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The stochastic Multi Armed Bandit (MAB) model

K unknown reward distributions ν1, . . . , νK called arms

a each time t, select an arm At and observe a reward Xt ∼ νAt

Objective: find a sequential sampling strategy A = (At) that
maximizes the sum of rewards ⇔ minimize the regret

RT (A) = µ?T − E

[
T∑
t=1

Xt

]

[Robbins, 1952, Lattimore and Szepesvari, 2019]
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Examples

clinical trials → reward: success/failure (Bernoulli)

movie recommendation → reward: rating (multinomial)

recommendation in agriculture → reward: yield
(complex, possibly multi-modal distribution)

Goal: design algorithms that use as little knowledge about the
rewards distributions as possible
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Outline

1 Optimal solutions and their limitation

2 Sub-Sampling Duelling Algorithms (SDA)

3 Analysis of RB-SDA

4 A risk-averse non-parametric algorithm
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(Don’t) Follow The Learder

Select each arm one, then exploit the current knowledge:

At+1 = arg max
a∈[K ]

µ̂a(t)

where

Na(t) =
∑t

s=1 1(As = a) is the number of selections of arm a

µ̂a(t) = 1
Na(t)

∑t
s=1 Xs1(As = a) is the empirical mean of the

rewards collected from arm a

Follow the leader can fail! ν1 = B(µ1), ν2 = B(µ2), µ1 > µ2

E[N2(T )] ≥ (1− µ1)µ2 × (T − 1)

⇒ linear regret

Ü Exploitation is not enough, we need to add some exploration
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Smarter algorithms: Two dominant families

Upper Confidence Bound
(UCB)

0

1

9 3 448 18 21

At+1 = argmax
a∈[K ]

UCBa(t)

where UCBa(t) is an UCB on
the unknown mean µa

Thompson Sampling
(TS)

0

1

2 4 346 107 40

At+1 = argmax
a∈[K ]

µ̃a(t)

where µ̃a(t) is a sample from
a posterior distribution on µa

Ü both approaches can be tuned to achieve optimality
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(Problem dependent, asymptotic) optimality

RT (A) = E

[
T∑
t=1

(µ? − µAt )

]
=

∑
a:µa<µ?

(µ? − µa)E[Na(T )]

where Na(T ) is the number of selections of arm a up to round T .

For each a, let Da be a family of probability distributions.

Lower bound [Lai and Robbins, 1985, Burnetas and Katehakis, 1996]

Under an algorithm achieving small regret for any bandit model
ν ∈ D1 × · · · × DK , it holds that

∀a : µa < µ?, lim inf
T→∞

E[Na(T )]

log(T )
≥ 1

KDa
inf (νa;µ?)

where KDinf(ν, µ) = inf {KL(ν, ν ′)| ν ′ ∈ D : EX∼ν′ [X ] ≥ µ} with
KL(ν, ν ′) the Kullback-Leibler divergence.
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Matching the lower bound

If D is a one-dimensional exponential family

KDinf(νa, µ?) = kl(µa, µ?)

where kl(µ, µ′) = KL(νµ, νµ′) with νµ ∈ D the unique distribution
in D that has mean µ.

Examples: Bernoulli, Gaussian with known variance σ2, Poisson...

kl-UCB [Cappé et al., 2013] uses the kl(·, ·) divergence

Thompson Sampling using a conjuguate prior

are both matching the lower bound.

Ü can we find a single algorithm that is simultaneously
asymptotically optimal for different classes of distributions?
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A first non-parameteric idea: re-sampling

Non-Parametric Bootstrap

At+1 = arg max
a∈[K ]

µ̃a(t)

where µ̃a(t) average of Na(t) samples drawn at random with
replacement in the history Ha(t) = {Ya,1, . . . ,Ya,Na(t)}.

[Kveton et al., 2019]: vanilla non-parametric bootstrap can
have linear regret, a fix adding fake rewards in the history

logarithmic regret for bounded distributions (not optimal)

In order to be asymptotically optimal, for potentially unbounded
distributions, we rely instead on sub-sampling

[Baransi et al., 2014, Chan, 2020]



9/31

A first non-parameteric idea: re-sampling

Non-Parametric Bootstrap

At+1 = arg max
a∈[K ]

µ̃a(t)

where µ̃a(t) average of Na(t) samples drawn at random with
replacement in the history Ha(t) = {Ya,1, . . . ,Ya,Na(t)}.

