Exploration non paramétrique dans les modèles de bandit

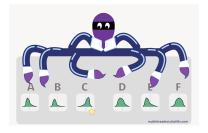
Emilie Kaufmann,

basé sur une collaboration avec Dorian Baudry et Odalric-Ambrym Maillard

Séminaire du LPSM, septembre 2022

The stochastic Multi Armed Bandit (MAB) model

- *K* unknown reward distributions ν_1, \ldots, ν_K called arms
- a each time t, select an arm A_t and observe a reward $X_t \sim \nu_{A_t}$



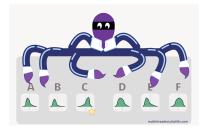
Objective: find a sequential sampling strategy $\mathcal{A} = (\mathcal{A}_t)$ that maximizes the sum of rewards \Leftrightarrow minimize the *regret*

$$\mathcal{R}_{\mathcal{T}}(\mathcal{A}) = \mu^{\star}\mathcal{T} - \mathbb{E}\left[\sum_{t=1}^{\mathcal{T}} X_t
ight]$$

[Robbins, 1952, Lattimore and Szepesvari, 2019]

The stochastic Multi Armed Bandit (MAB) model

- *K* unknown reward distributions ν_1, \ldots, ν_K called arms
- a each time t, select an arm A_t and observe a reward $X_t \sim \nu_{A_t}$



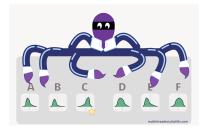
Objective: find a sequential sampling strategy $\mathcal{A} = (\mathcal{A}_t)$ that maximizes the sum of rewards \Leftrightarrow minimize the *regret*

$$\mathcal{R}_{\mathcal{T}}(\mathcal{A}) = \mathbb{E}\left[\sum_{t=1}^{\mathcal{T}}(\mu_{\star}-\mu_{A_t})
ight]$$

[Robbins, 1952, Lattimore and Szepesvari, 2019]

The stochastic Multi Armed Bandit (MAB) model

- *K* unknown reward distributions ν_1, \ldots, ν_K called arms
- a each time t, select an arm A_t and observe a reward $X_t \sim \nu_{A_t}$



Objective: find a sequential sampling strategy $\mathcal{A} = (\mathcal{A}_t)$ that maximizes the sum of rewards \Leftrightarrow minimize the *regret*

$$\mathcal{R}_{T}(\mathcal{A}) = \sum_{a=1}^{K} (\mu_{\star} - \mu_{a}) \mathbb{E}\Big[N_{a}(T)\Big]$$

[Robbins, 1952, Lattimore and Szepesvari, 2019]

• clinical trials \rightarrow reward: success/failure (Bernoulli)

• movie recommendation \rightarrow reward: rating (multinomial)

 recommendation in agriculture → reward: yield (complex, possibly multi-modal distribution)

Goal: design algorithms that use as little knowledge about the rewards distributions as possible

1 Optimal solutions and their limitation

2 Sub-Sampling Duelling Algorithms (SDA)

3 Analysis of RB-SDA

4 A risk-averse non-parametric algorithm

(Don't) Follow The Learder

Select each arm one, then exploit the current knowledge:

$$A_{t+1} = rgmax_{a \in [K]} \hat{\mu}_{a}(t)$$

where

N_a(t) = ∑^t_{s=1} 1(A_s = a) is the number of selections of arm a
 µ̂_a(t) = 1/N_a(t) ∑^t_{s=1} X_s1(A_s = a) is the empirical mean of the rewards collected from arm a

(Don't) Follow The Learder

Select each arm one, then exploit the current knowledge:

$$A_{t+1} = rg\max_{a \in [K]} \hat{\mu}_a(t)$$

where

N_a(t) = ∑^t_{s=1} 1(A_s = a) is the number of selections of arm a
 µ̂_a(t) = 1/N_a(t) ∑^t_{s=1} X_s1(A_s = a) is the empirical mean of the rewards collected from arm a

