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Abstract

We study the Pareto Set Identification (PSI)
problem in a structured multi-output linear
bandit model. In this setting, each arm is
associated a feature vector belonging to Rh,
and its mean vector in Rd linearly depends
on this feature vector through a common un-
known matrix Θ ∈ Rh×d. The goal is to
identify the set of non-dominated arms by
adaptively collecting samples from the arms.
We introduce and analyze the first optimal
design-based algorithms for PSI, providing
nearly optimal guarantees in both the fixed-
budget and the fixed-confidence settings. No-
tably, we show that the difficulty of these
tasks mainly depends on the sub-optimality
gaps of h arms only. Our theoretical results
are supported by an extensive benchmark on
synthetic and real-world datasets.

1 INTRODUCTION

A multi-armed bandit is a stochastic game where an
agent faces K distributions (or arms) whose means are
unknown to her. When the distributions are scalar-
valued, the agent faces two main tasks: regret min-
imization and pure exploration. In the former, the
agent aims at maximizing the sum of observations col-
lected along its trajectory (Lattimore and Szepesvári,
2020). In pure exploration, the agent has to solve a
stochastic optimization problem after some steps of
exploration, and it does not suffer any loss during ex-
ploration (Bubeck and Munos, 2008). Examples of
pure exploration tasks include best arm identification
in which the goal is to find the arm with the largest
mean (Audibert and Bubeck, 2010), thresholding ban-
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dit (Locatelli et al., 2016), or combinatorial bandits
(Chen et al., 2014), to name a few.

In this paper, we are interested in the less common
setting where the rewards are Rd-valued, with d > 1.
Different pure exploration tasks have been considered
in this context, e.g., finding the set of feasible arms,
i.e., arms whose mean satisfies some constraints (Katz-
Samuels and Scott, 2018), or a feasible arm maximiz-
ing a linear combination of the different criteria (Katz-
Samuels and Scott, 2019; Faizal and Nair, 2022). Find-
ing appropriate constraints is not always possible in
practical problems, and our focus is on the identifica-
tion of the Pareto set, that is, the set of arms whose
means are not uniformly dominated by that of any
other arm, a setting first studied by (Zuluaga et al.,
2013; Auer et al., 2016). We note that a regret mini-
mization counterpart of this problem has been consid-
ered by (Drugan and Nowe, 2013).

Pareto set identification can be relevant in many real-
world problems where there are multiple, possibly con-
flicting objectives to optimize simultaneously. Exam-
ples include monitoring the energy consumption and
runtime of different algorithms (see our use case in Sec-
tion 5) or identifying a set of interesting vaccines by
observing different immunogenicity criteria (antibod-
ies, cellular response, that are not always correlated,
as exemplified by Kone et al. (2023)). In both cases,
there could be many arms with a few descriptors of
the different arms (e.g., vaccine technology, doses, in-
jection times). By incorporating such arm features in
the model, we expect to reduce substantially the num-
ber of samples needed to identify the Pareto set.

In this work, we incorporate some structure in the PSI
identification problem through a multi-output linear
model, formally described in Section 2. In this model,
each of the K arms whose means are in Rd is described
by a feature vector in Rh, h > 1. We propose the
GEGE algorithm, which combines a G-optimal design
exploration mechanism with an accept/reject mecha-
nism based on the estimation of some notion of sub-
optimality gap. GEGE can be instantiated in both the
fixed-budget setting (given at most T samples, output
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a guess of the Pareto set minimizing the error proba-
bility) and the fixed-confidence setting (minimize the
number of samples used to guarantee an error prob-
ability smaller than some prescribed δ). Through a
unified analysis, we show that in both cases, the sam-
ple complexity of GEGE, that is, the number of sam-
ples needed to guarantee a certain probability of error,
scales only with the h smallest sub-optimality gaps.
This yields a reduction in sample complexity due to the
structural assumption. Finally, we empirically evalu-
ate our algorithms with extensive synthetic and real-
world datasets and compare their performance with
other state-of-the-art algorithms.

Related work When d = 1 and the feature vectors
are the canonical basis of RK , PSI coincides with the
best arm identification problem, that has been exten-
sively studied in the literature both in the fixed-budget
(Audibert and Bubeck, 2010; Karnin et al., 2013; Car-
pentier and Locatelli, 2016) and the fixed-confidence
settings Kalyanakrishnan et al. (2012); Jamieson et al.
(2014). For sub-Gaussian distributions, the sample
complexity is known to be essentially characterized
(up to a log(K) factor in the fixed-budget setting) by
a sum over the K arms of the inverse squared value
of their sub-optimality gap, which is their distance to
the (unique) optimal arm. In the fixed-confidence set-
ting and for Gaussian distributions, there are even
algorithms matching the minimal sample complexity
when δ goes to zero, which takes a more complex, non-
explicit form (e.g., Garivier and Kaufmann (2016);
You et al. (2023)).

Still, when d = 1 but for general features in Rh, our
model coincides with the well-studied linear bandit
model (with finitely many arms), in which the best
arm identification task has also received some atten-
tion. It was first studied by Soare et al. (2014) in the
fixed-confidence setting, who established the link with
optimal designs of experiments (Pukelsheim, 2006),
showing that the minimal sample complexity can be
expressed as an optimal (XY) design. The authors
proposed the first elimination algorithms where, in
each round the surviving arms are pulled according
to some optimal designs and obtained a sample com-
plexity scaling in (h/∆2

min) log(1/δ) where ∆min is the
smallest gap in the model. Tao et al. (2018) further
proposed an elimination algorithm using a novel es-
timator of the regression parameter based on a G-
optimal design, with an improved sample complexity
in
∑h
i=1 ∆−2

(i) log(1/δ) where ∆(1) 6 · · · 6 ∆(h) are the

h smallest gaps. This bound improves upon the com-
plexity of the unstructured setting when K � h. Some
algorithms even match the minimal sample complex-
ity either in the asymptotic regime δ → 0 (Degenne
et al., 2020; Jedra and Proutiere, 2020) or within mul-

tiplicative factors Fiez et al. (2019). Some adaptive
algorithms, such as LinGapE Xu et al. (2018) are also
very effective in practice but without provably improv-
ing over unstructured algorithms in all instances.

The fixed-budget setting has been studied by Az-
izi et al. (2022); Yang and Tan (2022), who pro-
pose algorithms based on Sequential Halving (Karnin
et al., 2013) where in each round, the active arms
are sampled according to a G-optimal design. The
best guarantees are those obtained by Yang and
Tan (2022) who show that a budget T of order

log2(h)
∑h
i=1 ∆−2

(i) log(1/δ) is sufficient to get an error

smaller than δ. Katz-Samuels et al. (2020) propose an
elimination algorithm that can be instantiated both in
the fixed confidence and fixed budget settings and is
close in spirit to our algorithm. However, unlike prior
work, their optimal design aims at minimizing a new
complexity measure called the Gaussian width that
may better characterize the non asymptotic regime of
the error. Extending this notion, or that of minimal
(asymptotic) sample complexity to linear PSI is chal-
lenging due to the complex structure of the set of alter-
native models with a different Pareto set. In this work,
our focus is on obtaining refined gap-based guarantees
for the structured PSI problem.

When d > 1, the PSI identification problem has been
mostly studied in the unstructured setting (h = K,
canonical basis features). Auer et al. (2016) intro-
duced some appropriate (non-trivial) notions of sub-
optimality gaps for the PSI problem, which we recall
in the next section. They proposed an elimination-
based fixed-confidence algorithm whose sample com-
plexity scales in

∑K
i=1 ∆−2

i log(1/δ), which is proved
to be near-optimal. A fully sequential algorithm with
some slightly smaller bound was later given by Kone
et al. (2023), who can further address different relax-
ations of the PSI problem. Kone et al. (2024) pro-
posed the first fixed-budget PSI algorithm: a generic
round-based elimination algorithm that estimates the
sub-optimality gaps of Auer et al. (2016) and discard
and classify some arms at the end of each round, with
a sample complexity in

∑K
i=1 ∆−2

i log(K) log(1/δ).

The multi-output linear setting that we consider in this
paper was first studied by Lu et al. (2019) from the
Pareto regret minimization perspective. This model
may also be viewed as a special case of the multi-
output kernel regression model considered by Zulu-
aga et al. (2016) when a linear kernel is chosen. This
work provides guarantees for approximate identifica-
tion of the Pareto set, scaling with the information
gain. Choosing appropriately the approximation pa-
rameter in ε-PAL as a function of the smallest gap
∆min yields a fixed-confidence PSI algorithm with sam-
ple complexity of order (h2/∆2

min) log(1/δ). More re-
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cently, the preliminary work of Kim et al. (2023) pro-
posed an extension of the fixed-confidence algorithm
of Auer et al. (2016) with a robust estimator to simul-
taneously minimize the Pareto regret and identify the
Pareto set. Their claimed sample complexity bound is
in (h/∆2

min) log(1/δ).

Contributions We propose GEGE, the first algo-
rithm for PSI that relies on an optimal design to es-
timate the PSI gaps. In the fixed-confidence setting,
GEGE only uses O(log(1/∆(1))) adaptive rounds to
identify the Pareto set, and we prove an improved sam-
ple complexity bounds in which (h/∆2

min) is replaced

by the sum
∑h
i=1 ∆−2

(i) . Moreover, to the best of our

knowledge, the fixed-budget variant of GEGE is the
first algorithm for fixed-budget PSI in a multi-output
linear bandit model and enjoys near-optimal perfor-
mance. Our experiments confirm these good theoret-
ical properties and illustrate the impact of the struc-
tural assumption.

2 SETTING

We formalize the linear PSI problem. Let d, h ∈ N?
and h 6 K. ν1, . . . , νK are distributions over Rd with
means (resp.) µ1, . . . , µK ∈ Rd. We assume there are
known feature vectors x1, . . . , xK ∈ Rh associated to
each arm and an unknown matrix Θ ∈ Rh×d such that
for any arm k, µk = Θᵀxk. Let X := (x1 . . . xK)ᵀ

and [K] = {1, . . . ,K}. The Pareto set is defined as
S? = {i ∈ [K] : @j ∈ [K]\{i} : µi � µj} in the sense
of the following (Pareto) dominance relationship.

Definition 1. For any two arms i, j ∈ [K], i is weakly
dominated by j if for any c ∈ {1, . . . , d}, µi(c) 6 µj(c).
An arm i is dominated by j (µi � µj or simply i �
j) if i is weakly dominated by j and there exists c ∈
{1, . . . , d} such that µi(c) < µj(c). An arm i is strictly
dominated by j (µi ≺ µj or simply i ≺ j) if for any
c ∈ {1, . . . , d}, µi(c) < µj(c).

In each round t, an agent chooses an action at from [K]
and observes a response yt = Θᵀxat +ηt where (ηs)s6t
are i.i.d centered vectors in Rd whose marginal distri-
butions are σ-subgaussian.1 In this stochastic game,
the goal of the agent is to identify the Pareto set S?. In
the fixed-confidence setting, given δ ∈ (0, 1), the agent
collects samples up to a (random) stopping time τ and

outputs a guess Ŝτ that should satisfy P(Ŝτ 6= S?) 6 δ
while minimizing τ (either with high-probability or in
expectation). In the fixed-budget setting, the agent

should output a set ŜT after T (fixed) rounds and min-

imize eT := P(ŜT 6= S?).

1A centered random variable X is σ- subgaussian if for
any λ ∈ R, logE[exp(λX)] 6 λ2σ2/2.

Notation The following notation is used throughout
the paper. ∆n is the probability simplex of Rn and if
A ∈ Rn×n is positive semidefinite, for x ∈ Rn, ‖x‖2A =
xᵀAx and x(i) denotes the i-th component of x. For
a, b ∈ R, a ∧ b := min(a, b), and (a)+ := max(a, 0).

2.1 Complexity Measures for Pareto Set
Identification

Choosing the features vectors to be the canonical ba-
sis of RK and Θ = (µ1, . . . , µK)ᵀ, we recover the un-
structured multi-dimensional bandit model, in which
the complexity of Pareto set identification is known to
depend on some notion of sub-optimality gaps, first
introduced by Auer et al. (2016). These gaps can be
expressed with the quantities

m(i, j) := min
c∈[d]

[µj(c)− µi(c)] and M(i, j) := −m(i, j).