[Kveton et al., 2019]: vanilla non-parametric bootstrap can
have linear regret, a fix adding fake rewards in the history

logarithmic regret for bounded distributions (not optimal)

In order to be asymptotically optimal, for potentially unbounded
distributions, we rely instead on sub-sampling

[Baransi et al., 2014, Chan, 2020]



10/31

Outline

1 Optimal solutions and their limitation

2 Sub-Sampling Duelling Algorithms (SDA)

3 Analysis of RB-SDA

4 A risk-averse non-parametric algorithm



11/31

Sub-sampling Duelling Algorithms

A round-based approach

1 Find the leader : arm with largest number of observations

2 Organize K − 1 duels: leader vs challengers.

3 Draw a set of arms: winning challengers xor leader .

How do duels work?
Idea: a fair comparison of two arms with different history size

challenger: compute µ̂c , the empirical mean

leader: compute µ̃`, the mean of a sub-sample of the same
size as the history of the challenger.

challenger wins if µ̂c ≥ µ̃`
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Illustration of a round
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Possible Sub-Sampling Schemes

Input of SDA: how to sub-sample n elements from N?

Sampling Without Replacement (SW-SDA): pick a random
subset of size n in [1,N]

(as in BESA [Baransi et al. 14], analyzed for 2 arms)

Random-Block Sampling (RB-SDA): return a block of size n
starting from random n0 ∼ U([1,N − n])

Last Block Sampling (LB-SDA): return {N − n, . . . ,N}

SSMC [Chan 20] uses data-dependent sub-sampling
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Regret of SDA algorithms

SDA algorithms are round-based

Ar : set of arms that are sampled in round r

rT (random) number of rounds before T samples are collected

Ña(r) =
∑r

s=1 1(a ∈ As): number of selections of a in r rounds

RT (A) =
K∑

a=1

(µ? − µa)E[Na(T )]

≤
K∑

a=1

(µ? − µa)E
[
Ña(rT )

]
≤

K∑
a=1

(µ? − µa)E
[
Ña(T )

]
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First ingredient: Concentration

Definition (Block Sampler)

A block sampler outputs a sequence of consecutive observations
in the rewards history.

↪→ Random Block and Last Block are block samplers, not SWR.

Ya,n: n-th observation from arm a

Y a,S = 1
|S|
∑

i∈S Ya,i for a subset S
Ssa,b ⊆ [Na(s)] sub-sample used in round s for the leader a

against the challenger b,
∣∣∣Ssa,b∣∣∣ = Nb(s)

Lemma (concentration of a sub-sample)

Under a block sampler, for any µa < ξ < µb,
r∑

s=1

P
(
Ȳa,Ss

a,b
≥ Ȳb,Nb(s), n0 ≤ Nb(s) ≤ Na(s)

)
≤

r∑
j=n0

P
(
Ȳa,j ≥ ξ

)
+ r

r∑
j=n0

P
(
Ȳb,j ≤ ξ

)
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First ingredient: Concentration

Assumption 1: (arm concentration)

∀x > µa, P
(
Ȳa,n ≥ x

)
≤ e−nIa(x)

∀x < µa, P
(
Ȳa,n ≤ x

)
≤ e−nIa(x) .

for some rate function Ia(x) (1-d exp. families: Ia(x) = kl(x , µa))

Lemma (for SDA using a block sampler)

Under Assumption 1, for every ε > 0, there exists a constant
Ck(ν, ε) with ν = (ν1, . . . , νk) such that

E
[
Ña(T )

]
≤ 1 + ε

I1(µa)
log(T ) + 32

T∑
r=1

P
(
Ñ1(r) ≤ (log(r))2

)
+ Ca(ν, ε)

Proof: exploits only concentration (and how the algorithm works)
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Probability to under-sample the best arm

(
N1(r) ≤ log2(r)

)
⊆
blog2(r)c⋃

j=0

(
τj+1 − τj ≥

r

log2(r)

)⋂{
arm 1 is not the leader

}
τj : instant in of the j-th selection of arm 1
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Two extra ingredients

To upper bound
∑T

r=1 P
(
N1(r) ≤ (log(r))2

)
, we further need:

À Diversity: the sub-sampler produces a variety of independent
sub-samples when being called a lot of times

Xm,H,j := number of mutually non-overlapping sets when we draw
m sub-samples of size j in a history of size H.

