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Example : partitionning a network

Political blogs network
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Overlapping communities : examples

Ego-network

Friends
Colleagues

Sports team
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Overlapping communities : examples

Co-authorship network
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Random graph models

Idea : Assume that the observed graph is drawn from a random
graph model that depends on (hidden) communities

inspires model-based methods for community detection
(community detection = estimation problem)

can be used for evaluation purpose :

Ü try algorithms on simulated data
Ü consistency results : proof that the hidden communities are

recovered (if the network is sufficiently large/dense)
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The Stochastic Block-Model (SBM)

Definition

An undirected, unweighted graph with n nodes is drawn under the
random graph model with expected adjacency matrix A if

∀i ≤ j , Âi ,j ∼ B(Ai ,j)

where Âi ,j is the observed adjacency matrix.

The stochastic block-model with parameter K ,Z ,B :

n nodes, K communities

a mapping k : {1, . . . , n} −→ {1, . . . ,K}
a connectivity matrix B ∈ RK×K

The expected adjacency matrix is

Ai ,j = Bk(i),k(j) = (ZBZT )i ,j

for a membership matrix Z ∈ Rn×K : Zi ,l = δk(i),l .
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The Stochastic Block-Model (SBM)

Example : K = 2, for p > q,

B =

(
p q
q p

)
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SBM : a motivation for a spectral algorithm

Ai ,j = Bk(i),k(j)

Observation 1 : A is constant on communities :

Ai ,· = Aj ,· ⇔ k(i) = k(j)

(due to noise, won’t be the case for Â)

Obsevation 2 : this property is preserved for the matrix

U = [u1| . . . |uK ] ∈ Rn×K

that contains eigenvectors of A associated to non-zero eigenvalues :

Ui ,· = Uj ,· ⇔ k(i) = k(j)

(not too far from the truth for an empirical version Û ?)
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Spectral clustering with the adjacency matrix

(Âi ,j) adjacency matrix of the observed graph

Step 1 : spectral embedding
Compute Û = [û1| . . . |ûK ] ∈ Rn×K , matrix of K eigenvectors of Â
associated to largest eigenvalues

node i → vector Ûi ,· ∈ RK

Step 2 : clustering phase
Perform clustering in RKon the vectors representing the nodes
(the rows of Û), e.g. K -means clustering

Remarks :

other possible spectral embeddings (e.g. Laplacian)

other possible justifications for spectral algorithms

[Von Luxburg 08, Newman 13]
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The model

Definition

The Stochastic Block-Model with Overlap (SBMO) has expected
adjacency matrix

A = ZBZT

that depends on K , a connectivity matrix B ∈ RK×K , and a
membership matrix Z ∈ {0, 1}n×K .

Zi := Zi ,· ∈ {0, 1}1×K : indicates the communitieS

to which node i belongs

Our goal : Given Â drawn under SBMO, build an estimate K̂ of K
and Ẑ of Z (up to a permutation of its columns).

Emilie Kaufmann (Inria) Identification of overlapping communities in networks



Performance metrics

Two criterion to minimize :

number of misclassified nodes :

MisC(Ẑ ,Z ) = min
σ∈SK

∣∣∣{i ∈ {1, . . . , n} : ∃k ∈ {1, . . . ,K}, Ẑi ,σ(k) 6= Zi ,k}
∣∣∣

estimation error :

Error(Ẑ ,Z ) =
1

nK
inf
σ∈SK

||ẐPσ − Z ||2F

(if K̂ 6= K , MisC(Ẑ ,Z ) = n and Error(Ẑ ,Z ) = 1).
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Identifiability

To perform estimation, the model needs to be identifiable :

Z ′B ′Z ′T = ZBZT ⇒ MisC(Z ′,Z ) = 0.