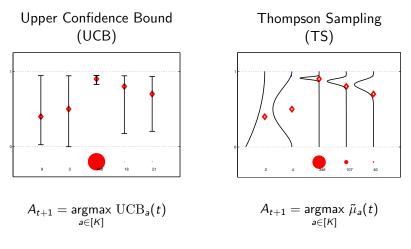
Follow the leader can fail! $\nu_1 = \mathcal{B}(\mu_1), \nu_2 = \mathcal{B}(\mu_2), \mu_1 > \mu_2$

$$\mathbb{E}[N_2(T)] \geq (1-\mu_1)\mu_2 \times (T-1)$$

 \Rightarrow linear regret

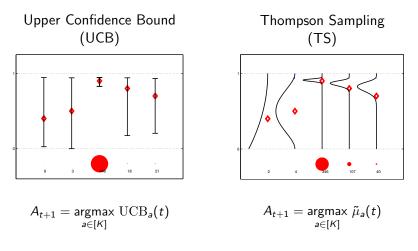
Exploitation is not enough, we need to add some exploration

Smarter algorithms: Two dominant families



where $UCB_a(t)$ is an UCB on the unknown mean μ_a where $\tilde{\mu}_a(t)$ is a sample from a posterior distribution on μ_a

Smarter algorithms: Two dominant families



where $UCB_a(t)$ is an UCB on the unknown mean μ_a where $\tilde{\mu}_a(t)$ is a sample from a posterior distribution on μ_a

→ both approaches can be tuned to achieve optimality

(Problem dependent, asymptotic) optimality

$$\mathcal{R}_{\mathcal{T}}(\mathcal{A}) = \mathbb{E}\left[\sum_{t=1}^{T} (\mu_{\star} - \mu_{A_t})\right] = \sum_{\boldsymbol{a}: \mu_{\boldsymbol{a}} < \mu_{\star}} (\mu_{\star} - \mu_{\boldsymbol{a}}) \mathbb{E}[N_{\boldsymbol{a}}(T)]$$

where $N_a(T)$ is the number of selections of arm a up to round T. For each a, let \mathcal{D}_a be a family of probability distributions.

Lower bound [Lai and Robbins, 1985, Burnetas and Katehakis, 1996]

Under an algorithm achieving small regret for any bandit model $\nu \in \mathcal{D}_1 \times \cdots \times \mathcal{D}_K$, it holds that

$$\forall a: \mu_a < \mu_\star, \quad \liminf_{T \to \infty} \frac{\mathbb{E}[N_a(T)]}{\log(T)} \geq \frac{1}{\mathcal{K}_{\inf}^{\mathcal{D}_a}(\nu_a; \mu_\star)}$$

where $\mathcal{K}_{inf}^{\mathcal{D}}(\nu,\mu) = \inf \{ \operatorname{KL}(\nu,\nu') | \nu' \in \mathcal{D} : \mathbb{E}_{X \sim \nu'}[X] \ge \mu \}$ with $\operatorname{KL}(\nu,\nu')$ the Kullback-Leibler divergence.

If ${\mathcal D}$ is a one-dimensional exponential family

$$\mathcal{K}_{\inf}^{\mathcal{D}}(\nu_{a},\mu_{\star}) = \mathrm{kl}(\mu_{a},\mu_{\star})$$

where $kl(\mu, \mu') = KL(\nu_{\mu}, \nu_{\mu'})$ with $\nu_{\mu} \in \mathcal{D}$ the unique distribution in \mathcal{D} that has mean μ .

Examples: Bernoulli, Gaussian with known variance σ^2 , Poisson...

- kl-UCB [Cappé et al., 2013] uses the $kl(\cdot, \cdot)$ divergence
- Thompson Sampling using a conjuguate prior

are both matching the lower bound.

→ can we find a single algorithm that is simultaneously asymptotically optimal for different classes of distributions?