Under Random Block sampling,

T∑
r=1

(log r)2∑
j=1

P
(
XNr ,Nr ,j < γ

r

(log r)2

)
= o(logT ) .

for Nr = O(r/ log2(r)) and some γ ∈ (0, 1)
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Two extra ingredients

To upper bound
∑T

r=1 P
(
N1(r) ≤ (log(r))2

)
, we further need:

Á a Balance condition: the optimal arm (arm 1) is not likely to
loose many (M) duels based on independent sub-samples of a
sub-optimal arm (arm a)

Balance function of arm a 6= 1:

αa(M, j) := EX∼ν1,j

[
(1− Fνa,j (X ))M

]
= P

(
M⋂

m=1

(
Y 1,j < Y a,Sm

))
|Sm| = j ,Sm ∩ Sm′ = ∅

The balance condition for arm a is

∀β ∈ (0, 1),
T∑
r=1

b(log r)2c∑
j=gr

αa

(⌊
β

r

(log r)2

⌋
, j

)
= o(logT )

gr : amount of forced exploration added to the algorithm
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Final results

General Theorem [Baudry et al., 2020]

If all arms satisfy Assumption 1 and the sub-optimal arms satisfy
the balance condition, RB-SDA satisfies, for all sub-optimal arm a,

E
[
Ña(T )

]
≤ 1 + ε

I1(µa)
log(T ) + oε(logT ) .

One-parameter exponential families:

satisfy Assumption 1 and I1(x) = kl(x , µ1)

satisfy the balance condition with gr =
√

log(r)
(and gr = 1 for Bernoulli, Gaussian and Poisson distributions)

Ü RB-SDA is asymptotically optimal for different exponential
family bandit models (possibly with unbounded support)
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Works very well in practice!

Average Regret on N = 10000 random instances with K = 10

Bernoulli arms

T TS IMED PHE SSMC RB-SDA

100 13.8 15.1 16.7 16.5 14.8
1000 27.8 31.9 39.5 34.2 31.8
10000 45.8 51.2 72.3 55.0 51.1
20000 52.2 57.6 85.6 61.9 57.7

Gaussian arms

T TS IMED SSMC RB-SDA

100 41.2 45.1 40.6 38.1
1000 76.4 82.1 76.2 70.4
10000 118.5 124.0 120.1 111.8
20000 132.6 138.1 135.1 125.7

more experiments in [Baudry et al. 20]
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Robustness of SDA algorithms

RB-SDA has logarithmic regret for any class of distributions that
concentrate and satisfy the balance condition.

(same result for LB-SDA, see [Baudry et al., 2021b])

Sufficient condition: if there exists x0 and C < 1 such that

∀x ≤ x0, f1(x) < Cfa(x),

the balance condition is satisfied with gr =
√

log(r)

- interpretation: SDA works when the best arm has the
“lightest left tail”

, this condition does not always hold for Gaussian with
unknown variances, or multinomial distributions
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Motivation: recommending planting dates to farmers
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Distribution of the yield of a maize field for different planting dates
obtained using the DSSAT simulator
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A risk-averse bandit problem

Specifics of our application:

Ü bounded distributions, with known upper bound B

Ü quality of an arm is measured by its Conditional Value at Risk

CVaRα(νa) = sup
x∈R

{
x − 1

α
EX∼νa

[
(x − X )+

]}

Interpretation of the CVaR:

if ν is continuous, CVaRα(ν) = EX∼ν
[
X |X ≤ F−1(α)