We can observe that m(i, j) > 0 iff i ≺ j and represents
the amount by which j dominates i when positive.
Similarly, M(i, j) > 0 iff i � j and when positive rep-
resents the quantity that should be added component-
wise to j for it to dominate i. The sub-optimality gap
∆i measures the difficulty of classifying arm i as op-
timal or sub-optimal and can be written (Lemma 1 of
Kone et al. (2024))

∆i :=

{
∆?
i := maxj∈[K] m(i, j) if i /∈ S?

δ?i else,
(1)

where δ?i := minj 6=i[M(i, j) ∧ (M(j, i)+ + (∆?
j )+)]. For

a sub-optimal arm i, ∆i is the smallest quantity by
which µi should be increased to make i non-dominated.
For an optimal arm i, ∆i is the minimum between
some notion of ”distance” to the other optimal arms,
minj∈S?\{i}[M(i, j) ∧M(j, i)] and the smallest margin
to the sub-optimal arms minj /∈S? [M(j, i)+ + (∆?

j )+].
These quantities are illustrated in Appendix G. We
assume without loss of generality that ∆1 6 · · · 6
∆K and we recall the quantities H1 =

∑K
i=1 ∆−2

i and
H2 := maxi∈[K] i∆

−2
i which have been used to measure

the difficulty of Pareto set identification respectively in
fixed-confidence (Auer et al., 2016) and fixed-budget
(Kone et al., 2024) settings. In this work, we introduce
two analog quantities for linear PSI, namely

H1,lin =

h∑
i=1

1

∆2
i

and H2,lin := max
i∈[h]

i

∆2
i

(2)

and we will show that the hardness of linear PSI can
be characterized by H1,lin and H2,lin respectively in
the fixed-confidence and fixed-budget regimes. These
complexity measures are smaller than H1 and H2, re-
spectively, as they only feature the h smallest gaps.
To obtain this reduction in complexity, it is crucial to
estimate the underlying parameter Θ ∈ Rh×d instead
of the K mean vectors.



Bandit Pareto Set Identification in a Multi-Output Linear Model

2.2 Least Square Estimation and Optimal
Designs

Given n arm choices in the model, a1, . . . , an, we de-
fine Xn := (xa1 . . . xan)ᵀ ∈ Rn×h and we denote by
Yn := (y1 . . . yn)ᵀ ∈ Rn×d the matrix gathering the
vector of responses collected. We define the informa-
tion matrix as Vn := Xᵀ

nXn =
∑K
i=1 Tn(i)xix

ᵀ
i ∈ Rh×h

where Ti(n) denotes the number of observations from
arm i among the n samples. More generally, given
w ∈ RK , we define V w :=

∑K
i=1 w(i)xix

ᵀ
i .

The multi-output regression model can be written
in matrix form as Yn = XnΘ + Hn where Hn =
(η1 . . . ηn)ᵀ is the noise matrix. The least-square es-

timate Θ̂n of the matrix Θ is defined as the ma-
trix minimizing the least-square error Errn(A) :=

‖XnA− Yn‖2F. Computing the gradient of the loss

yields VnΘ̂n = X>n Yn. If the matrix Vn is non-singular,
the least-square estimator can be written

Θ̂n = V −1
n Xᵀ

nYn.

In the course of our elimination algorithm, we will
compute least-square estimates based on observation
from a restricted number of arms, and we will face
the case in which Vn is singular. In this case, different
choices have been made in prior work on linear bandits:
Alieva et al. (2021) defines a custom “pseudo-inverse”
while Yang and Tan (2022) define new contexts x̃i that
are projections of the xi onto a sub-space of dimension
rank(XS) where XS := (xi : i ∈ S)ᵀ and S is the set of
arms that are active. We adopt an approach close to
the latter, which is described below. Let the singular-
value decomposition of (XS)ᵀ be USV ᵀ where U, V are
orthogonal matrices and B := (u1, . . . , um) is formed
with the first m columns of U where m = rank(XS).
We then define

V †n := B(BᵀVnB)−1Bᵀ and Θ̂n = V †nX
ᵀ
nYn. (3)

The following result addresses the statistical uncer-
tainty of this estimator.

Lemma 1. If the noise ηt has covariance Σ ∈ Rd×d
and a1, . . . , an are deterministically chosen then for
any xi ∈ {xa1 , . . . , xan}, Cov(Θ̂ᵀ

nxi) = ‖xi‖2V †n Σ.

Therefore, estimating all arms’mean uniformly ef-
ficiently amounts to pull {a1, . . . , an} to minimize
maxi∈S ‖xi‖2V †n . The continuous relaxation of this

problem is equivalent to computing an allocation

w?S ∈ argmin
w∈∆|S|

max
i∈S
‖x̃i‖2(Ṽ w)−1 (4)

where x̃i := Bᵀxi, Ṽ
w :=

∑
i∈S w(si)x̃ix̃

ᵀ
i and i 7→ si

maps S to {1, . . . , |S|}. (4) is a G-optimal design over

the features (Bᵀxi, i ∈ S) and it can be interpreted as
a distribution over S that yields a uniform estimation
of the mean responses for (3). This is formalized in
Appendix H.

3 OPTIMAL DESIGN
ALGORITHMS FOR LINEAR PSI

Our elimination algorithms operate in rounds. They
progressively eliminate a portion of arms and classify
them as optimal or sub-optimal based on empirical
estimation of their gaps. In each round, a sampling
budget is allocated among the surviving arms based
on a G-optimal design.

3.1 Optimal Designs and Gap Estimation

At round r, we denote by Ar the set of arms that are
still active. To estimate the means and, henceforth,
the gaps, we first compute an estimate of the regres-
sion matrix denoted Θ̂r. This estimate is obtained by
carefully sampling the arms using the integral round-
ing of a G-optimal design.

Algorithm 1: OptEstimator(S,N, κ)

Input: Subset S ⊂ [K], sample size N ,
precision κ
Compute the transformed features
X̃S = (Bᵀxi, i ∈ S) with B as defined in
Section 2.2
Compute a G-optimal design w?S over the set

X̃S
Pull (a1, . . . , aN )← ROUND(N, X̃S , w?S , κ) and
collect responses y1, . . . , yN
Compute V †N as in Eq. (3) and compute the
OLS estimator on the samples collected

Θ̂← V †N

N∑
t=1

xᵀatyt

return: Θ̂

Algorithm 1 takes as input a set of arms S, a bud-
get N and chooses some N arms to pull (with rep-
etitions) based on an integer rounding of w?S , a con-
tinuous G-optimal design over the set {x̃i, i ∈ S} of
(transformed) features associated to that arms. Sev-
eral rounding procedures have been proposed in the
literature, and we use that of Allen-Zhu et al. (2017),
henceforth referred to as ROUND. In Appendix H, we
show that ROUND(N, X̃S , w?S , κ) outputs a sequence of
arms a1, . . . , aN ∈ S such that maxi∈S ||xi||2V †N

6

(1 + 6κ)
FS(w?

S)
N , where FS(w?S) is the optimal value of
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(4). Using the Kiefer-Wolfowitz theorem (Kiefer and
Wolfowitz, 1960), we further prove that FS(w?S) = hS ,
the dimension of span({xi, i ∈ S}). This observation
is crucial to prove the following concentration result
at the heart of our analysis.

Lemma 2. Let S ⊂ [K], κ ∈ (0, 1/3] and N > 5hS/κ
2

where hS = dim(span({xi : i ∈ S})). The output Θ̂
of OptEstimator(S, N , κ) satisfies for all ε > 0 and
i ∈ S

P
(
‖(Θ− Θ̂)ᵀxi‖∞ > ε

)
6 2d exp

(
− Nε2

2(1 + 6κ)σ2hS

)
.

Once the parameter Θ̂r has been obtained as an output
of Algorithm 1 with S = Ar and an appropriate value
of the budget N , we compute estimates of the mean
vectors as µ̂i,r := Θ̂ᵀ

rxi and the empirical Pareto set
of active arms,

Sr := {i ∈ Ar : @j ∈ Ar : µ̂i,r ≺ µ̂j,r}.

In both the fixed-confidence and fixed-budget settings,
at round r, after collecting new samples from the sur-
viving arms, GEGE discards a fraction of the arms
based on the empirical estimation of their gaps. We
first introduce the empirical quantities used to com-
pute the gaps:

M(i, j; r) := max
c∈[d]

[µ̂i,r(c)− µ̂j,r(c)] and

m(i, j; r) := min
c∈[d]

[µ̂j,r(c)− µ̂i,r(c)].

We define for any arm i ∈ Ar, the empirical estimates
of the PSI gaps as:

∆̂i,r :=

{
∆̂?
i,r := maxj∈Ar m(i, j; r) if i ∈ Ar\Sr

δ̂?i,r if i ∈ Sr
(5)

with δ̂?i,r := minj∈Ar\{i}[M(i, j; r) ∧ (M(j, i; r)+ +

(∆̂?
i,r)+)]; the empirical estimates of the gaps intro-

duced earlier in Section 2.1. Differently from BAI,
as the size of the Pareto set is unknown, we need
an accept/reject mechanism to classify any discarded
arm. This mechanism is described in detail in the next
sections for the fixed-budget and fixed-confidence ver-
sions.

Final output In both cases, letting Ar be the set
of active arms and Br be the set of arms already clas-
sified as optimal at the beginning of round r, GEGE
outputs Bτ+1 ∪Aτ+1 as the candidate Pareto optimal
set, where τ denotes the final round. And Aτ+1 con-
tains at most one arm.

3.2 Fixed-budget algorithm

Algorithm 2, operates over dlog2(h)e rounds, with an
equal budget of T/dlog2(h)e allocated per round. By
construction |Adlog2(h)e+1|= 1. At the end of round r,
the dh/2re arms with the smallest empirical gaps are
kept active while the remaining arms are discarded and
classified as Pareto optimal (added to Br+1) if they are
empirically optimal (belonging to set Sr) and deemed
sub-optimal otherwise. If a tie occurs, we break it to
eliminate arms that are empirically sub-optimal. This
is crucial to prove the guarantees on the algorithm, as
sketched in Section 4.

Algorithm 2: GEGE: G-optimal Empirical
Gap Elimination [fixed-budget]

Input: budget T
Initialize: let A1 ← [K], B1 ← ∅, D1 ← ∅
for r = 1 to dlog2(h)e do

Compute
Θ̂r ← OptEstimator(Ar, T/ log2(h), 1/3)
Compute Sr the empirical Pareto set and
the empirical gaps ∆̂i,r with Eq.(5)
Compute Ar+1 the set of

⌈
h
2r

⌉
arms in Ar

with the smallest empirical gaps
// ties broken by keeping arms of

Sr
Update Br+1 ← Br ∪ {Sr ∩ (Ar\Ar+1)}
and Dr+1 ← Dr ∪ {(Ar\Ar+1)\Sr}

return: Bdlog2(h)e+1

⋃
Adlog2(h)e+1

Theorem 1. The probability of error of Algorithm 2
run with budget T > 45h log2 h is at most

exp

(
− T

1200σ2H2,lindlog2 he
+ logC(h, d,K)

)
where C(h, d,K) = 2d (K + h+ dlog2 he).

To the best of our knowledge, GEGE is the first al-
gorithm with theoretical guarantees for fixed-budget
linear PSI. Our result shows that in this setting, the
probability of error scales only with the first h gaps.
Kone et al. (2024) proposed EGE-SH, an algorithm
for fixed-budget PSI in the unstructured setting whose
probability of error is essentially upper-bounded by

exp

(
− T

288σ2H2 log2K
+ log(2d(K − 1)|S?|log2K)

)
.

Therefore, GEGE largely improves upon EGE-SH
when K � h. Moreover, when K = h and x1, . . . , xK
is the canonical Rh-basis, both algorithms coincide,
thus, GEGE can be seen as a generalization of EGE-
SH.

We state below a lower bound for linear PSI in the
fixed-budget setting, showing that GEGE is optimal
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in the worst case, up to constants and a log2(h) factor.

Theorem 2. Let WH be the set of instances with com-
plexity H2,lin smaller than H. For any budget T , let-

ting ŜAT be the output of an algorithm A, it holds that

inf
A

sup
ν∈WH

Pν(ŜAT 6= S?(ν)) >
1

4
exp

(
− 2T

Hσ2

)
.

3.3 Fixed-confidence algorithm

In round r, Algorithm 3, allocates a budget tr to com-
pute an estimator Θ̂r of Θ? by calling Algorithm 1.
tr is computed so that through Θ̂r, the mean of each
arm is estimated with precision εr/4 with probability
larger than 1− δr (using Lemma 2). Then, the empir-
ical Pareto set Sr of the active arms is computed, and
the empirical gaps are updated following (5).

