kl-UCB 1456± 214 1442± 440 1376± 37
SW- kl-UCB 177± 34 182± 34 1794± 71

M- kl-UCB 290± 29 534± 93 645± 141
CUSUM- kl-UCB 148± 32 152± 42 490± 133

GLR-kl-UCB (Local) 74± 31 113± 34 513± 97
GLR - kl-UCB (Global) 97± 32 134± 33 621± 103

Table: Mean regret for different algorithms at time T on three piecewise
stationary bandit instances (T = 5000 for 1,2 and T = 20000 for 3).
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That’s all...

Thanks!
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