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Example : partitionning a network

Political blogs network
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Overlapping communities : examples

o Co-authorship network

E. Kaufmann

Networks
(SIGMETRICS)

Machine learning
(NIPS)
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Random graph models

Idea : Assume that the observed graph is drawn from a random
graph model that depends on (hidden) communities

@ inspires model-based methods for community detection
(community detection = estimation problem)

@ can be used for evaluation purpose :

=¥ try algorithms on simulated data
=» consistency results : proof that the hidden communities are
recovered (if the network is sufficiently large/dense)
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@ The non-overlapping case

© The stochastic-blockmodel with overlaps (SBMO)
© An estimation procedure in the SBMO

@ Theoretical analysis

© Implementation and results
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@ The non-overlapping case
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The Stochastic Block-Model (SBM)

Definition

An undirected, unweighted graph with n nodes is drawn under the
random graph model with expected adjacency matrix A if

Vi <j, Aij~ B(Ai))
where A; ; is the observed adjacency matrix.

The stochastic block-model with parameter <,/,5 :
@ n nodes, K communities
e a mapping k:{1,...,n} — {1,...,K}
@ a connectivity matrix B € RK*K

The expected adjacency matrix is
Aij = Biy ki) = (ZBZ7)i

for a membership matrix Z € R™K ; Zi | = Ox(i),I-
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The Stochastic Block-Model (SBM)

Example : K =2, for p > gq,
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SBM : a motivation for a spectral algorithm

Aij = Br(i,k()

Observation 1 : A is constant on communities :
Ai.=Aj. & k(i) = k()

(due to noise, won't be the case for A)

Obsevation 2 : this property is preserved for the matrix
U=[u]...|ug] € R™K

that contains eigenvectors of A associated to non-zero eigenvalues :
Ui = Uy & k(i) = k()

(not too far from the truth for an empirical version U?)
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Spectral clustering with the adjacency matrix

(/A4,-7j) adjacency matrix of the observed graph

Step 1 : spectral embedding
Compute U = [in]. .. |tk] € R™K, matrix of K eigenvectors of A
associated to largest eigenvalues

node i — vector U, e RX
Step 2 : clustering phase
Perform clustering in [2“on the vectors representing the nodes
(the rows of U), e.g. K-means clustering
Remarks :
@ other possible spectral embeddings (e.g. Laplacian)

@ other possible justifications for spectral algorithms
[Von Luxburg 08, Newman 13]
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© The stochastic-blockmodel with overlaps (SBMO)
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The model

Definition
The Stochastic Block-Model with Overlap (SBMO) has expected
adjacency matrix

A=7BZT

that depends on /<, a connectivity matrix 2 € RK*K and a
membership matrix ~ € {0,1}"*K.

Z:=2Z7;.€{0,1}"K . indicates the communitieS

to which node i belongs

Our goal : Given A drawn under SBMO, build an estimate K of K
and Z of Z (up to a permutation of its columns).
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Performance metrics

Two criterion to minimize :

@ number of misclassified nodes :

MisC(Z,Z) = min |{i € {1,....n}: 3k € {1,..., K}, Zi o) # Zi}

c€Gyk
@ estimation error :

~ 1 ~
Error(Z,Z) = —2 inf [|ZP; — Z||%

N 06k

(if K # K, MisC(Z, Z) = n and Error(Z, Z) = 1).
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|dentifiability

To perform estimation, the model needs to be identifiable :
Z'B'ZT =7BZT = MisC(Z',Z)=0.

e Not always the case! ZBZT = Z'B’ Z'T = z7'B"7"T  with

a 0o 110
B=|10 b 0 Z=(1011
00 1 01
a+b b 1 00
B = b b+ c ) ZZ=1010
a c a+c 0 01
at+b—c b—c a—-c O
I b—c¢ b 0 0 I 1001
B" = Z"=1 01 0 1
a—c 0 a 0 001 1
0 0 0 c
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|dentifiability

To perform estimation, the model needs to be identifiable :

Z'B'ZT =7BZT = MisC(Z',Z)=0.

Theorem

The SBMO is identifiable under the following assumptions :
(SBMO1) B is invertible;

(SBMO2) each community contains at least one pure node :

K
Vke{l,... K},3ie{l,...,n}: Zy=) Zy,=1
=1

Emilie Kaufmann (Inria) Identification of overlapping communities in networks



© An estimation procedure in the SBMO
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SBMO or SBM?

SBMO(K,B,Z) can be viewed as a particular case of SBM with
o communities indexed by S = {z € {0,1}1*K : 3j . Z; = 2}

/ _ /T
° BZ’Z, = zBz

Start by reconstructing the underlying SBM 7 Not a good idea.
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Spectrum of the adjacency matrix under the SBMO

A= ZBZT the expected adjacency matrix of an identifiable
SBMO :

e ZcZ2:={Zc{0,1}K vkel,..., K}Y3i:Z =1y,
@ Ais of rank K

U =[w1]...|uk] a matrix whose columns are K normalized
eigenvectors associated to the non-zero eigenvalues of A.