At the end of round r, empirically optimal arms (those
in Sr) whose empirical gap is larger than εr are dis-
carded and classified as optimal (added to Br+1).
Empirically sub-optimal arms whose empirical gap is
larger than εr/2 are also discarded and classified as
sub-optimal (added to Dr+1).

Algorithm 3: GEGE: G-optimal Empirical
Gap Elimination [fixed-confidence]

Initialize: A1 ← [K], B1 ← ∅, D1 ← ∅, r ← 1
while |Ar|> 1 do

Let εr ← 1/(2 · 2r) and δr ← 6δ/π2r2 and
hr ← dim(span({xi : i ∈ Ar}))
Update tr :=

⌈
32(1+3εr)σ2hr

ε2r
log( |Ar|d

2δr
)
⌉

Compute Θ̂r ← OptEstimator(Ar, tr, εr)

Compute Sr and the empirical gaps ∆̂i,r

with Eq. (5)

Update Br+1 ← Br ∪ {i ∈ Sr : ∆̂i,r > εr}
and
Dr+1 ← Dr ∪ {i ∈ Ar\Sr : ∆̂i,r > εr/2}
Update Ar+1 ← Ar\ (Dr+1 ∪Br+1)
r ← r + 1

return: Br ∪Ar

Theorem 3. The following statement holds with prob-
ability at least 1− δ: Algorithm 3 identifies the Pareto
set using at most

log2(2/∆1) +O

(
h∑
i=2

σ2

∆2
i

log

(
Kd

δ
log2

(
2

∆i

)))

samples and dlog2(1/∆1)e rounds, where O(·) hides
universal multiplicative constant (explicit in Ap-
pendix E.3).

This result shows that the complexity of Algorithm 3
scales only with the first h gaps. In particular, when
K � h using our algorithm substantially reduces the
sample complexity of PSI. In Table 1, we compare the
sample complexity of GEGE to that of existing fixed-
confidence PSI algorithms, showing that GEGE enjoys
stronger guarantees than its competitors. We empha-
size that both Kim et al. (2023) and Zuluaga et al.
(2016) use uniform sampling and do not exploit an op-
timal design, which prevents them from reaching the
guarantees given in Theorem 3.

Table 1: Sample complexity up to constant multiplicative
terms of different algorithms for PSI in the fixed-confidence
setting.

Algorithm Upper-bound on τδ Linear
PSI

Zuluaga et al. (2016)
(

h2

∆2
min

)
log3

(
Kd
δ

)
4

Kone et al. (2023)
∑K
i=1

1
∆2

i
log(Kdδ log( 1

∆i
))

8

Kim et al. (2023) h
∆2

min
log(d(h∨K)

δ∆2
min

)
4

GEGE (Ours)
∑h
i=1

1
∆2

i
log(Kdδ log( 1

∆i
))

4

We state a lower bound, showing that our algorithm
is essentially minimax optimal for linear PSI.

Theorem 4. For any K, d, h ∈ N, there exists a set
B(K, d, h) of linear PSI instances s.t for ν ∈ B(K, d, h)
and for any δ-correct algorithm for PSI, with probabil-
ity at least 1− δ,

τAδ > Ω
(
H1,lin(ν) log(δ−1)

)
.

Remark 1. When K = h and x1, . . . , xK form the
canonical Rh basis, we recover the classical PSI prob-
lem. We note that, unlike its fixed-budget version,
GEGE does not coincide with an existing PSI iden-
tification algorithm. Instead, it matches the optimal
guarantees of Kone et al. (2023) while needing only
dlog(1/∆1)e rounds of adaptivity, which is the first
fixed-confidence PSI algorithm having this property.
Such a batched algorithm may be desirable in some
applications, e.g., in clinical trials where measuring
different biological indicators of efficacy can take time.

GEGE for ε-PSI Algorithm 3 can be easily mod-
ified to identify an ε-Pareto Set. As introduced in
Auer et al. (2016), an ε-Pareto Set Sε is such that
S? ⊂ Sε and for any arm i ∈ Sε, ∆?

i 6 ε: it con-
tains the Pareto Set and possibly some sub-optimal
arms that are (ε)-close to be optimal. Such a relax-
ation is particularly useful in instances with small gaps
or when identifying the exact Pareto Set may be un-
necessarily restrictive. To identify an ε-Pareto Set, we



Cyrille Kone, Emilie Kaufmann, Laura Richert

relax the stopping condition: instead of stopping when
it remains only one active arm (i.e., |Ar| 6 1), we stop
when (|Ar| 6 1 or εr 6 ε/4) holds. After stopping,
the same set is recommended, namely Aτ ∪ Bτ . The
guarantees of GEGE under this modification are dis-
cussed in Section E.5.

4 UNFIED ANALYSIS OF GEGE

Before sketching our proof strategy, we highlight a
key property of PSI that makes the analysis differ-
ent from classical BAI settings. Let a be a (Pareto)
sub-optimal arm. From (1), there exits a? ∈ S? such
that ∆a = m(a, a?) and importantly, a? could be the
unique arm dominating a. Therefore, discarding a?

before a may result in the latter appearing as optimal
in the remaining rounds, thus leading to the misiden-
tification of the Pareto set.

To avoid this, an elimination algorithm for PSI should
guarantee that if a sub-optimal arm a is active, then
a? is also active. We introduce the following event

Pr := {∀ s 6 r : ∀i ∈ (S?)c, i ∈ As ⇒ i? ∈ Ar}.

An important aspect of our proofs is to control the
occurrence of P∞ (by convention, if Pt holds and As =
∅ for any s > t, then P∞ holds). The first step of the
proof is to show that when Pr holds, we can control the
deviations of the empirical gaps, which is essential to
guarantee the correctness of GEGE and to control its
sample complexity in fixed-confidence. We now define
for η > 0, the good event

Er(η) =
{
∀ i, j ∈ Ar : ‖(Θ̂r −Θ)ᵀ(xi − xj)‖∞ 6 η

}
.

(6)
Letting nr = |Ar| and λ a constant to be specified,

we introduce Eλfb := ∩dlog2(h)e
r=1 Er(λ∆nr+1+1) and Efc :=

∩∞r=1Er(εr/2). We then prove by concentration and
induction the following key result.

Proposition 1. Let λ ∈ (0, 1/5) and assume Efc (resp.
Eλfb in fixed-budget) holds. Then at any round r, Pr
holds and for all arm i ∈ Ar,

∆̂i,r −∆i >

{
−ηr if i ∈ S?

−ηr/2 else,
where

ηr :=

{
2λ∆nr+1+1 (fixed-budget)

εr (fixed-confidence).

Building on this result, we show that the recommenda-
tion of Algorithm 2 is correct on Eλfb, so its probability
of error is upper-bounded by infλ∈(0,1/5) P(Eλfb). We
conclude the proof of Theorem 1 by upper bounding
this probability (see Appendix D).

Similarly, using Proposition 1 we prove the correctness
of Algorithm 3 on Efc: at any round r, Br ⊂ S? and
Dr ⊂ (S?)c.

To further upper bound its sample complexity, we need
an additional result to control the size of Ar.

Lemma 3. The following statement holds for Algo-
rithm 3 on the event Efc: for all p ∈ [K], after
dlog(1/∆p)e rounds it remains less than p active arms.
In particular, GEGE stops after at most dlog(1/∆1)e
rounds.

The proof of this lemma is given in Appendix E.2.
To get the sample complexity bound of Theorem 3,
some extra arguments are needed. We sketch some el-
ements below (the full proof is given in Appendix E.3).
Assume Efc holds and let τδ be the sample com-
plexity of Algorithm 3. Lemma 3 yields τδ 6∑dlog(1/∆1)e
r=1 Ω(hr/ε

2
r) with hr 6 |Ar|.

Using Lemma 3, we introduce ”checkpoints rounds”
between which we control |Ar| and thus hr. Let
the sequence (αs)s>0 defined as α0 = 0 and αs =
dlog2(1/∆bh/2sc)e, for s > 1. Simple calculation yields
αblog2(h)c = dlog2(1/∆1)e and {1, . . . , dlog2(1/∆1)e} =

∪blog2(h)c
s=1 J1 + αs−1, αsK. Therefore

τδ 6
blog2(h)c∑
s=1

αs∑
r=αs−1+1

Ω(|Ar|/ε2
r).

Now by Lemma 3, for r > αs, |Ar|6 bh/2sc, so essen-

tially τδ 6
∑blog2(h)c
s=1 Ω(4αsbh/2sc).

Carefully re-indexing this sum and addressing a few
more technicalities, we obtain the result in Theorem 3.
Showing that P(Efc) > 1− δ, from Lemma 2 completes
the proof.

5 EXPERIMENTS

We evaluate GEGE in real-world and synthetic in-
stances. In the fixed-budget setting, we compare
against EGE-SH and EGE-SR (Kone et al., 2024), two
algorithms for unstructured PSI in the fixed-budget
setting, and a uniform sampling baseline.

In the fixed-confidence setting, we compare to APE
(Kone et al., 2023), a fully adaptive algorithm for un-
structured PSI, and PAL (Zuluaga et al., 2013), an al-
gorithm that uses Gaussian process modeling for PSI,
instantiated with a linear kernel.

5.1 Experimental protocol

We describe below the datasets in our experiments,
and we detail our experimental setup.
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Synthetic instances We fix features x1, . . . , xh and
Θ common to the instances described below. For any
K > h we define a linear PSI instance νK augmented
with arms xh+1, . . . , xK chosen so that arms 1, . . . , h
have the same lowest gaps in νK . This implies that
the complexity terms H1,lin and H2,lin are constant for
such instances, irrespective of the number of arms. We
set h = 8, d = 2.

Real-world dataset NoC (Almer et al., 2011) is a
bi-objective optimization dataset for hardware design.
The goal is to optimize d = 2 performance criteria: en-
ergy consumption and runtime of the implementation
of a Network on Chip (NoC). The dataset contains
K = 259 implementations, each of them described by
h = 4 features.

In each instance, we report, for different algorithms,
the empirical error probability (fixed-budget) and the
empirical distribution of the sample complexity (fixed-
confidence) averaged over 500 seeded runs. We set
δ = 0.01 for the fixed-confidence experiments and T =
H2,lin for fixed-budget.
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Figure 1: Average
misidentification rate w.r.t
K on the synthetic dataset
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Figure 2: Average sample
complexity w.r.t K in the
synthetic experiment
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5.2 Summary of the results

By Theorem 1 and 3, on the synthetic instance with
K arms, the sample complexity of GEGE should be
a constant plus a log(K) term. This is coherent with
what we observe: Fig.1 shows that the probability of
error of GEGE merely increases with K, whereas for
EGE-SH/SR, it grows much faster. Similarly, on Fig.2,

the sample complexity of GEGE does not significantly
increase withK, unlike that of APE. Therefore, GEGE
only suffers a small cost for the number of arms.

For the real-world scenario, GEGE significantly out-
performs its competitors in both settings. Fig.4 shows
that it uses significantly fewer samples to identify
the Pareto set compared to both APE and PAL.
Fig.3 shows that the probability of misidentification
of GEGE is reduced by up to 0.5 compared to EGE-
SH. Moreover, it is worth noting that EGE-SH requires
T > K log2(K) ≈ 2000 (for NoC) to run on this in-
stance while GEGE only needs T > log2(h).

We reported runtimes around 10 seconds for single
runs on instances with up to K = 500, d = 8 (cf Ta-
ble 2 in Appendix I.1). The time and memory com-
plexity is addressed in Appendix I.1, and additional
details about the implementation are provided. Ap-
pendix I.2 contains additional experimental results on
a real-world multi-criteria optimization problem with
K = 768 arms.

6 CONCLUSION AND FINAL
REMARKS

We have proposed the first algorithms for PSI in a
multi-output linear bandit model that are guaranteed
to outperform their unstructured counterparts. They
leverage optimal design approaches to estimate the
means vector and some sub-optimality gaps for PSI. In
the fixed-budget setting, GEGE is the first algorithm
with nearly optimal guarantees for linear PSI. In the
fixed-confidence setting, GEGE provably outperforms
its competitors both in theory and in our experiments.
It is also the first fixed-confidence PSI algorithm using
a limited number of batches.