Not always the case ! ZBZT = Z ′B ′Z ′T = Z ′′B ′′Z ′′T , with

B =

 a 0 0
0 b 0
0 0 c

 Z =

 1 1 0
0 1 1
1 0 1


B ′ =

 a + b b a
b b + c c
a c a + c

 Z ′ =

 1 0 0
0 1 0
0 0 1



B ′′ =


a + b − c b − c a− c 0
b − c b 0 0
a− c 0 a 0

0 0 0 c

 Z ′′ =

 1 0 0 1
0 1 0 1
0 0 1 1
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Identifiability

To perform estimation, the model needs to be identifiable :

Z ′B ′Z ′T = ZBZT ⇒ MisC(Z ′,Z ) = 0.

Theorem

The SBMO is identifiable under the following assumptions :

(SBMO1) B is invertible ;

(SBMO2) each community contains at least one pure node :

∀k ∈ {1, . . . ,K}, ∃i ∈ {1, . . . , n} : Zi ,k =
K∑
`=1

Zi ,` = 1.
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SBMO or SBM ?

SBMO(K,B,Z) can be viewed as a particular case of SBM with

communities indexed by S = {z ∈ {0, 1}1×K : ∃i : Zi = z}
B ′z,z ′ = zBz ′T

C2

C1

C3

C(1,0,0)

C(0,1,0) C(0,0,1)

C(1,0,1)C(1,1,0)

C(0,1,1)

C(1,1,1)

Start by reconstructing the underlying SBM ? Not a good idea.
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Spectrum of the adjacency matrix under the SBMO

A = ZBZT the expected adjacency matrix of an identifiable
SBMO :

Z ∈ Z := {Z ∈ {0, 1}n×K , ∀k ∈ {1, . . . ,K} ∃i : Zi = 1{k}}.
A is of rank K

U = [u1| . . . |uK ] a matrix whose columns are K normalized
eigenvectors associated to the non-zero eigenvalues of A.

Proposition

1 there exists X ∈ RK×K : U = ZX

2 for all Z ′ ∈ Z and X ′ ∈ RK×K , if U = Z ′X ′, there exists
σ ∈ Sk : Z = Z ′Pσ

(u1, . . . , uK form a basis of Im(A) and Im(A) ⊂ Im(Z ))
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Combinatorial spectral clustering

This motivates the following estimation procedure :

(P) : (Ẑ , X̂ ) ∈ argmin
Z ′∈Z,X ′∈RK×K

||Z ′X ′ − Û||2F ,

where Û is a matrix that contains eigenvector associated to the K
largest eigenvalues of Â (in absolute value).

||M||2F =
∑
i ,j

M2
i ,j =

∑
i

||Mi ,·||2 =
∑
j

||M·,j ||2

In practice : Combinatorial spectral clustering computes an
(approximate) solution of

(P)′ : (Ẑ , X̂ ) ∈ argmin
Z ′∈{0,1}n×K :∀i ,Z ′i 6=0

X ′∈RK×K

||Z ′X ′ − Û||2F .

If K is unknown, let K̂ be the number of eigenvalues λ of Â

satisfying |λ| ≥
√

2 (1 + η) d̂max(n) log(4n1+r ).
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Goal

Under which conditions is

(P) : (Ẑ , X̂ ) ∈ argmin
Z ′∈Z,X ′∈RK×K

||Z ′X ′ − Û||2F ,

a good estimation procedure ?

We present the analysis of a slight variant :

(Pε) : (Ẑ , X̂ ) ∈ argmin
Z ′∈Zε,X ′∈RK×K

||Z ′X ′ − Û||2F ,

Zε =

{
Z ′ ∈ {0, 1}n×K , ∀k ∈ {1, . . . ,K},

|{i : Z ′i = 1{k}}|
n

> ε

}
.

for ε smaller than the smallest proportion of pure nodes.
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Scaling

To analyze the solution of (Pε) when the network grows,

A =
αn

n
ZBZT ,

with αn a degree parameter, B independent of n, Z ∈ {0, 1}n×K .

di (n) =
n∑

j=1

Ai ,j = αn

(
1

n
ZiBZ

T1

)

Assumption : overlap matrix

There exists some matrix O ∈ RK×K , called the overlap matrix :
1

n
ZTZ → O.