Matching the lower bound

If ${\mathcal D}$ is a one-dimensional exponential family

$$\mathcal{K}_{\inf}^{\mathcal{D}}(\nu_{a},\mu_{\star}) = \frac{(\mu_{a}-\mu_{\star})^{2}}{2\sigma^{2}}$$

where $kl(\mu, \mu') = KL(\nu_{\mu}, \nu_{\mu'})$ with $\nu_{\mu} \in \mathcal{D}$ the unique distribution in \mathcal{D} that has mean μ .

Examples: Bernoulli, Gaussian with known variance σ^2 , Poisson...

- kl-UCB [Cappé et al., 2013] uses the $kl(\cdot, \cdot)$ divergence
- Thompson Sampling using a conjuguate prior

are both matching the lower bound.

→ can we find a single algorithm that is simultaneously asymptotically optimal for different classes of distributions?

Non-Parametric Bootstrap

$$A_{t+1} = rgmax_{a \in [K]} ilde{\mu}_{a}(t)$$

where $\tilde{\mu}_{a}(t)$ average of $N_{a}(t)$ samples drawn at random with replacement in the history $\mathcal{H}_{a}(t) = \{Y_{a,1}, \dots, Y_{a,N_{a}(t)}\}$.

- [Kveton et al., 2019]: vanilla non-parametric bootstrap can have linear regret, a fix adding fake rewards in the history
- logarithmic regret for bounded distributions (not optimal)

Non-Parametric Bootstrap

$$A_{t+1} = rg\max_{a \in [K]} \widetilde{\mu}_a(t)$$

where $\tilde{\mu}_{a}(t)$ average of $N_{a}(t)$ samples drawn at random with replacement in the history $\mathcal{H}_{a}(t) = \{Y_{a,1}, \dots, Y_{a,N_{a}(t)}\}$.

- [Kveton et al., 2019]: vanilla non-parametric bootstrap can have linear regret, a fix adding fake rewards in the history
- logarithmic regret for bounded distributions (not optimal)

In order to be asymptotically optimal, for potentially unbounded distributions, we rely instead on sub-sampling [Baransi et al., 2014, Chan, 2020]

1 Optimal solutions and their limitation

2 Sub-Sampling Duelling Algorithms (SDA)

3 Analysis of RB-SDA

4 A risk-averse non-parametric algorithm

Sub-sampling Duelling Algorithms

A round-based approach

- Find the *leader*: arm with largest number of observations
- **2** Organize K 1 duels: *leader* vs *challengers*.
- Oraw a set of arms: *winning challengers* xor *leader*.

Sub-sampling Duelling Algorithms

A round-based approach

- Find the *leader*: arm with largest number of observations
- **2** Organize K 1 duels: *leader* vs *challengers*.
- Oraw a set of arms: *winning challengers* xor *leader*.

How do duels work?

Idea: a fair comparison of two arms with different history size

- challenger: compute $\hat{\mu}_c$, the empirical mean
- leader: compute μ
 _ℓ, the mean of a *sub-sample* of the same size as the history of the challenger.
- challenger wins if $\hat{\mu}_{c} \geq \tilde{\mu}_{\ell}$

Illustration of a round

In this example the leader is *blue*: *green* wins against *blue*, *red* loses \Rightarrow only *green* is drawn at the end of the round.

Possible Sub-Sampling Schemes

Input of SDA: how to sub-sample *n* elements from *N*?