While the sample complexity of GEGE features a com-
plexity term depending only on h gaps, we still have
log(K) terms due to union bounds. Katz-Samuels
et al. (2020) showed that such union bounds can be
avoided in linear BAI by using results from supremum
of empirical processes. Further work could investigate
if these observations would apply in linear PSI. In the
alternative situation where h� K, for example, in an
RKHS, following the work of Camilleri et al. (2021),
we could investigate how to extend this optimal design
approach to PSI with high-dimensional features.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes, see section 2, section 4 and Ap-
pendix B to H

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes, see section 4, section I.1

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes, see additional
material

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes, see section 4,
section 3 and section 2,

(b) Complete proofs of all theoretical results.
Yes, see section 4 and the proofs in Ap-
pendix B to H

(c) Clear explanations of any assumptions. Yes,
see section 4 and section 2

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes, see section 5 and section I.2,
I.1,

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes,
see section 5 and section I.2, I.1,

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes, see section 5

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes, see section I.1,

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:
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(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. ot Applica-
ble

(d) Information about consent from data
providers/curators. Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Appli-
cable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable
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A OUTLINE

In section C, we prove Proposition 1, which is a crucial result to prove the guarantees of GEGE in both fixed-
confidence and fixed-budget settings. Section D proves the fixed-budget guarantees of GEGE, in particular
Theorem 1. In section E we prove the fixed-confidence guarantees of GEGE by proving Theorem 3. Section F
contains some ingredient concentration lemmas that are used in our proofs. In section G, we analyze the lower
bounds in both fixed-confidence and fixed-budget settings. In section H, we analyze the properties of Algorithm 1
by using some results on G-optimal design. Finally, section I contains additional experimental results and the
detailed experimental setup.

B NOTATION

We introduce some additional notation used in the following sections.

In the subsequent sections, r will always denote a round of GEGE, which should be clear from the context. We
then denote by Ar active arms at round r and by Θ̂r the empirical estimate of Θ at round r, computed by a call
to Algorithm 1. By convention we let max∅ = −∞.

For any sub-optimal arm i, there exists a Pareto-optimal arm i? (not necessarily unique) such that ∆i = m(i, i?).
More generally given a sub-optimal i we denote by i? any arm of argmaxj∈S? m(i, j).

At a round r, we let

Pr := {∀ s ∈ {1, . . . , r}, ∀ i ∈ As, i ∈ (S?)c ∩As ⇒ i? ∈ As} , (7)

with P = P∞. In particular, for a sub-optimal arm i, i? ∈ As should be understood as As∩(argmaxj∈S? m(i, j)) 6=
∅. If for some τ , Pτ is true and Aτ+1 = ∅ then we say that P holds.

C PROOF OF PROPOSITION 1

We first recall the result.

Proposition 1. Let λ ∈ (0, 1/5) and assume Efc (resp. Eλfb in fixed-budget) holds. Then at any round r, Pr
holds and for all arm i ∈ Ar,

∆̂i,r −∆i >

{
−ηr if i ∈ S?

−ηr/2 else,
where

ηr :=

{
2λ∆nr+1+1 (fixed-budget)

εr (fixed-confidence).

In both the fixed-budget and fixed-confidence setting, the proof proceeds by induction on the round r. Before
presenting the inductive argument separately in each case, we establish in Appendix C.1 an important result
that is used in both cases (Lemma 7): if Pr holds at some round r then, the empirical gaps computed at this
round are good estimators of the true PSI gaps.

To establish this first result, we need the following intermediate lemmas, proved in Appendix F.

Lemma 4. At any round r and for any arms i, j ∈ Ar it holds that

|M(i, j; r)−M(i, j)|6 ‖(Θ̂r −Θ)ᵀ(xi − xj)‖∞ and

|m(i, j; r)−m(i, j)|6 ‖(Θ̂r −Θ)ᵀ(xi − xj)‖∞.

Lemma 5. At any round r, for any sub-optimal arm i ∈ Ar, if i? ∈ Ar and i? does not empirically dominate i
then ∆?

i < ‖(Θ̂r −Θ)ᵀ(xi − xi?)‖∞.

C.1 Deviations of the gaps when Pr holds

In this part, we control the deviations of the empirical gaps when proposition Pr holds.
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Lemma 6. Assume that the proposition Pr holds at some round r. Then for any arm i ∈ Ar it holds that∣∣∣(∆̂?
i,r)+ − (∆?

i )+

∣∣∣ 6 ∣∣∣∆̂?
i,r −∆?

i

∣∣∣ 6 γi,r

where γi,r := maxj∈Ar
‖(Θ̂r −Θ)ᵀ(xi − xj)‖∞.

Proof. This inequality is a direct consequence of Lemma 4 and the relation |x+ − y+|6 |x− y|) which holds for
any x, y ∈ R. Note that for a Pareto-optimal arm i we trivially have (∆?

i )
+ = 0 = (maxj∈Ar m(i, j))+. And for

a sub-optimal arm i ∈ Ar, as i? ∈ Ar (from proposition Pr) we have ∆?
i = m(i, i?) = maxj∈Ar

m(i, j). Thus for
any arm i ∈ Ar we have ∣∣∣(∆̂?

i,r)+ − (∆?
i )+

∣∣∣ =

∣∣∣∣(max
j∈Ar

m(i, j; r))+ − (max
j∈Ar

m(i, j))+

∣∣∣∣ ,
6

∣∣∣∣(max
j∈Ar

m(i, j; r))− (max
j∈Ar

m(i, j))

∣∣∣∣ ,
6 max

j∈Ar

|m(i, j; r)−m(i, j)| ,

6 max
j∈Ar

∥∥∥(Θ̂r −Θ)ᵀ(xi − xj)
∥∥∥
∞

= γi,r,

where the last inequality follows from Lemma 4.

Lemma 7. If the proposition Pr holds at some round r then for any arm i ∈ Ar,

∆̂i,r −∆i >

{
−2γr if i ∈ S?,
−γi,r else,

where γi,r := maxj∈Ar
‖(Θ̂r −Θ)ᵀ(xi − xj)‖∞ and γr := maxi∈Ar

γi,r.

Proof. We first prove the result a sub-optimal arm i. From the proposition Pr, as i ∈ Ar we have i? ∈ Ar so
∆i = maxj∈Ar

m(i, j) and we recall that

∆̂i,r := max(∆̂?
i,r, δ̂

?
i,r). (8)

Note that by reverse triangle we have for any arm i ∈ Ar (sub-optimal or not)∣∣∣∣(max
j∈Ar

m(i, j; r)

)
−
(

max
j∈Ar

m(i, j)

)∣∣∣∣ 6 max
j∈Ar

|m(i, j; r)−m(i, j)|, (9)

6 max
j∈Ar

∥∥∥(Θ̂r −Θ)T (xi − xj)
∥∥∥
∞

= γi,r. (10)

where the last inequality follows from Lemma 4. If i a sub-optimal arm (i /∈ S?) then as ∆i = ∆?
i , it follows

∆̂i,r −∆i > ∆̂?
i,r −∆?

i

therefore

∆̂i,r −∆i > −|∆̂?
i,r −∆?

i |
= −|(max

j∈Ar

m(i, j; r))− (max
j∈Ar

m(i, j))|

> −γi,r (see (10)).

Now we assume i is a Pareto-optimal arm (i ∈ S?) so that

∆i = δ?i .

Combining with Eq. (8) yields

∆̂i,r −∆i,r > δ̂?i,r − δ?i,r,
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where we recall that
δ̂?i,r = min

j∈Ar\{i}
[M(i, j; r) ∧ (M(j, i; r)+ + (∆̂?

j,r)+)]

and
δ?i := min

j∈[K]\{i}
[M(i, j) ∧ (M(j, i)+ + (∆?

j )+)].

As for any x, y ∈ R we have |x+ − y+|6 |x− y|, the following holds for any i, j ∈ Ar

|M(j, i; r)+ −M(j, i)+| 6 |M(j, i; r)−M(j, i)| (11)

6 γj,r. (12)

From Lemma 6 we have for any j ∈ Ar

(∆̂?
j,r)+ − (∆?

j )+ > −γj,r. (13)

Combining (12) and (13) yields for any j ∈ Ar

M(j, i; r)+ + (∆̂?
j,r)+ > M(j, i)+ + (∆?

j )+ − 2γj,r, (14)

which in addition to M(j, i; r) > M(j, i)− γj,r yields

[M(i, j; r) ∧ (M(j, i; r)+ + (∆̂?
j,r)+)] > [M(i, j) ∧ (M(j, i)+ + (∆?

j )+)]− 2γj,r

for any arm j ∈ Ar. Thus taking the min over i ∈ Ar yields

δ̂?i,r = min
j∈Ar\{i}

[M(i, j; r) ∧ (M(j, i; r)+ + (∆̂?
j,r)+)]

> min
j∈Ar\{i}

[M(i, j) ∧ (M(j, i)+ + (∆?
j )+)]− 2γr,

> min
j∈[K]\{i}

[M(i, j) ∧ (M(j, i)+ + (∆?
j )+)]− 2γr,

= δ?i − 2γr

which concludes the proof of this lemma.

Building on this result, we show that P∞ holds in the fixed-confidence and fixed-budget settings.

C.2 Fixed-budget setting

We recall the definition of the good event for any λ > 0.

Er,λfb =
{
∀ i, j ∈ Ar : ‖(Θ̂r −Θ)ᵀ(xi − xj)‖∞ 6 λ∆nr+1+1

}
and Eλfb := ∩dlog2(h)e

r=1 Er,λfb . We prove that proposition P∞ holds on the event Eλfb for some any λ ∈ (0, 1/5).

Lemma 8. The proposition holds P∞ on the event Eλfb for any λ ∈ (0, 1/5): at any round r ∈ {1, . . . , dlog2 he+1}
and for any arm i ∈ Ar ∩ (S?)c, i? ∈ Ar.

Proof. We prove P∞ by induction on the round r. In the sequel we assume Eλfb holds. We also assume Pr is true
until some round r. As Eλfb holds, we have by application of Lemma 7: for any arm i ∈ Ar,

∆̂i,r −∆i >

{
−2λ∆nr+1+1 if i ∈ S?

−λ∆nr+1+1 else.
(15)

We shall prove that if a Pareto-optimal arm i is discarded at the end of round r then there exists no arm
sub-optimal j ∈ Ar+1 such that j? = i. Since i is removed and |Ar+1|= nr+1 there exists kr ∈ Ar+1 ∪ {i} such
that

∆kr > ∆nr+1+1. (16)
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If i is empirically sub-optimal then as it is discarded we have

∆̂i,r = ∆̂?
i,r > ∆̂k,r

for any arm k ∈ Ar+1. So ∆̂?
i,r > ∆̂kr,r thus using (15) and (16) it comes that

max
q∈Ar\{i}

m(i, q) > ∆nr+1+1 − 3λ∆nr+1+1

= (1− 3λ)∆nr+1+1

and the latter inequality is not possible for λ < 1/3 as the LHS of the inequality is negative as i is a Pareto-optimal
arm.

Next we assume that i is empirically optimal. We claim that j is not dominated by i. To see this, first note that
as j ∈ Ar+1 we have

∆̂i,r > ∆̂j,r (17)

so that as i is empirically optimal, if j was empirically dominated by i we would have

∆̂i,r 6 M(j, i; r)+ + (∆̂?
j,r)+ = ∆̂j,r. (18)

Combining (17) and (18) yield ∆̂i,r = ∆̂j,r, i is empirically optimal and j is empirically sub-optimal. However
our breaking rule ensures that this case cannot occur. Therefore j is not dominated by i. But, by assumption,
j is such that j? = i and we have proved that i does not empirically dominate j so by Lemma 5

∆j 6 ‖(Θ̂r −Θ)ᵀ(xj − xi)‖∞

which on the event Efb yields

∆j 6 λ∆nr+1+1. (19)

On the other side, as i is discarded as an empirically optimal arm we have

∆̂i,r = δ̂?i,r > ∆̂k,r

for any arm k ∈ Ar+1. Since kr ∈ Ar+1 ∪ {i} it comes δ̂?i,r > ∆̂kr,r thus using (15) and (16) yields

M(j, i)+ + ∆j > ∆nr+1+1 − 4λ∆nr+1+1

which further combined with (19) yields

M(j, i)+ > (1− 5λ)∆nr+1+1.