]
if ν is discrete, with values x1 ≤ x2 ≤ · · · ≤ xM

CVaRα(ν) =
1

α

[
nα−1∑
i=1

pixi +

(
α−

nα−1∑
i=1

pixi

)
xnα

]

where nα = inf {n :
∑n

i=1 pixi ≥ α}.
Ü average of the lower part of the distribution
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A risk-averse bandit problem

Specifics of our application:

Ü bounded distributions, with known upper bound B

Ü quality of an arm is measured by its Conditional Value at Risk

CVaRα(νa) = sup
x∈R

{
x − 1

α
EX∼νa

[
(x − X )+

]}

Interpretation of the CVaR:

Choosing α allows to customize the risk-aversion:

α = 20%: farmer seeking to avoid very poor yield

α = 80%: market-oriented farmer trying to optimize the yield
of non-extraordinary years
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CVaR regret

Letting cαa = CVaRα(νa), the CVaR regret is defined as

RαT (A) = Eν

[
T∑
t=1

(
max
a

cαa − cαAt

)]
=

K∑
a=1

(cα? − cαa )E[Na(T )]

with cα? = maxa c
α
a .

Lower bound [Baudry et al., 2021a]

Under an algorithm achieving small CVaR regret for any bandit
model ν ∈ DK , it holds that

∀a : cαa < cα? , lim inf
T→∞

E[Na(T )]

log(T )
≥ 1

Kα,Dinf (νa; cα? )

where Kα,Dinf (ν, c) = inf
{
KL(ν, ν ′) |ν ′ ∈ D : CVaRα(ν ′) ≥ c

}
.
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Non Parametric Thompson Sampling for CVaR bandits

Assumption: νa ∈ Ba = {distributions supported in [0,Ba]}.
Ü We propose an index policy, B-CVTS:

At+1 ∈ arg max
a∈[K ]

Ca(t)

Index of arm a after t rounds

Ha(t) = (Ya,1, . . . ,Ya,Na(t),Ba) be the augmented history of
rewards gathered from this arm

wa,t ∼ Dir(1, . . . , 1︸ ︷︷ ︸
Na(t)+1

) a random probability vector

Ü yields a random perturbation of the empirical distribution

F̃a,t =
∑Na(t)

i=1 wa,t(i)δYa,i
+ wa,t(Na(t) + 1)δBa

Ca(t) = CVaRα

(
F̃a,t
)

α = 1 → Non Parametric Thompson Sampling [Riou and Honda 20]
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Theory

B-CVTS is asymptotically optimal for bounded distributions.

Theorem [Baudry et al., 2021a]

On an instance ν such that ν ∈ B1 × · · · × BK , we have

RT (B-CVTS) ≤
∑

a:cαa <cα?

(cα? − cαa ) logT

Kα,Bainf (νa, cα1 )
+ o(logT ) .

Key tool: new bounds on the boundary crossing probability

Pw∼Dn

(
Cα(Y,w) > c

)
where

Dn is a Dir(1, . . . , 1) distribution (with n ones)

Y = {y1, . . . , yn} is a fixed support

Cα(Y,w) is the α CVaR of a discrete distribution with
support Y and weights w
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Practice

Competitors: two styles of UCB algorithms

U-UCB [Cassel et al., 2018] uses the empirical cdf F̂a,t

UCB
(1)
a (t) = CVaRα(F̂a,t) +

Ba

α

√
c log(t)

2Na(t)

CVaR-UCB: [Tamkin et al., 2020] buids an optimistic cdf F a,t

UCB
(2)
a (t) = CVaRα(F a,t)
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Practice
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Conclusion

Two non-parameteric exploration methods that can be good
alternative to the standard UCB or Thompson Sampling:

for bounded rewards, Non Parametric Thompson Sampling is
optimal and can be naturally extended to tackle risk aversion

Subsampling Duelling Algorithms can be simultaneously
optimal in several bounded and unbounded parametric families

... but do not work for “any” distributions

Follow-up work:

duelling with median-of-means instead of empirical means can
make SDA work for heavy tailed distributions
[Baudry et al., 2022]

NPTS can be also be useful for pure exploration
[Jourdan et al., 2022]
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