- Sampling Without Replacement (SW-SDA): pick a random subset of size n in [1, N]
 (as in BESA [Baransi et al. 14], analyzed for 2 arms)
- Random-Block Sampling (RB-SDA): return a block of size n starting from random n₀ ∼ U([1, N − n])

7.6 -4 0.7	1.4	3.1	0.1	-1.2
------------	-----	-----	-----	------

• Last Block Sampling (LB-SDA): return $\{N - n, \dots, N\}$

• SSMC [Chan 20] uses data-dependent sub-sampling

1 Optimal solutions and their limitation

2 Sub-Sampling Duelling Algorithms (SDA)

3 Analysis of RB-SDA

4 A risk-averse non-parametric algorithm

Regret of SDA algorithms

SDA algorithms are round-based

- A_r : set of arms that are sampled in round r
- r_T (random) number of rounds before T samples are collected

 $\widetilde{\textit{N}}_{\textit{a}}(r) = \sum_{s=1}^{r} \mathbb{1}(\textit{a} \in \mathcal{A}_{s})$: number of selections of a in r rounds

$$\mathcal{R}_{T}(\mathcal{A}) = \sum_{a=1}^{K} (\mu_{\star} - \mu_{a}) \mathbb{E}[N_{a}(T)]$$

$$\leq \sum_{a=1}^{K} (\mu_{\star} - \mu_{a}) \mathbb{E}\left[\widetilde{N}_{a}(r_{T})\right]$$

$$\leq \sum_{a=1}^{K} (\mu_{\star} - \mu_{a}) \mathbb{E}\left[\widetilde{N}_{a}(T)\right]$$

Definition (Block Sampler)

A *block sampler* outputs a sequence of **consecutive observations** in the rewards history.

 \hookrightarrow Random Block and Last Block are block samplers, not SWR.

Lemma (concentration of a sub-sample)

Under a block sampler, for any $\mu_{a} < \xi < \mu_{b}$,

$$\sum_{s=1}^{r} \mathbb{P}\left(\bar{Y}_{a,S_{a,b}^{s}} \geq \bar{Y}_{b,N_{b}(s)}, n_{0} \leq N_{b}(s) \leq N_{a}(s)\right) \leq \sum_{j=n_{0}}^{r} \mathbb{P}\left(\bar{Y}_{a,j} \geq \xi\right) + r \sum_{j=n_{0}}^{r} \mathbb{P}\left(\bar{Y}_{b,j} \leq \xi\right)$$

First ingredient: Concentration

Assumption 1: (arm concentration)

$$\begin{aligned} \forall x > \mu_{a}, \quad \mathbb{P}\left(\bar{Y}_{a,n} \ge x\right) &\leq e^{-nl_{a}(x)} \\ \forall x < \mu_{a}, \quad \mathbb{P}\left(\bar{Y}_{a,n} \le x\right) &\leq e^{-nl_{a}(x)} \end{aligned}$$

for some rate function $I_a(x)$

(1-d exp. families: $I_a(x) = kl(x, \mu_a)$)

Lemma (for SDA using a block sampler)

Under Assumption 1, for every $\varepsilon > 0$, there exists a constant $C_k(\boldsymbol{\nu},\epsilon)$ with $\boldsymbol{\nu} = (\nu_1,\ldots,\nu_k)$ such that

$$\mathbb{E}\left[\widetilde{N}_{a}(T)\right] \leq \frac{1+\epsilon}{l_{1}(\mu_{a})}\log(T) + 32\sum_{r=1}^{T}\mathbb{P}\left(\widetilde{N}_{1}(r) \leq (\log(r))^{2}\right) + C_{a}(\nu,\epsilon)$$

Proof: exploits only concentration (and how the algorithm works)

First ingredient: Concentration

Assumption 1: (arm concentration)

$$\begin{aligned} \forall x > \mu_{a}, \quad \mathbb{P}\left(\bar{Y}_{a,n} \ge x\right) &\leq e^{-nl_{a}(x)} \\ \forall x < \mu_{a}, \quad \mathbb{P}\left(\bar{Y}_{a,n} \le x\right) &\leq e^{-nl_{a}(x)} \end{aligned}$$

for some rate function $I_a(x)$

(1-d exp. families: $I_a(x) = kl(x, \mu_a)$)

Lemma (for SDA using a block sampler)