However, as j? = i we have M(j, i)+ = 0 so the latter inequality is not possible as long as λ < 1/5. Put together,
we have proved proved that if Pr holds then for any Pareto-optimal arm i which is removed at the end of round
r, there does not exist an arm j ∈ Ar+1 such that j? = i. So Pr+1 holds. Finally noting that Pr trivially holds
for r = 1 we conclude that P∞ holds on the event Eλfb for any λ < 1/5.

Combining this result with Lemma 7 and assuming Eλfb holds then yields at any round r ∈ {1, . . . , dlog2 he} and
for any arm i ∈ Ar:

∆̂i,r −∆i >

{
−2λ∆nr+1+1 if i ∈ S?

−λ∆nr+1+1 else,
(20)

which proves Proposition 1 in the fixed-budget setting.
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C.3 Fixed-confidence setting

We recall below the good events we study in the fixed-confidence setting:

Erfc =
{
∀ i, j ∈ Ar : ‖(Θ̂r −Θ)ᵀ(xi − xj)‖∞ 6 εr/2

}
and Efc := ∩∞r=1Erfc.

Lemma 9. The proposition P∞ holds on the event Efc: at any round r for any arm i ∈ Ar ∩ (S?)c, i? ∈ Ar.

Proof of Lemma 9. We prove the proposition by induction on the round r. Note that the proposition Pr trivially
holds for r = 1. Assume the property holds until the beginning of some round r. Let i ∈ S? be an optimal
arm and assume i is discarded at the end of round r. We will prove that there exists no sub-optimal arm
j ∈ Ar+1 such that j? = i. Recall that when i is discarded, we have either i ∈ Sr (empirically optimal) or i /∈ Sr
(empirically sub-optimal). We analyze both cases below. If i /∈ Sr then it holds that

∆̂i,r > εr/2,

then, as i /∈ Sr it follows that ∆̂i,r = ∆̂?
i := maxj∈Ar\{i}m(i, j; r), so

max
j∈Ar\{i}

m(i, j; r) > εr/2

which using Lemma 4 and assuming event Erfc holds would yield

max
j∈Ar\{i}

m(i, j) > 0.

The latter inequality is not possible as i ∈ S? is a Pareto-optimal arm. Therefore, on Erfc, when i ∈ S? is
discarded we have i ∈ Sr.

Next, we analyze the case i ∈ Sr: that is i is discarded and classified as optimal. In this case it follows from the
definition of ∆̂i,r that

min
j∈Ar\{i}

[M(j, i; r)+ + (∆̂?
j,r)+] > εr. (21)

Let j ∈ Ar+1 ∩ (S?)c be such that j? = i. If j is empirically optimal then (∆̂?
j,r)+ = 0 thus M(j, i; r)+ > εr. On

the contrary, if j is empirically sub-optimal then because it has not been removed at the end of round r it holds
that

∆̂?
j,r < εr/2,

which combined with (21) yields M(j, i; r)+ > εr/2. Thus, in both cases we have M(j, i; r)+ > εr/2 which using
Lemma 4 and assuming event Erfc would imply that

M(j, i)+ > 0,

which is impossible as, by assumption j? = i, so j is dominated by i.

Put together with what precedes, on Efc, if Pr holds then Pr+1 holds. Since the property trivially holds for r = 1
we have proved that the property Pr holds at any round when Efc holds.

Combining this result with Lemma 7 proves that, on the event Efc, for any round r and for any arm i ∈ Ar

∆̂i,r −∆i >

{
−εr if i ∈ S?

−εr/2 else,
(22)

which proves Proposition 1 in the fixed-confidence setting.
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D UPPER BOUND ON THE PROBABILITY OF ERROR

In this section, we prove the theoretical guarantees of GEGE in the fixed-budget setting. We prove Theorem 1
and some ingredient lemmas.

Theorem 1. The probability of error of Algorithm 2 run with budget T > 45h log2 h is at most

exp

(
− T

1200σ2H2,lindlog2 he
+ logC(h, d,K)

)
where C(h, d,K) = 2d (K + h+ dlog2 he).

Proof of Theorem 1. We first prove the correctness of GEGE on the event Eλfb for some λ small enough. Let us
assume Eλfb holds which by Proposition 1 implies that P∞ holds and at round r, we have for any arm i ∈ Ar

∆̂i,r −∆i >

{
−2λ∆nr+1+1 if i ∈ S?

−λ∆nr+1+1 else.
(23)

We recall the definition of the good event for any λ > 0,

Er,λfb =
{
∀ i, j ∈ Ar : ‖(Θ̂r −Θ)ᵀ(xi − xj)‖∞ 6 λ∆nr+1+1

}
and Efb := ∩dlog2(h)e

r=1 Er,λfb . Applying Lemma 4 on this event then yields for all arms i, j ∈ Ar,

|M(i, j; r)−M(i, j)|6 λ∆nr+1+1 and (24)

|m(i, j; r)−m(i, j)|6 λ∆nr+1+1. (25)

Let i be an arm discarded at the end of round r. Since i is discarded and |Ar+1|= nr+1 there exists kr ∈ Ar+1∪{i}
such that

∆kr > ∆nr+1+1. (26)

If i /∈ Sr that is i is empirically sub-optimal then

∆̂i,r = ∆̂?
i,r > ∆̂kr,r,

then, recalling that
∆̂?
i,r := max

j∈Ar\{i}
m(i, j; r)

and further applying (23) to kr and using (25) yields

max
j∈Ar\{i}

m(i, j) > (1− 3λ)∆nr+1+1

which for λ < 1/3 implies that maxj∈Ar
m(i, j) > 0, that is there exists j ∈ Ar such that µi ≺ µj so i is a

sub-optimal arm.

Next, assume i ∈ Sr (i.e, i is empirically Pareto-optimal). In this case we have ∆̂i,r = δ̂?i,r > ∆̂kr,r. We recall
that

δ̂?i,r = min
j∈Ar\{i}

[M(i, j; r) ∧ (M(j, i; r)+ + (∆̂?
i,r)+)].

Applying (23) to kr and using (24), it follows that

min
j∈Ar\{i}

M(i, j) > (1− 3λ)∆nr+1+1.

Thus, for λ < 1/3, we have minj∈Ar\{i}M(i, j) > 0. Therefore, no active arm at round r dominates i (based
on their true means), which, together with proposition P∞, yields that i is a Pareto-optimal arm (otherwise, we
would have i? ∈ Ar that dominates i).
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All put together, we have proved that for any λ < 1/5 (we need λ < 1/5 for P∞ to hold), Algorithm 2 does not
make any error on the event Eλfb. It then follows that the probability of error of GEGE is at most

inf
λ∈(0,1/5)

P
(
(Eλfb)c

)
(27)

Now we upper-bound Eq. (27), which will conclude the proof. Let λ ∈ (0, 1/5) be fixed. We have by union bound

P
(
(Eλfb)c

)
6

dlog2 he∑
r=1

E
[
P
(

(Er,λfb )c|Ar
)]

6
dlog2 he∑
r=1

E

[∑
i∈Ar

P(‖(Θ̂r −Θ)ᵀxi‖∞ >
1

2
λ∆nr+1+1|Ar)

]

Note that for i fixed, we can use Lemma 2 with κ = 1/3 and the conditions of this theorem are satisfied as the
budget per phase is T/ log2(h) > 45h (recall from the theorem that GEGE is run with T > 45h log2(h)). Thus,
applying this theorem yields

P
(
(Eλfb)c

)
6 2d

dlog2 he∑
r=1

nrE

[
exp

(
−
λ2∆2

nr+1+1T

24σ2hr log2 he

)]

6 2d

dlog2 he∑
r=1

nr exp

(
−

λ2T∆2
nr+1+1

24σ2 min(h, nr)dlog2 he

)
, as hr 6 min(nr, h).

Then, note that

∆2
nr+1+1

min(h, nr)
=

∆2
dh/2re+1

dh/2r−1e

=
∆2
dh/2re+1

dh/2re+ 1

dh/2re+ 1

dh/2r−1e

>
∆2
dh/2re+1

dh/2re+ 1

h/2r + 1

h/2r−1 + 1

>
∆2
dh/2re+1

dh/2re+ 1

1

2
,

which follows as (x+ 1)/(2x+ 1) = (1/2) + (1/2)/(2x+ 1) > 1
2 for x > 0. Therefore,

∆2
nr+1+1

min(h, nr)
>

1

2

∆2
dh/2re+1

dh/2re+ 1

>
1

2H2,lin
.

Thus,

P
(
(Eλfb)c

)
6 2 exp

(
− λ2T

48σ2H2,lindlog2 he
+ log(d)

) dlog2 he∑
r=1

nr

6 2 (K + h+ dlog2 he) exp

(
− λ2T

48σ2H2,lindlog2 he
+ log(d)

)
Finally, it follows that

inf
λ∈(0,1/5)

P
(
(Eλfb)c

)
6 2 (K + h+ dlog2 he) exp

(
− T

1200σ2H2,lindlog2 he
+ log(d)

)
,

which concludes the proof.
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E UPPER BOUND ON THE SAMPLE COMPLEXITY

We prove the theoretical guarantees in the fixed-confidence setting. We prove the correctness of Algorithm 3
and we prove the sample complexity bound of Theorem 3 and some key lemmas. We first prove the correctness
of the fixed-confidence variant of GEGE.

E.1 Proof of the correctness

We need to prove that the final recommendation of Algorithm 3 is correct: that is we should show that : at any
round r, Br ⊂ S? and Dr ⊂ (S?)c.

Lemma 10. On the event Efc, Algorithm 3 identifies the correct Pareto set.

Proof of Lemma 10. In this part let τ denotes the stopping time of Algorithm 3. We assume Efc holds.

Using Proposition 1 : for any round r 6 τ for any (Pareto) sub-optimal i ∈ Ar we have i? ∈ Ar. We then prove
the correctness of the algorithm as follows. Let i be an arm that is removed at the end of some round r. Assume
i ∈ Sr then, as i is discarded and empirically optimal we have ∆̂i,r = δ̂?i > εr. In particular, it holds that

min
j∈Ar\{i}

M(i, j; r) > εr

which using Lemma 4 on the event Efc yields

min
j∈Ar\{i}

M(i, j) > εr/2 > 0,

that is no active arm dominates i. Put together with proposition P∞ (cf Lemma 9) the latter inequality yields
i ∈ S?. Now assume we have i /∈ Sr: i is discarded and it is empirically sub-optimal. Then

∆̂i,r = max
j∈Ar

m(i, j; r) > εr/2,

so using Lemma 4 again on event Efc it follows that there exists j ∈ Ar such that m(i, j) > 0: that is i /∈ S?.
Put together, we have proved that if Efc holds then for any arm i discarded at some round r,

i ∈ Br+1 ⇐⇒ i ∈ S?.

Note that if Aτ is non-empty, then it contains a single arm and because P∞ holds, this arm is also Pareto
optimal.

Thus, Algorithm 3 is correct on Efc. Before proving Theorem 3 we need Lemma 3 to control the size of the active
set Ar in the fixed-confidence setting.

E.2 Controlling the size of the active set

We prove the following result that controls the size of the active set.

Lemma 3. The following statement holds for Algorithm 3 on the event Efc: for all p ∈ [K], after dlog(1/∆p)e
rounds it remains less than p active arms. In particular, GEGE stops after at most dlog(1/∆1)e rounds.

Proof of Lemma 3. By Lemma 9 we on the event Efc: for any round r and for any arm i ∈ Ar,

∆̂i,r −∆i >

{
−εr if i ∈ S?

−εr/2 else.

Then let p ∈ [K] and let assume an arm i ∈ {p, . . . ,K} is still active at round r = dlog2(1/∆p)e. We have

∆̂i,r > ∆i − εr with εr = 1/2r+1 and ∆i > ∆p which combined with ∆̂i,r > ∆i − εr yields

∆̂i,r > ∆p − εr. (28)

As r = dlog2(1/∆p)e, it holds that 2εr 6 ∆p so Eq. (28) yields ∆̂i,r > εr thus i will be discarded at the end of
round r that is any arm i ∈ {p, . . . ,K} will be discarded at the end of round dlog2(1/∆p)e.

We now prove the main lemma on the sample complexity of GEGE in the fixed-confidence setting.
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E.3 Proof of Theorem 3

We provide an upper bound on the sample complexity of the algorithm.

Theorem 3. The following statement holds with probability at least 1− δ: Algorithm 3 identifies the Pareto set
using at most

log2(2/∆1) +O

(
h∑
i=2

σ2

∆2
i

log

(
Kd

δ
log2

(
2

∆i

)))

samples and dlog2(1/∆1)e rounds, where O(·) hides universal multiplicative constant (explicit in Appendix E.3).