Ok,l : (limit) proportion of nodes belonging to communities k and l
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A precise characterization of the spectrum

The spectrum of A can be related to the spectrum of K × K
matrices that are independent on n :

Proposition

Let µ 6= 0. The following statements are equivalent :

1 x is an eigenvector of M0 := O1/2BO1/2 associated to µ

2 u = ZO−1/2x is an eigenvector of A associated to αnµ

In particular, the non-zero eigenvalues of A are of order O(αn).
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Step 1 : Why is Û close to U ?

Heuristic :

Spectrum of A

0 αnμK αnμ2 αnμ1

Spectrum of Â = A + perturbation

0-(2dmax)1/2 (2dmax)1/2
λ
1

λ
2

λ
K

Extra ingredient : the Davis-Kahan theorem (linear algebra) to
prove that the associated eigenvectors are close

Emilie Kaufmann (Inria) Identification of overlapping communities in networks



Step 1 : Why is Û close to U ?

An adaptive eigenvectors perturbation result

Let K̂ =

∣∣∣∣{λ ∈ Sp(Â) : |λ| ≥
√

2 (1 + η) d̂max(n) log(4n/δ)

}∣∣∣∣
and Û ∈ Rn×K̂ a matrix that contains normalized eigenvectors of
Â associated with the largest K̂ eigenvalues. If

dmax(n) ≥ C1(η) log (n/δ) ,

λmin(A)2/dmax(n) > C2(η) log (n/δ) ,

for some constants C1(η),C2(η), then with probability larger than
1− δ, K̂ = Rank(A) and there exists P̂ ∈ OK (R) such that∣∣∣∣∣∣Û − UP̂

∣∣∣∣∣∣2
F
≤ 32

(
1 +

η

η + 2

)(
dmax(n)

λmin(A)2

)
log

(
4n

δ

)
.

In the SBMO,

{
dmax(n) = O(αn)
λmin(A) = µ0αn

: we need αn
log(n) →∞.
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Step 2 : Sensitivity to noise

There exists V ∈ OK (R) (eigenvectors of M0) such that

U = ZX with X =
1√
n
O−1/2V .

Let
d0 := min

z∈{−1,0,1,2}1×K

z 6=0

∣∣∣∣∣∣zO−1/2
∣∣∣∣∣∣ > 0.

Lemma

Let Z ′ ∈ Rn×K , X ′ ∈ RK×K and N ⊂ {1, . . . , n}. Assume that

1 ∀i ∈ N , ||Z ′iX ′ − Ui || ≤ d0

4K
√
n

2 there exists (i1, . . . , iK ) ∈ NK and (j1, . . . , jK ) ∈ NK :
∀k ∈ [1,K ], Zik = Z ′jk = 1{k}

Then there exists a permutation matrix Pσ such that

∀i ∈ N ,Zi = (Z ′Pσ)i .
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The result

Let η ∈]0, 1/2[ and r > 0. Let

K̂ =

∣∣∣∣{λ ∈ Sp(Â) : |λ| ≥
√

2 (1 + η) d̂max(n) log(4n1+r )

}∣∣∣∣
and Û ∈ Rn×K̂ a matrix that contains normalized eigenvectors of
Â associated with the largest K̂ eigenvalues.

(Pε) : (Ẑ , X̂ ) ∈ argmin
Z ′∈Zε,X ′∈RK̂×K̂

||Z ′X ′ − Û||2F .