Under Assumption 1, for every $\varepsilon > 0$, there exists a constant $C_k(\boldsymbol{\nu},\epsilon)$ with $\boldsymbol{\nu} = (\nu_1,\ldots,\nu_k)$ such that

$$\mathbb{E}\left[\widetilde{N}_{a}(T)\right] \leq \frac{1+\epsilon}{l_{1}(\mu_{a})}\log(T) + 32\sum_{r=1}^{T}\mathbb{P}\left(\widetilde{N}_{1}(r) \leq (\log(r))^{2}\right) + C_{a}(\nu,\epsilon)$$

Proof: exploits only concentration (and how the algorithm works)

Probability to under-sample the best arm

$$\begin{split} & \left(\mathcal{N}_1(r) \leq \log^2(r) \right) \\ & \subseteq \bigcup_{j=0}^{\lfloor \log^2(r) \rfloor} \left(\tau_{j+1} - \tau_j \geq \frac{r}{\log^2(r)} \right) \bigcap \left\{ \text{arm 1 is not the leader} \right\} \end{split}$$

 τ_j : instant in of the *j*-th selection of arm 1



To upper bound $\sum_{r=1}^{T} \mathbb{P}(N_1(r) \le (\log(r))^2)$, we further need:

① **Diversity**: the sub-sampler produces a variety of *independent* sub-samples when being called a lot of times

 $X_{m,H,j} :=$ number of mutually non-overlapping sets when we draw m sub-samples of size j in a history of size H.

Under Random Block sampling,

$$\sum_{r=1}^{T} \sum_{j=1}^{(\log r)^2} \mathbb{P}\left(X_{N_r,N_r,j} < \gamma \frac{r}{(\log r)^2}\right) = o(\log T).$$

for $N_r = O(r/\log^2(r))$ and some $\gamma \in (0,1)$

Two extra ingredients

To upper bound $\sum_{r=1}^{T} \mathbb{P}(N_1(r) \le (\log(r))^2)$, we further need:

② a Balance condition: the optimal arm (arm 1) is not likely to loose many (M) duels based on *independent* sub-samples of a sub-optimal arm (arm a)

Balance function of arm $a \neq 1$:

$$\begin{aligned} \alpha_{a}(M,j) &:= & \mathbb{E}_{X \sim \nu_{1,j}} \left[(1 - F_{\nu_{a,j}}(X))^{M} \right] \\ &= & \mathbb{P} \left(\bigcap_{m=1}^{M} \left(\overline{Y}_{1,j} < \overline{Y}_{a,\mathcal{S}_{m}} \right) \right) \quad |\mathcal{S}_{m}| = j, \mathcal{S}_{m} \cap \mathcal{S}_{m'} = \emptyset \end{aligned}$$

The balance condition for arm a is

$$\forall \beta \in (0,1), \quad \sum_{r=1}^{T} \sum_{j=g_r}^{\lfloor (\log r)^2 \rfloor} \alpha_a \left(\left\lfloor \beta \frac{r}{(\log r)^2} \right\rfloor, j \right) = o(\log T)$$

gr: amount of forced exploration added to the algorithm

General Theorem [Baudry et al., 2020]

If all arms satisfy Assumption 1 and the sub-optimal arms satisfy the balance condition, RB-SDA satisfies, for all sub-optimal arm *a*,

$$\mathbb{E}\left[\widetilde{\mathcal{N}}_{s}(T)
ight] \leq rac{1+arepsilon}{l_{1}(\mu_{s})}\log(T) + o_{arepsilon}(\log T) \;.$$

One-parameter exponential families:

- satisfy Assumption 1 and $I_1(x) = \operatorname{kl}(x, \mu_1)$
- satisfy the balance condition with $g_r = \sqrt{\log(r)}$ (and $g_r = 1$ for Bernoulli, Gaussian and Poisson distributions)
- → RB-SDA is asymptotically optimal for *different* exponential family bandit models (possibly with unbounded support)

Works very well in practice!