Proof. We assume Efc holds. The correctness of Algorithm 3 is then proven in Lemma 10 and Lemma 3 upper-
bounds the number of rounds before termination. It remains to bound the sample complexity of the algorithm
on Efc and compute P(Efc) to conclude.

By Lemma 3 an upper-bound on |Ar| for some specific rounds. Interestingly we can bound the sample complexity
between consecutive ”checkpoints rounds”. In what follows, we rewrite the complexity as a sum of number of
pulls between these intermediate ”checkpoints rounds”. Let us introduce the sequence {αs : s > 0} defined as
α0 = 0 and for any s > 1, αs = dlog2(1/∆bh/2sc)e. We assume w.l.o.g that the sequence is non-decreasing and
that the gaps are bounded in (0, 1) (otherwise, we could start the sequence (α)s from arms with gap smaller
than 1). Simple calculation shows that αblog2(h)c = dlog2(1/∆1)e and

{1, . . . , dlog2(1/∆1)e} =

blog2(h)c⋃
s=1

J1 + αs−1, αsK. (29)

Introducing

Tr :=
32(1 + 3εr)σ

2hr
ε2
r

log

(
dnr
δr

)
,

where nr = |Ar|, we have tr = dTre, so tr 6 Tr + 1. Using (29) then leads to

dlog2(1/∆1)e∑
r=1

Tr =

blog2(h)c−1∑
s=0

αs+1∑
r=αs+1

Tr

=:

blog2(h)c−1∑
s=0

Ns

where Ns =
∑αs+1

r=αs+1 Tr is ”the number of arms pulls” between round (αs + 1) and αs+1.

Next we bound the term Ns for s ∈ {0, . . . , blog2(h)c − 1}. We recall that hr 6 min(h, nr) as, nr = |Ar| is the
number of active arms at round r and hr is the dimension of the space spanned by the features of the active
arms. Using Lemma 3 on Efc, it holds that for r > αs + 1

nr 6

{
K if s = 0

bh/2sc − 1 if s > 1
(30)

Therefore for s ∈ {0, . . . , blog2(h)c − 1} and for any r > αs + 1, we simply have min(h, nr) 6 bh/2sc, so
hr 6 bh/2sc and even hr 6 bh/2sc − 1 if s > 0. In particular, it holds that

hr 6 2bh/2s+1c for r > αs + 1.
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It then follows that

Ñs = Ns/(32(1 + 3ε1)σ2) =

αs+1∑
r=αs+1

Tr/(32(1 + 3ε1)σ2) (31)

6 2bh/2s+1c log

(
Kd

δαs+1

) αs+1∑
r=αs+1

1

ε2
r

(32)

= 8bh/2s+1c log

(
Kd

δαs+1

) αs+1∑
r=αs+1

4r (33)

6 8bh/2s+1c log

(
Kd

δαs+1

) αs+1∑
r=1

4r (34)

=
32bh/2s+1c

3
log

(
Kd

δαs+1

)
(4αs+1 − 1) (35)

then further using that

αs >

{
log2(1/∆bh/2sc) if s > 1

0 if s = 0

yields

4αs+1 6
1

∆2
bh/2s+1c

which combined with (35) yields

Ñs 6
32σ2bh/2s+1c

3∆2
bh/2s+1c

log

(
Kd

δαs+1

)
. (36)

We can now bound N =
∑
sNs in terms of the sub-optimality gaps:

Ñ =

blog2 hc−1∑
s=0

Ñs (37)

6
32σ2

3

blog2 hc−1∑
s=0

bh/2s+1c
∆2
bh/2s+1c

log

(
π2Kddlog2(1/∆bh/2s+1c)e2

6δ

)
, (38)

=
32σ2

3

blog2 hc∑
s=1

bh/2sc
∆2
bh/2sc

log

(
π2Kddlog2(1/∆bh/2sc)e2

6δ

)
(39)

Then, recalling that by assumption ∆1 6, . . . ,6 ∆K , one can observe that the mapping from [K] to (0,∞),

u 7→ 1

∆2
u

log

(
π2Kddlog2(1/∆u)e2

6δ

)
is non-increasing and it is easy to check that

bh/2sc − dbh/2sc/2e+ 1 >
1

2
bh/2sc

therefore

bh/2sc
∆2
bh/2sc

log

(
π2Kddlog2(1/∆bh/2sc)e2

6δ

)
6 2

bh/2sc∑
u=dbh/2sc/2e

1

∆2
u

log

(
π2Kddlog2(1/∆u)e2

6δ

)
(40)

Combining (39) and (40) yields

N 6
64σ2

3

blog2 hc∑
s=1

bh/2sc∑
u=dbh/2sc/2c

1

∆2
u

log

(
π2Kddlog2(1/∆u)e2

6δ

)
(41)



Bandit Pareto Set Identification in a Multi-Output Linear Model

Now let us introduce for any s, the set of integers Is = Jdbh/2sc/2e, bh/2scK. We have

blog2 hc⋃
s=1

Is ⊂ {2, . . . , h}.

We show that for any p, q ∈ {1, . . . , blog2(h)c} if |p− q|> 2 then Ip ∩ Iq = ∅. Assuming p 6 q we claim that

bh/2p+2c < dbh/2pc/2e (42)

Assume otherwise, then bh/2p+2c > dbh/2pc/2e > bh/2pc/2 so

h/2p+1 > bh/2pc

which is impossible since for any p ∈ {0, . . . , blog2(h)c − 1}, h/2p > 1. Therefore we have proved (42) and for
any q > p+ 2 it holds that

bh/2qc 6 bh/2p+2c < dbh/2pc/2e
thus Iq ∩ Ip = ∅ and for any i ∈ {2, . . . , h}, i belongs to no more than 2 of the subsets I1, . . . Iblog2 hc, thus we
have

Ñ 6
64

3
σ2

blog2 hc∑
s=1

bh/2sc∑
u=dbh/2sc/2c

1

∆2
u

log

(
π2Kddlog2(1/∆u)e2

6δ

)
(43)

6
128

3
σ2

h∑
i=2

1

∆2
i

log

(
π2Kddlog2(1/∆i)e2

6δ

)
(44)

6
128

3
σ2

h∑
i=2

1

∆2
i

log

(
π2Kd log2(2/∆i)

2

6δ

)
(45)

6
256

3
σ2

h∑
i=2

1

∆2
i

log

(
Kd

δ
log2

(
2

∆i

))
(46)

Then, from Lemma 9 it holds that with probability at least 1 − δ the sample complexity Nδ of GEGE is
upper-bounded as

log2(2/∆1) +O

(
h∑
i=2

σ2

∆2
i

log

(
Kd

δ
log2

(
1

∆i

)))
,

where O(·) hides universal multiplicative constant. Therefore, we have shown the sample complexity bound and
the correctness on Efc. Thus, proving that P(Efc) > 1− δ will conclude the proof.

E.4 Probability of the good event Efc.

At round r,

P ((Erfc)c | Ar) 6
∑
i∈Ar

P
(
‖(Θ̂r −Θ)ᵀxi‖∞ > εr/4|Ar

)
Then, note that at round r, Algorithm 3 calls OptEstimator with precision εr/2 and budget tr and by design
we have tr > 20hr/ε

2
r, so using Lemma 2, it follows

P ((Erfc)c | Ar) 6 2d exp

(
− trε

2
r

32(1 + 3εr)σ2hr

)
6 δr/|Ar|

which follows by plugging in the value of tr. Therefore, by union bound over Ar and r it holds that P (Efc) >
1−

∑
r> δr > 1− δ. This conludes the proof of Theorem 3.
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E.5 GEGE for ε-PSI

Note that sub-optimal arms with small gaps are close to the Pareto Set. Indeed, given ε > 0 and a sub-optimal
arm i such that ∆i < ε. From the definition of the gap (cf Equation 1, Section 2), it follows that for any arm
j 6= i, m(i, j) < ε, which by definition rewrites as minc∈{1,...,d}[µj(c)−µi(c)] < ε. Thus, for any arm j 6= i, there
exists an objective cj such that µi(cj) + ε > µj(cj) , that is µi + (ε, . . . , ε) is not dominated by any of the arms
{µj : j 6= i}.

Auer et al. (2016) proposed the concept of ε-PSI, which allows practitioners to specify a parameter ε > 0 to
define an indifference zone around the Pareto Set. Be given an instance µ := (µ1, . . . , µK) and its Pareto Set
S?, a set Sε ⊂ [K] is an ε-Pareto Set if : S? ⊂ Sε, and for any i ∈ Sε, µi + (ε, . . . , ε) is not dominated by any of
{µj : j 6= i}. Intuitively, such a set contains all the Pareto-optimal arms but may also include some arms that
are close to be Pareto-optimal.

We prove below that with the modification suggested in the main, the recommended set will be an ε-Pareto Set
and, with tiny modifications, our proof extends to cover this case and we could prove that Theorem 3 holds with
each gap ∆i replaced with ∆i,ε := max(∆i, ε/2); that is the sample complexity is now upper bounded by

log2(2/∆1,ε) +O

(
h∑
i=1

σ2

∆2
i,ε

log

(
Kd

δ
log

(
1

∆i,ε

)))
.

Sketch of proof At its core, Lemma 3 proves that (with high probability) any arm i such that ∆i > 2εr
will not be active after round r (cf proof in Section E.2). Assume the algorithm stops at some round τ because
ετ 6 ε/4. Then, from the previous observation, if an arm i is still alive at round τ then ∆i < 2ετ−1 and since
ετ = ετ−1/2 (cf εr = 1/(2 · 2r) in Algorithm 3), ∆i < 4ετ . By assumption on the stopping, ετ 6 ε/4, so any arm
still alive at stopping satisfies ∆i < 4ετ 6 ε. Coupling this with the proof of Lemma 10 and the discussion above
will prove that the recommended set is an ε-Pareto Set. The case where the stopping occurs because |Aτ | 6 1
is already covered by Lemma 10.

To prove the sample complexity bound, we note that because of this relaxed stopping condition, Lemma 3
simply holds by replacing every gap ∆i with ∆i,ε := max(∆i, ε/2), then propagating this change into the proof
of Theorem 3 (Appendix E.3) yields the claimed result.

F CONCENTRATION RESULTS

In this section we prove some concentration inequalities that are essential to the proofs of others results.

Lemma 4. At any round r and for any arms i, j ∈ Ar it holds that

|M(i, j; r)−M(i, j)|6 ‖(Θ̂r −Θ)ᵀ(xi − xj)‖∞ and

|m(i, j; r)−m(i, j)|6 ‖(Θ̂r −Θ)ᵀ(xi − xj)‖∞.

Proof. We have

|M(i, j; r)−M(i, j)| =
∣∣∣max

c
[µ̂i,r(c)− µ̂j,r(c)]−max

c
[µi(c)− µj(c)]

∣∣∣ ,
(i)

6 max
c
|(µ̂i,r(c)− µ̂j,r(c))− (µi(c)− µj(c))| ,

= ‖(µ̂i,r − µ̂j,r)− (µi − µj)‖∞ ,

= ‖(Θ̂r −Θ)ᵀ(xi − xj)‖∞.

where (i) follows from reverse triangle inequality. The second part of the lemma is a direct consequence of the
relation M(i, j) = −m(i, j) as well as M(i, j; r) = −m(i, j; r) that holds for any pair of arms i, j.

Lemma 5. At any round r, for any sub-optimal arm i ∈ Ar, if i? ∈ Ar and i? does not empirically dominate i
then ∆?

i < ‖(Θ̂r −Θ)ᵀ(xi − xi?)‖∞.
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Proof. Since i? does not empirically dominate i it holds that M(i, i?; r) > 0 so M(i, i?; r)−M(i, i?) > −M(i, i?).
Then noting that

−M(i, i?) = m(i, i?) = ∆i

yields M(i, i?; r)−M(i, i?) > ∆i. Therefore

∆i = ∆?
i < M(i, i?; r)−M(i, i?)

6 ‖(Θ̂r −Θ)ᵀ(xi − xi?)‖∞,

where the last inequality is a consequence of Lemma 4.

We recall the following lemma from the main paper.

Lemma 1. If the noise ηt has covariance Σ ∈ Rd×d and a1, . . . , an are deterministically chosen then for any
xi ∈ {xa1 , . . . , xan}, Cov(Θ̂ᵀ

nxi) = ‖xi‖2V †n Σ.