Proposition

@ there exists X € RK*K . [ = zX

@ forall Z/ € Z and X' € REXK if U = Z'X’, there exists
cecG:Z=27P,

(u1,...,ux form a basis of Im(A) and Im(A) C Im(Z2))
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Combinatorial spectral clustering

This motivates the following estimation procedure :

(P): (Z,X)e argmin [|ZX' — 0|3, J
Z'€Z,X'ERK*K

where U is a matrix that contains eigenvector associated to the K
largest eigenvalues of A (in absolute value).

IMIE =Y M2 =>(IMi P = [IM|P
iJj i J

In practice : Combinatorial spectral clustering computes an
(approximate) solution of

(PY: (Z,X)e argmin 1Z'X" — U]
Z'e{0,1}"<K.vi,Z! 0
X/GRKXK

If K is unknown, let K be the number of eigenvalues A\ of A
satisfying |A| > 1/2 (1 + 1) dmax(n) log(4n1+7).




@ Theoretical analysis
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@ Under which conditions is

(P): (Z,X)e argmin [|ZX — U3,
7'e Z X'eRKxK

a good estimation procedure ?

@ We present the analysis of a slight variant :

(P): (Z,X)e argmin ||Z/X - U|%,
7/c 2, X! ERKXK

{i:Z =1}
ze{z’e{ow"“‘w@u ..... K}.“ / ““m}.

n

for € smaller than the smallest proportion of pure nodes.
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To analyze the solution of (P.) when the network grows,
A=2nzp7T
n

with o, a degree parameter, B independent of n, Z € {0,1}"*K.

. 1
di(n) = ZAi,j = Qp <nZ;BZT1)
j=1

Assumption : overlap matrix

There exists some matrix O € RK*K  called the overlap matrix :
1
~Z"z - 0.
n

Ok, : (limit) proportion of nodes belonging to communities k and /
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A precise characterization of the spectrum

The spectrum of A can be related to the spectrum of K x K
matrices that are independent on n :

Proposition

Let u # 0. The following statements are equivalent :
© x is an eigenvector of V, -— OY/?B0O"? associated to u

Q@ u = Z0 /2x is an eigenvector of A associated to cvpu

In particular, the non-zero eigenvalues of A are of order O(a,).
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Step 1 : Why is U close to U?

Heuristic :

@ Spectrum of A

S J

o—o
—0
[HTh ApHz Any

o Spectrum of A = A + perturbation

~(2dmax)1/2 0 (2dmax)1/2 K S ’

Extra ingredient : the Davis-Kahan theorem (linear algebra) to
prove that the associated eigenvectors are close
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Step 1 : Why is U close to U?

An adaptive eigenvectors perturbation result
Let K = {)\ e Sp(A) : [A| > \/2(1 + 1) dmax(n) Iog(4n/5)}‘
and U € R™K 3 matrix that contains normalized eigenvectors of
A associated with the largest K eigenvalues. If
dmax(n) > Ci(n)log(n/d),
Amin(A)?/dmax(n) > Go(n)log (n/d),

for some constants Ci(n), Ca(n), then with probability larger than
1—9, K = Rank(A) and there exists P € Ok(R) such that

N ~ 112 n dmax(n) 4n
_ < .
] UPHF_32 <1+n+2) (/\m;n(A)Z log (=

dmax(n) = O(an) . ap
In the SBMO, { Ain(A) = oam we need ooy — 00.
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Step 2 : Sensitivity to noise

There exists V € Ok(R) (eigenvectors of Mp) such that
1

U=2ZX with X = ﬁo—mv.
Let
dy = min z07 12| > 0.
z€{—-1,0,1,2}1xK
z#0

Lemma
Let Z/ € R™K X' ¢ RKxK and N c{1,...,n}. Assume that
O Vi e N, [|ZIX' — Ul < z
Q there exists (i1,...,ik) € NK and (j1,...,jk) € NK:
Vk € [LK], Zi, =Z =14

Then there exists a permutation matrix P, such that

e /!
Vi e N, Zi = (Z PU),'.
V.
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The result

Let n €]0,1/2[ and r > 0. Let

= {3 €000 1 2 V205 1)) o450 )|

and U € R™K a matrix that contains normalized eigenvectors of
A associated with the largest K eigenvalues.

(P): (Z,X)e argmin ||Z'X' — 0|2
Z'€Z. X/ eRKxK

Assume that |a” — 00. There exists a constant (; > 0 such that,
for n large enough

TV 7 2 1+r 1
p MisC(Z, Z) < C12K2 log(4n*T") s L
n ds 1 Qap n"’
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© Implementation and results
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Combinatorial Spectral Clustering (CSC)

@ Step 1 : spectral embedding based on the adjacency matrix :
compute U, the matrix of K leading eigenvectors of A

e Step 2 : compute an approximation of the solution of (P’)

(P): (Z,X) e argmin 1Z'X" — U]
Z'e€{0,1}*Kvi, Z!#0
X/GRKXK

using alternate minimization.