Average Regret on N = 10000 random instances with K = 10

Bernoulli arms

Т	TS	IMED	PHE	SSMC	RB-SDA
	13.8		16.7	16.5	14.8
1000	27.8	31.9	39.5	34.2	31.8
10000	45.8	51.2	72.3	55.0	51.1
20000	52.2	57.6	85.6	61.9	57.7

• Gaussian arms

Т	TS	IMED	SSMC	RB-SDA
100	41.2	45.1	40.6	38.1
1000	76.4	82.1	76.2	70.4
10000	118.5	124.0	120.1	111.8
20000	132.6	138.1	135.1	125.7

more experiments in [Baudry et al. 20]

RB-SDA has logarithmic regret for any class of distributions that concentrate and satisfy the balance condition.

(same result for LB-SDA, see [Baudry et al., 2021b])

Sufficient condition: if there exists x_0 and C < 1 such that

$$\forall x \leq x_0, \quad f_1(x) < Cf_a(x),$$

the balance condition is satisfied with $g_r = \sqrt{\log(r)}$

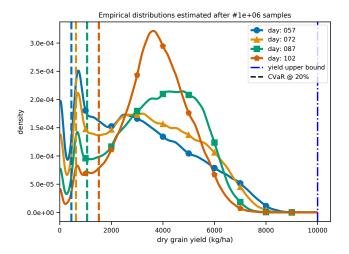
- interpretation: SDA works when the best arm has the "lightest left tail"
- this condition does not always hold for Gaussian with unknown variances, or multinomial distributions

1 Optimal solutions and their limitation

2 Sub-Sampling Duelling Algorithms (SDA)

3 Analysis of RB-SDA

Motivation: recommending planting dates to farmers



Distribution of the yield of a maize field for different planting dates obtained using the DSSAT simulator

A risk-averse bandit problem

Specifics of our application:

- \rightarrow **bounded** distributions, with known upper bound *B*
- \rightarrow quality of an arm is measured by its Conditional Value at Risk

$$\operatorname{CVaR}_{\alpha}(\nu_{a}) = \sup_{x \in \mathbb{R}} \left\{ x - \frac{1}{\alpha} \mathbb{E}_{X \sim \nu_{a}} \left[(x - X)^{+} \right] \right\}$$

Interpretation of the CVaR:

- if ν is continuous, $\operatorname{CVaR}_{\alpha}(\nu) = \mathbb{E}_{X \sim \nu} \left[X | X \leq F^{-1}(\alpha) \right]$
- if ν is discrete, with values $x_1 \leq x_2 \leq \cdots \leq x_M$

$$CVaR_{\alpha}(\nu) = \frac{1}{\alpha} \left[\sum_{i=1}^{n_{\alpha}-1} p_i x_i + \left(\alpha - \sum_{i=1}^{n_{\alpha}-1} p_i x_i \right) x_{n_{\alpha}} \right]$$

where $n_{\alpha} = \inf \{ n : \sum_{i=1}^{n} p_i x_i \ge \alpha \}.$

➔ average of the lower part of the distribution

Specifics of our application:

- \rightarrow **bounded** distributions, with known upper bound *B*
- \rightarrow quality of an arm is measured by its Conditional Value at Risk

$$\operatorname{CVaR}_{\alpha}(\nu_{\mathfrak{a}}) = \sup_{x \in \mathbb{R}} \left\{ x - \frac{1}{\alpha} \mathbb{E}_{X \sim \nu_{\mathfrak{a}}} \left[(x - X)^{+} \right] \right\}$$

Interpretation of the CVaR:

Choosing α allows to customize the risk-aversion:

- $\alpha = 20\%$: farmer seeking to avoid very poor yield
- $\alpha = 80\%$: market-oriented farmer trying to optimize the yield of non-extraordinary years

A risk-averse bandit problem

Specifics of our application:

- → **bounded** distributions, with known upper bound B
- → quality of an arm is measured by its Conditional Value at Risk

$$\operatorname{CVaR}_{\alpha}(\nu_{a}) = \sup_{x \in \mathbb{R}} \left\{ x - \frac{1}{\alpha} \mathbb{E}_{X \sim \nu_{a}} \left[(x - X)^{+} \right] \right\}$$

Interpretation of the CVaR:

Table 3: Empirical yield distribution metrics in kg/ha estimated after 10^6 samples in DSSAT environment

day (a	ction)		CVaR_{α}	
	5%	20%	80%	100% (mean)
057	0	448	2238	3016
072	46	627	2570	3273
087	287	1059	3074	3629
102	538	1515	3120	3586

CVaR regret

Letting $c_a^{\alpha} = \text{CVaR}_{\alpha}(\nu_a)$, the CVaR regret is defined as

$$\mathcal{R}_{T}^{\alpha}(\mathcal{A}) = \mathbb{E}_{\nu}\left[\sum_{t=1}^{T} \left(\max_{a} c_{a}^{\alpha} - c_{A_{t}}^{\alpha}\right)\right] = \sum_{a=1}^{K} \left(c_{\star}^{\alpha} - c_{a}^{\alpha}\right) \mathbb{E}[N_{a}(T)]$$

with $c_{\star}^{\alpha} = \max_{a} c_{a}^{\alpha}$.

Lower bound [Baudry et al., 2021a]

Under an algorithm achieving small CVaR regret for any bandit model $\nu\in\mathcal{D}^{K},$ it holds that

$$\forall a : c_a^{\alpha} < c_{\star}^{\alpha}, \quad \liminf_{T \to \infty} \frac{\mathbb{E}[N_a(T)]}{\log(T)} \ge \frac{1}{\mathcal{K}_{\inf}^{\alpha, \mathcal{D}}(\nu_a; c_{\star}^{\alpha})}$$

where $\mathcal{K}_{\inf}^{\alpha, \mathcal{D}}(\nu, c) = \inf \left\{ \mathrm{KL}(\nu, \nu') \, | \nu' \in \mathcal{D} : \mathrm{CVaR}_{\alpha}(\nu') \ge c \right\}.$

Non Parametric Thompson Sampling for CVaR bandits

Assumption: $\nu_a \in \mathcal{B}_a = \{ \text{distributions supported in } [0, B_a] \}.$

→ We propose an index policy, **B-CVTS**:

 $A_{t+1} \in rg\max_{a \in [K]} C_a(t)$

Index of arm *a* after *t* rounds

 *H*_a(t) = (Y_{a,1},...,Y_{a,N_a(t)}, B_a)
 be the augmented history of rewards gathered from this arm

•
$$w_{a,t} \sim \operatorname{Dir}(\underbrace{1,\ldots,1}_{N_a(t)+1})$$
 a random probability vector

→ yields a random perturbation of the empirical distribution $\widetilde{F}_{a,t} = \sum_{i=1}^{N_a(t)} w_{a,t}(i) \delta_{Y_{a,i}} + w_{a,t} (N_a(t) + 1) \delta_{B_a}$ $C_a(t) = \text{CVaR}_\alpha \left(\widetilde{F}_{a,t}\right)$

 $\alpha = 1 \rightarrow \mathsf{Non}$ Parametric Thompson Sampling [Riou and Honda 20]

Theory

B-CVTS is asymptotically optimal for bounded distributions.