We actually prove a stronger statement that is stated below.

Lemma 11. If the noise ηt has covariance Σ ∈ Rd×d and a1, . . . , aN are deterministically. Assuming the set of
active arms is x1, . . . , xK then for any x ∈ span({x1, . . . , xK}), Cov(Θ̂ᵀ

Nx) = ‖x‖2
V †N

Σ.

Proof. In what follows we let E := span({x1, . . . , xK}) be the space spanned the vectors x1, . . . xK . As the
columns of B forms an orthogonal basis of E, P = B(BᵀB)−1Bᵀ = BBᵀ is a matrix that project onto E.
Therefore, for any x ∈ E

Θᵀx = ΘᵀBBᵀx = (BᵀΘ)ᵀBᵀx.

Thus recalling that XN = (xa1 , . . . , xaN )ᵀ it holds that XNΘ = (XNB)(BᵀΘ). Rewriting the solution of the
least squares leads to

Θ̂N = B(BᵀVNB)−1BᵀXᵀ
N (XNΘ +HN )

= B(BᵀVNB)−1BᵀXᵀ
N (XNΘ) + V †NX

ᵀ
NHN

= B(BᵀVNB)−1BᵀXᵀ
N (XNB)(BᵀΘ) + V †NX

ᵀ
NHN

= B(BᵀVNB)−1(BᵀVNB)(BᵀΘ) + V †NX
ᵀ
NHN

= BBᵀΘ + V †NX
ᵀ
NHN

then for any x ∈ E, as BBᵀx = x it follows that

Θ̂ᵀ
Nx = ΘᵀBBᵀx+ (V †NX

ᵀ
NHN )ᵀx

= Θᵀx+ (V †NX
ᵀ
NHN )ᵀx

thus we have for x ∈ E,
(Θ̂N −Θ)ᵀx = (V †NX

ᵀ
NHN )ᵀx. (47)

Computing the covariance follows as

Cov((Θ̂N −Θ)ᵀx) = E
[
(V †NX

ᵀ
NHN )ᵀxxᵀ(V †NX

ᵀ
NHN )

]
(48)

= E [Hᵀ
N x̃x̃

ᵀHN ] (49)

where x̃ := XNV
†
Nx. Letting hᵀi denotes the i-th row of Hᵀ

N , for each i, j

E[hᵀi x̃x̃
ᵀhj ] = x̃ᵀE[hih

ᵀ
j ]x (50)

= x̃ᵀσi,j x̃ (51)

where Σ := (σr,s)r,s6d and the last line follows since for any t, t′ 6 N by independence of successive observations
we have E[hi(t)hj(t

′)] = δkro
t,t′σi,j . Combining Eq. (51) with Eq. (49) yields

Cov((Θ̂N −Θ)ᵀx) = Σx̃ᵀx̃
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then further noting that

x̃ᵀx̃ = xᵀV †NX
ᵀ
NXNV

†
Nx

= xᵀB(BᵀVNB)−1BᵀVNB(BᵀVNB)−1Bᵀx

= xᵀV †Nx = ‖x‖2
V †N

concludes the proof.

The following results is proven in Appendix H.

Lemma 2. Let S ⊂ [K], κ ∈ (0, 1/3] and N > 5hS/κ
2 where hS = dim(span({xi : i ∈ S})). The output Θ̂ of

OptEstimator(S, N , κ) satisfies for all ε > 0 and i ∈ S

P
(
‖(Θ− Θ̂)ᵀxi‖∞ > ε

)
6 2d exp

(
− Nε2

2(1 + 6κ)σ2hS

)
.

G LOWER BOUNDS

Before proving the lower bounds, we illustrate the PSI and the quantities M,m on Fig.5

i

j

k

`

m(i, j)

m(i, k)

m(`, k)

M(j, k)

M(k, j)

M(`, j)

Figure 5: PSI gaps and distances

We note that, in this instance ∆i = m(i, j) and by increasing i by ∆i on both x and y axes it will become
non-dominated.

We also have ∆` = m(`, j). As ` is only dominated by j, if is it translated by m(`, j) on the x-axis it will become
Pareto optimal.

For Pareto-optimal arms k, j, δ+
k = δ+

j = M(j, k). As k dominates both i and ` its margin to sub-optimal arms

is δ−k = min(∆i,∆`) and we have δ−j = min(M(`, j) + ∆`,∆i).

Observe that for both j, k, ∆j = ∆k = M(j, k). If k is translated by M(j, k) on the y-axis it will dominate j.
Similarly, if j is translated by −M(j, k) on the y-axis, it will be dominated by k.

We now prove minimax lower bounds in both fixed-confidence and fixed-budget settings. We recall the lower-
bound below for un-structured PSI in the fixed confidence setting.

Theorem 5 (Theorem 17 of Auer et al. (2016)). For any set of operating points µi ∈ [1/4, 3/4]d, i = 1, . . . ,K,
there exist distributions (Di)16i6K such that with probability at least 1 − δ, any δ-correct algorithm for PSI
requires at least

Ω

(
K∑
i=1

1

∆̃2
i

log(δ−1)

)

samples to identify the Pareto set. Where for any sub-optimal arm ∆̃i = ∆i and for an optimal arm ∆̃i = δ+
i .
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In particular, there exist instances where ∆i = δ+
i for any Pareto-optimal arm i. Thus, this result shows that

H1 is a good proxy to measure the complexity of PSI in the fixed-confidence setting.

The proof of such results often rely on the celebrated change of distribution technique (see e.g Kaufmann et al.
(2016)) which given the instance ν := (ν1, . . . , νK) shifts the mean of νi for an arm i while keeping the others
fixed constant. However, in linear PSI, the arms’ means are correlated through Θ. So, in general, Theorem 5
does not directly apply to linear PSI. We recall below our lower bound for linear PSI in the fixed-confidence
setting.

Theorem 4. For any K, d, h ∈ N, there exists a set B(K, d, h) of linear PSI instances s.t for ν ∈ B(K, d, h) and
for any δ-correct algorithm for PSI, with probability at least 1− δ,

τAδ > Ω
(
H1,lin(ν) log(δ−1)

)
.

Proof of Theorem 4. The idea of the proof is to transform an unstructured bandit instance into a linear PSI
instance. Let ν be a bandit instance with K > 2 arms and dimension d > 1 and with means µ1, . . . , µK ∈ [0, 1]d.
Let e1, . . . eh denote the canonical basis of Rh. We define a linear PSI instance νlin with features

xi =

{
ei if i 6 h

0 else.

We assume that the learner knows that µi ∈ [0, 1]d for any arm i. We claim that with this information an
”efficient” algorithm for PSI should not pull arms from {h+1, . . . ,K}. To see this, first note that these arms will
be sub-optimal so S? ⊂ [h]. Moreover, even if an arm i ∈ {h+ 1, . . . ,K} dominates another arm j ∈ {1, . . . , h},
as j is not Pareto-optimal there exits another arm j? ∈ S? ⊂ {1, . . . , h} which dominates j with a larger margin,
so is ”cheaper” to pull. Therefore the complexity of νlin reduces to the complexity of a linear bandit ν̃lin with
only h arms. As the features in x1, . . . , xh forms the canonical Rh basis, ν̃lin reduces to an un-structured bandit
instance with (un-correlated) means µ̃i = Θᵀxi, i = 1, . . . , h. Therefore, by choosing µ1, . . . , µh ∈ [1/4, 3/4]d, we
can apply Theorem 5 to ν̃lin.

The result proven above holds for a class of instances B(K, d, h) with the covariates defined as above and with
matrix coefficients in [1/4, 3/4]d.

For the fixed-budget setting, Kone et al. (2024) proved a lower bound for a class of instances. We recall their
result below after introducing some notation.

Their lower bound applies to the class of instances B defined as follows. B contains the instances such that each
sub-optimal arm i is only dominated by a Pareto-optimal arm denoted by i? and that for each optimal arm j
there exists a unique sub-optimal arm which is dominated by j, denoted by j. Moreover, for any instance in B
the authors require its Pareto-optimal arms not to be close to the sub-optimal arms they don’t dominate: for
any sub-optimal arm i and Pareto-optimal arm j such that µi ⊀ µj ,

M(i, j) > 3 max(∆i,∆j).

Let ν := (ν1, . . . , νK) be an unstructured instance whose means belongs to B and with isotropic multi-variate

normal arms νi ∼ N (µi, σ
2I). For every i ∈ [K], define the alternative instance ν(i) := (ν1, . . . ν

(i)
i , . . . , νK) in

which only the mean of arm i is shifted:

µ
(i)
i :=

{
µi − 2∆iẽdi if i ∈ S?(ν),

µi + 2∆iẽdi else,
(52)

where ẽ1, . . . , ẽd denotes the canonical basis of Rd and for any arm i, di := argminc∈[d][µi?(c)− µi(c)]. Defining

ν(0) := ν, the theorem below holds.

Theorem 6 (Theorem 5 of Kone et al. (2024)). Let ν = (ν1, . . . , νK) be an instance in B with means µ :=
(µ1 . . . µK)ᵀ and νi ∼ N (µi, σ

2I). For any algorithm A, there exists i ∈ {0, . . . ,K} such that H(ν(i)) 6 H(ν)
and the probability of error A on ν(i) is at least

1

4
exp

(
− 2T

σ2H(ν(i))

)
.
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As explained above for the fixed-confidence setting. The proof of this lower bound also uses the change of
distribution lemma. In the instances ν(i) introduced above, it is crucial that only the mean of arm i has changed
w.r.t ν(0). Therefore, Theorem 6 does not apply to general instances in linear PSI. We recall our lower-bound
for linear PSI in the fixed-budget.

Theorem 2. Let WH be the set of instances with complexity H2,lin smaller than H. For any budget T , letting

ŜAT be the output of an algorithm A, it holds that

inf
A

sup
ν∈WH

Pν(ŜAT 6= S?(ν)) >
1

4
exp

(
− 2T

Hσ2

)
.

Proof of Theorem 2. Let H be fixed and recall that WH : {νlin : H2,lin(ν) 6 H} is the set of linear PSI instances
with complexity less than H. The proof of Theorem 2 follows similar lines to Theorem 4. Let ν be an un-
structured bandit instance with K > 2 arms, dimension d > 1, with means µ1, . . . , µK ∈ [0, 1]d and such that
H2(ν) 6 H. We construct a linear PSI instance νlin from an unstructured multi-dimensional instance ν by setting
xi := ei for any i 6 h and for i > h, xi = 0 where e1, . . . , eh is the canonical Rh-basis. We also assume that
the agent knows that µi ∈ [0, 1]d for any arm i. For νlin the arms {h+ 1, . . . ,K} are necessarily sub-optimal so
S? ⊂ [h] thus to identify the Pareto set and efficient algorithm should reduce to pull arms in {1, . . . , h}. Indeed,
as explained in the proof of Theorem 4 even if an arm i ∈ {h+ 1, . . . ,K} dominates another arm j ∈ {1, . . . , h},
as j is not Pareto-optimal there exits another arm j? ∈ S? ⊂ {1, . . . , h} which is ”cheaper” to pull as it dominates
j with a larger margin. νlin reduces to a linear bandit ν̃lin with only h arms and since the features x1, . . . , xh
forms the canonical basis of Rh, ν̃lin is an un-structured bandit instance with (un-correlated) means µ̃i = Θᵀxi,
i = 1, . . . , h. Therefore, by choosing ν̃ := (ν1, . . . , νh) that belongs to B, we can apply Theorem 6 which yields

max
i∈{0,...,K}

Pν̃(i)(SAT 6= S?(ν̃(i))) >
1

4
exp

(
− 2T

Hσ2

)
where by construction ν̃(i) (see construction above) is also a linear PSI instance. Then further noting that
H > H2(ν) > H2(ν̃) and by Theorem 6 for any i 6 h H2,lin(ν̃) > H2(ν̃(i)). Then recalling that νlin is equivalent
to ν̃ it comes

inf
A

sup
ν∈WH

Pν(SAT 6= S?(ν)) >
1

4
exp

(
− 2T

Hσ2

)
,

which is the claimed result.