Assume that αn
log n →∞. There exists a constant C1 > 0 such that,

for n large enough,

P

(
MisC(Ẑ ,Z )

n
≤ C1K

2

d2
0µ

2
0

log(4n1+r )

αn

)
≥ 1− 1

nr
.
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Combinatorial Spectral Clustering (CSC)

Step 1 : spectral embedding based on the adjacency matrix :
compute Û, the matrix of K leading eigenvectors of Â

Step 2 : compute an approximation of the solution of (P ′)

(P)′ : (Ẑ , X̂ ) ∈ argmin
Z ′∈{0,1}n×K :∀i ,Z ′i 6=0

X ′∈RK×K

||Z ′X ′ − Û||2F .

using alternate minimization.

||Z ′X ′ − Û||2F =
n∑

i=1

||Z ′iX ′ − Ûi ||2
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Combinatorial Spectral Clustering (CSC)
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Experiments on simulated data

CSC versus two spectral algorithms :

Normalized Spectral Clustering (SC)

the OCCAM spectral algorithm (OCCAM) [Zhang et al. 14]

n = 500, K = 5, αn = (log n)1.5, B = Diag(5, 4, 3, 3, 3),
Z : fraction p of pure nodes, Omax ≤ 3.
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under SBMO under OCCAM
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Experiments on real-world networks

Ego-networks from the ego-networks dataset
(SNAP, [Mc Auley, Leskovec 12])

n K c Omax FP FN Error

SC 190 3.17 1.09 2.17 0.200 0.139 0.120
(173) (1.07) (0.06) (0.37) (0.110) (0.107) (0.083)

OCC. 190 3.17 1.09 2.17 0.176 0.113 0.127
(173) (1.07) (0.06) (0.37) (0.176) (0.084) (0.102)

CSC 190 3.17 1.09 2.17 0.125 0.101 0.102
(173) (1.07) (0.06) (0.37) (0.067) (0.062) (0.049)

Table: Spectral algorithms recovering overlapping friend circles in
ego-networks from Facebook (average over 6 networks).
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Experiments on real-world networks

Co-authorship networks built from DBLP

C1 = {NIPS}, C2 = {ICML}, C3 = {COLT,ALT}

n = 9272, K = 3, dmean = 4.5

c ĉ FP FN Error

SC 1.22 1. 0.38 0.39 0.39

OCCAM 1.22 1.02 0.43 0.41 0.42

CSC 1.22 1.04 0.26 0.28 0.27

C1 = {ICML}, C2 = {COLT,ALT}.

n = 4374, K = 2, dmean = 3.8

c ĉ FP FN Error

SC 1.09 1. 0.39 0.55 0.46

OCCAM 1.09 1.01 0.29 0.44 0.36

CSC 1.09 1.03 0.21 0.31 0.25
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Experiments in the sparse case

A simple SBMO : A = αn
n ZBZT

B =

(
a 0
0 a

)
Z =

 1sn 0
1(1−2s)n 1(1−2s)n

0 1sn

 ,

s ∈]0, 1/2[ : fraction of pure nodes in each community.

We set αn = 1 (very sparse network) :

0.0 0.1 0.2 0.3 0.4 0.5
s : fraction of each kind of pure nodes
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Experiments in the sparse case

Spectrum of A (αn = 1) :

a(2− 3s) > sa

X =

 1sn

2(1−2s)n

1sn

 and Y =

 −1sn

0(1−2s)n

1sn

 .

The eigenvectors λ of Â associated to the noise should satisfy

|λ| <
√
a(2− 3s)

0 (a(2-3s))1/2-(a(2-3s))1/2

a(2-3s)sa

Conjecture :
If s2a < 2− 3s, it is impossible to classify the pure nodes better
than by random guessing.
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Experiments in the sparse case

Adding the threshold
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s : fraction of each kind of pure nodes
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Conclusion

Combinatorial Spectral Clustering = a spectral algorithm that uses
the geometry of the eigenvectors of the adjacency matrix under the

SBMO to directly identify overlapping communities

Future work :

further explore the phase transition in the sparse case

find heuristics for solving (P ′) more efficiently

are other spectral embeddings possible ?

can the pure nodes assumption be relaxed ?
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