12X = UIF = > 11ZIX" = Uil
i=1
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Combinatorial Spectral Clustering (CSC)

Algorithm 1 Adaptive Combinatorial Spectral Clustering for Overlapping Community Detection
Require: Parameters €, r, n > 0. Upper bound on the maximum overlap O, ..
Require' A, the adjacency matrix of the observed graph.
: | Selection of the eigenvectors
2: Form U a matrix whose columns are K eigenvectors of A associated to eigenvalues A satisfying

1> V/2(1+ 1) (1) log(4nt*7)
3 Initialization

4 Z=0eR™K
N e RS initialized with k-means++ applied to U, the first centroid being chosen at random

among nodes with degree smaller than the median degree

[

6: Loss = +o0

7: § Alternating minimization

8: while (Loss — || ZX - UHF > ¢€) do

9 Loss=||ZX - U]

10:  Update membership vectors: Vi, Z; = arg min 1U;. - =X].
26{0,1} 1K 11| 2]|; <Omax

11:  Update centroids: X = (272)"'Z7U.

12: end while
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Experiments on simulated data

CSC versus two spectral algorithms :
o Normalized Spectral Clustering (SC)
o the OCCAM spectral algorithm (OCCAM) [Zhang et al. 14

=500, K =5, a, = (log n)!%, B = Diag(5,4,3,3,3),
Z : fraction p of pure nodes, Omax < 3.
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Experiments on real-world networks

Ego-networks from the ego-networks dataset
(SNAP, [Mc Auley, Leskovec 12])

n K C Omax FP FN Error
SC 190 3.17 1.09 2.17 0.200 0.139 0.120
(173) | (1.07) | (0.06) | (0.37) | (0.110) | (0.107) | (0.083)
OCC. | 190 3.17 1.09 2.17 0.176 0.113 0.127
(173) | (1.07) | (0.06) | (0.37) | (0.176) | (0.084) | (0.102)
CSC 190 3.17 1.09 2.17 0.125 0.101 0.102

(173) | (1.07) | (0.06) | (0.37) | (0.067) | (0.062) | (0.049)

TABLE: Spectral algorithms recovering overlapping friend circles in
ego-networks from Facebook (average over 6 networks).
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Experiments on real-world networks

Co-authorship networks built from DBLP

C1 = {NIPS}, C, = {ICML}, C3 = {COLT,ALT}
n=09272, K =3, dpey — 45

c ¢ FP FN | Error
SC 122 1. | 038|039 0.39
OCCAM | 1.22 |1 1.02 1043|041 | 042
CSsC 1.22 1 1.04 | 0.26 | 0.28 | 0.27

C; = {ICML}, C, = {COLT,ALT}.
n=4374, K=2, dy .., — 3.8

c ¢ FP FN | Error
SC 1.09| 1. | 039|055 | 0.46
OCCAM | 1.09 | 1.01 | 0.29 | 0.44 | 0.36
CSsC 1.09 | 1.03 | 0.21 | 0.31 | 0.25
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Experiments in the sparse case

A simple SBMO : A= %ZBZT

1 0
a 0 sn
B = < 0 a > Z= 1(1—25)n 1(1—25)n )
0

sn

s €]0,1/2[ : fraction of pure nodes in each community.

We set v, — 1 (very sparse network) :

1.

o
©
v

o
o
S

fraction of correct entries in Z
o e ° o o
O ]

& S & S &

4
@
S

Emilie Kaufmann (Inria) Identification of overlapping communities in networks



Experiments in the sparse case

Spectrum of A (ap =1) :

a(2 — 3s) > sa
1, -1,
X = 2(1—25)n and Y = 0(1—25)n
sn lsn

The eigenvectors A\ of A associated to the noise should satisfy

Al < v/a(2 —3s)
sa | a(2-3s)
i —
-(a(2-3s))2 0 (a(2-3s))12

Conjecture :
If s2a < 2 — 3s, it is impossible to classify the pure nodes better
than by random guessing.
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Experiments in the sparse case

o Adding the threshold

1.00 ; .
— a=10 /\/
0.95{ — a =20 i
— a=30

090H 5= i
N a =50
=
$0.85] E
5
§
2o.8of E
g
14
80.75F 4
N
o
[=4
So.70t E
5
©
2 |

0.65F E

\\/
0.60 \\\/ 1
|
\
053 0.1 0.2 0.3 0.4 0.5

s : fraction of each kind of pure nodes
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Conclusion

Combinatorial Spectral Clustering = a spectral algorithm that uses
the geometry of the eigenvectors of the adjacency matrix under the
SBMO to directly identify overlapping communities

Future work :

o further explore the phase transition in the sparse case
e find heuristics for solving (P’) more efficiently
@ are other spectral embeddings possible 7

@ can the pure nodes assumption be relaxed ?
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