H COMPUTATION AND ROUNDING OF G-OPTIMAL DESIGN

In this section, we discuss the results related to the G-design and the rounding. In what follows, let S ⊂ [K]
be a set of arms. To ease notation we re-index the arms of S by assuming S := {1, . . . , |S|}. Let N be the
allocation budget (the total number of pulls of arms in S) and κ ∈ (0, 1/3] the parameter of the rounding
algorithm to be fixed. hS = dim(span({xi : i ∈ S})) is the dimension of the space spanned by the covariates of
S. XS := (xi, i ∈ S)ᵀ and BS := (u1, . . . , um) is the matrix formed with the first m = hS = rank(S) columns
of U , the matrix of left singular vectors of X ᵀ

S obtained by singular value decomposition. We recall that for N
pulls of arms in [S], letting Ti(N) be number of samples collected from arm i,

V †N := BS(Bᵀ
SVNBS)−1Bᵀ

S and VN :=

K∑
i=1

Ti(N)xix
ᵀ
i . (53)

As from Lemma 1 the statistical uncertainty from estimating the mean of arm i scales with ‖xi‖V †N , a call to

OptEstimator(S, N , κ) is meant to estimate the hidden parameter Θ by collecting N samples from arms in S
according to an approximation of the solution of the following problem (ordinal G-optimal design):

argmin
s∈[0,...,N ]|S|

max
i∈S

‖xi‖(V s)†

s.t.
∑
i∈S

s(i) = N .
(54)
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Finding such an optimal design with integer values is an NP-hard problem (Allen-Zhu et al., 2017). Instead, its
continuous relaxation (obtained by normalizing by N), amounts to finding an allocation w that minimizes

max
i∈S

(Bᵀ
Sxi)

ᵀ

(∑
i∈S

w(i)Bᵀ
Sxix

ᵀ
iBS

)−1

Bᵀ
Sxi, (55)

which reduces to compute a G-optimal allocation on the covariates Bᵀ
Sxi, i ∈ S :

w?S ∈ argmin
w∈∆|S|

max
i∈S
‖x̃i‖2(Ṽ w)−1 , and Ṽ w :=

∑
i∈S

w(i)x̃ix̃
ᵀ
i . (56)

This is a convex optimization problem on the probability simplex of R|S|. Efficient solvers have been used in the
literature for linear BAI and experiment design optimization see (e.g Fiez et al. (2019); Soare et al. (2014)). In
this work, we follow Allen-Zhu et al. (2017) and we recommend an entropic mirror descent algorithm to solve
Eq. (56), which is recalled as Algorithm 4 for the sake of completeness.

Then, computing an integer allocation whose value is close to the optimal value of Eq. (56) can be done in
different ways. Tao et al. (2018) and Camilleri et al. (2021) use a stochastic rounding: they sample N arms from
S following the distribution w?S and use a novel estimator different from the least-squares estimate. Yang and
Tan (2022); Azizi et al. (2022) use floors and ceilings of Nw?S . Although practical, it is known that the value of
such rounded allocations can deviate a lot from the optimal value of Eq. (54) (Tao et al., 2018).

Algorithm 4: Entropic mirror descent algorithm for computing w?S Tao et al. (2018)

Input: A set of arms S and covariates (x̃i, i ∈ S), tolerance ε and Lipschitz constant Lf
Initialize: t← 1 and w(1) ← (1/|S|, . . . , 1/|S|)
while |maxi∈S x̃

ᵀ
i (Ṽ w

(t)

)−1x̃i − hS |> ε do

set ηt ←
√

2 lnN
Lf

1√
t

Compute gradient g
(t)
i ← Tr

(
Ṽ
(
w(t)

)−1 (
x̃ix̃

T
i

))
Update w

(t+1)
i ←

w
(t)
i exp

(
ηtg

(t)
i

)
∑N

i=1 w
(t)
i exp

(
ηtg

(t)
i

)
t← t+ 1

return: w(t)

Allen-Zhu et al. (2017) proposed an efficient rounding procedure that guarantees that the value of the returned
integer allocation is within a small factor of the optimal value of Eq. (56). Before recalling their result, we
introduce the notation FS(s) := maxi∈S ‖xi‖2(V s)† .

We recall the celebrated Kiefer-Wolfowitz equivalence theorem below.

Theorem 7 (Restatement of Kiefer and Wolfowitz (1960)). Let covariates {xi : i ∈ S} ⊂ Rh and for any
w ∈ ∆|S| define V w =

∑
i∈S w(i)xix

ᵀ
i and when V w is non-singular f(x;w) := xᵀ(V w)−1x. The following two

extremum problems:

a) w maximizing det(V w)

b) w minimizing maxi∈S f(xi;w)

are equivalent and a sufficient condition to satisfy Eq. (b) is maxi∈S f(xi, w) = h, which is satisfied when the
covariates {xi : i ∈ S} span Rh.

Theorem 8 (reformulated; rounding method of Allen-Zhu et al. (2017)). Suppose κ ∈ (0, 1/3] and N > 5hS/κ
2.

Let w?S = argminw∈∆S
FS(w). Then, there exists an algorithm that outputs an integer allocation s? satisfying

s? ∈ DS,N and FS(s?) 6 (1 + 6κ)
FS(w?S)

N

where DS,N := {s ∈ {0, . . . , N}|S| :
∑
i∈S s(i) = N}. This algorithm runs in time complexity Õ

(
N |S|h̃2

)
.
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We refer to a call to this algorithm as ROUND(N, {x̃i, i ∈ S}, w?S , κ). It returns an integer allocation s? =
(s∗(1), . . . , s∗(|S|)) from which we can immediately deduce a list of arms to pull (the first arm in S replicated
s∗(1) times, the second replicated s∗(2) times, etc.).

Simple arguments from linear algebra show that the hS columns of BS form a basis of span({xi : i ∈ S}), hence
{Bᵀ

Sxi : i ∈ S} spans RhS . Using Theorem 7 applied to the covariates {Bᵀ
Sxi : i ∈ S} yields

FS(w?S) = hS

and thus the integer allocation s? output by ROUND(N, {x̃i, i ∈ S}, w?S , κ) satisfies for N > 5hS/κ
2,

F (s?) 6 (1 + 6κ)
hS
N
,

which is stated below.

Lemma 12. Let S ⊂ [K], κ ∈ (0, 1/3] and N > 5hS/κ
2 where hS = dim(span({xi : i ∈ S})). The allocation

{Ti(N) : i ∈ S} computed by OptEstimator(S, N , κ) to estimate Θ satisfies

max
i∈S
‖xi‖2V †N 6 (1 + 6κ)

hS
N
.

Building on this result, we derive the following concentration result.

Lemma 2. Let S ⊂ [K], κ ∈ (0, 1/3] and N > 5hS/κ
2 where hS = dim(span({xi : i ∈ S})). The output Θ̂ of

OptEstimator(S, N , κ) satisfies for all ε > 0 and i ∈ S

P
(
‖(Θ− Θ̂)ᵀxi‖∞ > ε

)
6 2d exp

(
− Nε2

2(1 + 6κ)σ2hS

)
.

Proof of Lemma 2. We recall that, by assumption, the vector noise has σ-sub-gaussian marginals. From the proof
of Lemma 11 it is easy to see that for any i ∈ S, the marginals of (Θ − Θ̂)xi are σ‖Xᵀ

NV
†
Nxi‖2-sub-gaussian.

Then, direct calculation shows that

‖Xᵀ
NV
†
Nxi‖

2
2 = xᵀi V

†
NVNV

†
Nxi

= xᵀi
(
BS(Bᵀ

SVNBS)−1Bᵀ
S

)
VN
(
BS(Bᵀ

SVNBS)−1Bᵀ
S

)
xi

= xᵀiBS(Bᵀ
SVNBS)−1Bᵀ

Sxi

= xᵀi V
†
Nxi = ‖xi‖2V †N .

Therefore, by concentration of sub-gaussian variables (see e.g Lattimore and Szepesvári (2020)) we have for i
fixed,

P(‖(Θ− Θ̂)ᵀxi‖∞ > ε) 6 2d exp

− ε2

2σ2‖xi‖2
V †N


6 2d exp

− ε2

2σ2 maxk∈S ‖xk‖2
V †N


then the G-optimal design and the rounding (Lemma 12) ensure that

max
k∈S
‖xk‖2V †N 6 (1 + 6κ)hS/N.

Thus

P
(
‖(Θ− Θ̂)ᵀxi‖∞ > ε

)
6 2d exp

(
− Nε2

2(1 + 6κ)σ2hS

)
.
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I IMPLEMENTATION DETAILS AND ADDITIONAL EXPERIMENTS

In this section, we detail our experimental setup and provide additional experimental results.

I.1 Complexity and setup

Time and memory complexity The main computational cost of GEGE (excepting calls to OptEstimator) is
the computation of the empirical gaps. This requires computing M(i, j; r) for any tuple (i, j) of active arms and
to temporarily store them. Computing the gaps results in a total O(K2d) time complexity and O(K2) memory
complexity. Note that for the memory allocation, we can maintain the same arrays for the whole execution of
the algorithm; thus, only cheap memory allocations are made after initialization. The overall computational
complexity is reasonable as GEGE is an elimination algorithm the computational cost reduces after rounds
and we have proven that no more than dlog2(1/∆1)e rounds are required in the fixed-confidence regime and
only dlog2(h)e rounds in the fixed-budget setting. For this reason, the computational complexity of a call to
OptEstimator has a limited impact in practice. We report below the average runtime on a personal computer
with an ARM CPU 8GB RAM and 256GB SSD storage. The values are averaged over 50 runs.

Table 2: Runtime of GEGE recorded different instances.

[K,h, d] GEGE[δ = 0.1] GEGE[T = 500]

[10, 2, 2] 6ms 217ms
[50, 8, 2] 7ms 464ms
[100, 8, 4] 545ms 791ms
[200, 8, 8] 768ms 1139ms
[500, 8, 8] 1013ms 2425ms

Setup We have implemented the algorithms mainly in python3 and C++. For each experiment, the value
reported (sample complexity or probability of error) is averaged over 500 runs. For the experiments on synthetic
instances we generate an instance satisfying the conditions reported in the main by first picking the h vectors
(and thus Θ) then the remaining arms are generated by sampling and normalizing some features from U([0, 1]h)
to satisfy the contraints. For the real-world datasets, we normalize the features and (when mentioned) we use

a least square to estimate a regression parameter Θ̂ or we use the dataset as such (mis-specified setting i.e.,
without linearization). PAL is run with the same confidence bonus used in Zuluaga et al. (2016) (which are
tuned empirically) and for APE, we follow Kone et al. (2023) and we use their confidence bonuses on a pair of
arms, which was already suggested by Auer et al. (2016).

I.2 Additional experiments

We provide additional experiments on synthetic and real-world datasets. GEGE is evaluated both in the fixed-
confidence and fixed-budget regimes.

Multi-objective optimization of energy efficiency We use the energy efficiency dataset of Tsanas and
Xifara (2012). This dataset is made for buildings’ energy performance optimization. The efficiency of each
building is characterized by d = 2 quantities: the cooling load and the heating load. The heating load is
the amount of energy that should be brought to maintain a building at an acceptable temperature, and the
cooling load is the amount of energy that should be extracted from a building to sustain a temperature in
an acceptable range. Ideally, both heating and cooling loads should be low for energy efficiency, and they
are characterized by different factors like glazing area and the orientation of the building, amongst other pa-
rameters. Tsanas and Xifara (2012) reported the simulated heating and cooling loads of K = 768 buildings
together with h = 8 features characterizing each building, including surface, roof and wall areas, the relative
compactness, overall height, etc. The dataset was primarily made for multivariate regression, but we use it
for linear PSI as the goal is to optimize simultaneously heating and cooling loads, which in general (and in
this case), results in a Pareto front of 3 arms. We evaluate Algorithm 2 with a budget T = 10000 and in the
fixed-confidence we set δ = 0.1 for Algorithm 3. We report the results average over 500 runs on Fig.6 and
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Fig.7. In the fixed-confidence experiment, ”Racing” is the algorithm of Auer et al. (2016) for unstructured PSI.
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Figure 6: Average probability of error on the
energy efficiency dataset.
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Figure 7: Sample complexity distribution on
the energy efficiency dataset.

We observe that in both fixed-confidence and fixed-budget, GEGE largely outperforms its competitors. It is
worth noting that in the fixed-budget setting, as K = 768, Uniform Allocation requires T > 768 to be run
correctly, while EGE-SH requires T > 7360 to be able to initialize each arm, as they both ignore the linear
structure. On the contrary GEGE just requires T > dlog(h)e which is negligible w.r.t K = 768. Moreover, we
observed that its probability of error is reasonable even for a budget T < K.