Theorem [Baudry et al., 2021a]

On an instance u such that $u \in \mathcal{B}_1 \times \cdots \times \mathcal{B}_K$, we have

$$\mathcal{R}_{\mathcal{T}}(\mathsf{B}\text{-}\mathsf{CVTS}) \leq \sum_{a: c_a^\alpha < c_\star^\alpha} \frac{(c_\star^\alpha - c_a^\alpha)\log T}{\mathcal{K}_{\inf}^{\alpha, \mathcal{B}_a}(\nu_a, c_1^\alpha)} + o(\log T) \; .$$

Key tool: new bounds on the boundary crossing probability

$$\mathbb{P}_{\mathbf{w}\sim\mathcal{D}_n}\Big(\mathrm{C}_lpha(\mathcal{Y},\mathbf{w})>c\Big)$$

where

• \mathcal{D}_n is a Dir $(1, \ldots, 1)$ distribution (with *n* ones)

•
$$\mathcal{Y} = \{y_1, \dots, y_n\}$$
 is a fixed support

 C_α(𝔅, w) is the α CVaR of a discrete distribution with support 𝔅 and weights w

Practice

Competitors: two styles of UCB algorithms

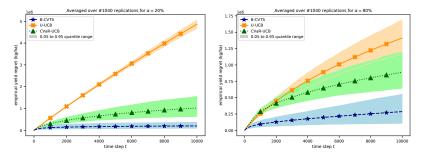
• U-UCB [Cassel et al., 2018] uses the empirical cdf $\hat{F}_{a,t}$

$$\mathrm{UCB}_{a}^{(1)}(t) = \mathrm{CVaR}_{\alpha}(\hat{F}_{a,t}) + \frac{B_{a}}{\alpha} \sqrt{\frac{c \log(t)}{2N_{a}(t)}}$$

• CVaR-UCB: [Tamkin et al., 2020] buids an optimistic cdf $\overline{F}_{a,t}$ $\operatorname{UCB}_{a}^{(2)}(t) = \operatorname{CVaR}_{\alpha}(\overline{F}_{a,t})$

Table 4: Empirical yield regrets at horizon 10^4 in t/ha in DSSAT environment, for 1040 replications. Standard deviations in parenthesis.

α	U-UCB	CVaR-UCB	B-CVTS
5%	3128 (3)	760 (14)	192 (11)
20%	4867 (11)	1024 (17)	202 (10)
80%	1411 (13)	888 (13)	287 (12)



Regret as a function of time averaged over N = 1040 simulations for $\alpha = 20\%$ (left) and $\alpha = 80\%$ (right)

Conclusion

Two non-parameteric exploration methods that can be good alternative to the standard UCB or Thompson Sampling:

- for bounded rewards, Non Parametric Thompson Sampling is optimal and can be naturally extended to tackle risk aversion
- Subsampling Duelling Algorithms can be simultaneously optimal in several bounded and unbounded parametric families
- ... but do not work for "any" distributions

Follow-up work:

- duelling with median-of-means instead of empirical means can make SDA work for heavy tailed distributions [Baudry et al., 2022]
- NPTS can be also be useful for pure exploration [Jourdan et al., 2022]

Cassel, A., Mannor, S., and Zeevi, A. (2018). A general approach to multi-armed bandits under risk criteria. In Proceedings of the 31st Annual Conference On Learning Theory.

Chan, H. P. (2020).

The multi-armed bandit problem: An efficient nonparametric solution. *The Annals of Statistics*, 48(1).

Jourdan, M., Degenne, R., Baudry, D., de Heide, R., and Kaufmann, E. (2022). Top two algorithms revisited.

In Advances in Neural Information Processing Systems (NeurIPS).

Kveton, B., Szepesvári, C., Ghavamzadeh, M., and Boutilier, C. (2019). Perturbed-history exploration in stochastic multi-armed bandits. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI).

Lai, T. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. *Advances in Applied Mathematics*, 6(1):4–22.

Lattimore, T. and Szepesvari, C. (2019). Bandit Algorithms. Cambridge University Press.

Robbins, H. (1952).

Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society, 58(5):527–535.

Tamkin, A., Keramati, R., Dann, C., and Brunskill, E. (2020).

Distributionally-aware exploration for cvar bandits.

In NeurIPS 2019 Workshop on Safety and Robustness in Decision Making; RLDM 2019.