# A tutorial on Multi-Armed Bandit problems: Theory and Practice

#### Emilie Kaufmann







Imaging seminar November 9th, 2017

#### Stochastic Multi-Armed Bandit model

A simple stochastic model:

$$orall k=1,\ldots,K,\quad (X_{k,t})_{t\in\mathbb{N}}$$
 is i.i.d. with a distribution  $u_k$ 
 $K$  arms  $\leftrightarrow K$  (unknown) probability distribution



At round t, an agent:

- $\triangleright$  chooses an arm  $A_t$
- observes a sample  $X_t = X_{A_t,t} \sim \nu_{A_t}$

The sampling strategy (or bandit algorithm)  $(A_t)$  is sequential:

$$A_{t+1} = F_t(A_1, X_1, \dots, A_t, X_t).$$

#### Stochastic Multi-Armed Bandit model

A simple stochastic model:

$$orall k=1,\ldots,K,\quad (X_{k,t})_{t\in\mathbb{N}}$$
 is i.i.d. with a distribution  $u_k$ 
 $K$  arms  $\leftrightarrow K$  (unknown) probability distribution



At round t, an agent:

- $\triangleright$  chooses an arm  $A_t$
- observes a sample  $X_t = X_{A_t,t} \sim \nu_{A_t}$  (reward)

The sampling strategy (or bandit algorithm)  $(A_t)$  is sequential:

$$A_{t+1} = F_t(A_1, X_1, \dots, A_t, X_t).$$

#### A simple stochastic model:

$$orall k=1,\ldots,K, \quad (X_{k,t})_{t\in\mathbb{N}} \quad {
m is} \quad {
m i.i.d.} \quad {
m with a \ distribution} \ 
onumber \ K \ {
m arms} \leftrightarrow K \ ({
m unknown}) \ {
m probability \ distribution}$$

 $\nu_3$ 

 $\nu_{4}$ 

 $\nu_{5}$ 

#### Several possible goals:

 $\nu_1$ 

find quickly the arm with largest mean (optimal exploration)

#### A simple stochastic model:

$$orall k=1,\ldots,K, \quad (X_{k,t})_{t\in\mathbb{N}} \quad {
m is} \quad {
m i.i.d.} \quad {
m with a \ distribution} \ 
onumber \ K \ {
m arms} \leftrightarrow K \ ({
m unknown}) \ {
m probability \ distribution}$$

 $\mu$ 3

 $\mu_4$ 

 $\mu_{5}$ 

#### Several possible goals:

 $\mu_1$ 

find quickly the arm with largest mean (optimal exploration)

 $\mu_2$ 

#### A simple stochastic model:

$$orall k=1,\ldots,K, \quad (X_{k,t})_{t\in\mathbb{N}} \quad {
m is} \quad {
m i.i.d.} \quad {
m with a \ distribution} \ \ K \ {
m arms} \leftrightarrow K \ ({
m unknown}) \ {
m probability \ distribution}$$

 $\mu_3$ 

 $\mu_4$ 

 $\mu_5$ 

#### Several possible goals:

 $\mu_1$ 

- find quickly the arm with largest mean (optimal exploration)
- ▶ maximize cumulated rewards  $\mathbb{E}\left[\sum_{t=1}^{T} X_{t}\right]$  (exploration/exploitation tradeoff)

 $\mu_2$ 

#### A simple stochastic model:

$$orall k=1,\ldots,K, \quad (X_{k,t})_{t\in\mathbb{N}} \quad {\rm is} \quad {\rm i.i.d.} \quad {
m with a \ distribution} \ 
onumber \ K \ {
m arms} \leftrightarrow K \ {
m (unknown)} \ {
m probability \ distribution}$$

 $\mu_3$ 

 $\mu_4$ 

 $\mu_5$ 

#### Several possible goals:

 $\mu_1$ 

- find quickly the arm with largest mean (optimal exploration)
- ▶ maximize cumulated rewards  $\mathbb{E}\left[\sum_{t=1}^{T} X_{t}\right]$  (exploration/exploitation tradeoff)

 $\mu_2$ 

 $\blacktriangleright$  (more general) learn quickly something about the distributions  $\nu_k$ 

Emilie Kaufmann MAB: a tutorial 3 / 46

## Why Bandits?



**Goal:** maximize ones' gains in a casino ? (HOPELESS)

#### Clinical trials

Historical motivation [Thompson 1933]



For the t-th patient in a clinical study,

- ► chooses a treatment A<sub>t</sub>
- lacktriangle observes a response  $X_t \in \{0,1\} : \mathbb{P}(X_t = 1) = \mu_{A_t}$

**Goal:** identify the best treatment / maximize the number of patients healed

## Online content optimization

\$\$ Modern motivation (recommender systems, online advertisement, A/B Testing...)



For the t-th visitor of a website,

- ► recommend a movie A<sub>t</sub>
- ▶ observe a rating  $X_t \sim \nu_{A_t}$  (e.g.  $X_t \in \{1, ..., 5\}$ )

Goal: maximize the sum of ratings

# Cognitive radios

Agent: a smart radio device

**Arms**: radio channels (frequency bands)

#### streams indicating channel availabilities

| Channel 1 | $X_{1,1}$ | X <sub>1,2</sub> | <br>$X_{1,t}$ | <br>$X_{1,T}$ |
|-----------|-----------|------------------|---------------|---------------|
| Channel 2 | $X_{2,1}$ | $X_{2,2}$        | <br>$X_{2,t}$ | <br>$X_{2,T}$ |
|           |           |                  | <br>          |               |
| Channel K | $X_{K,1}$ | $X_{K,2}$        | <br>$X_{K,t}$ | <br>$X_{K,T}$ |

At round t, the device:

- ▶ selects channel A<sub>t</sub>
- observes the channel availability  $X_t = X_{A_t,t} = 0$  or 1

Goal: Maximize the number of sucessfull transmissions

# Cognitive radios

Agent: a smart radio device

**Arms**: radio channels (frequency bands)

#### streams indicating channel availabilities

| Arm 1 | $X_{1,1}$ | X <sub>1,2</sub> | <br>$X_{1,t}$ | <br>$X_{1,T}$ |
|-------|-----------|------------------|---------------|---------------|
| Arm 2 | $X_{2,1}$ | $X_{2,2}$        | <br>$X_{2,t}$ | <br>$X_{2,T}$ |
|       |           |                  | <br>          |               |
| Arm K | $X_{K,1}$ | $X_{K,2}$        | <br>$X_{K,t}$ | <br>$X_{K,T}$ |

At round t, the device:

- $\triangleright$  selects **arm**  $A_t$
- observes the channel availability  $X_t = X_{A_t,t} = 0$  or 1

Goal: Maximize the number of sucessfull transmissions

### Outline

#### Bandit algorithms for maximizing rewards

First ideas UCB algorithms Bayesian algorithms

Bandit algorithms for Optimal Exploration

A Glimpse at Structured Bandit Problems

## Objective

Goal: find a strategy maximizing

$$\mathbb{E}\left[\sum_{t=1}^T X_t\right].$$

Oracle: always play the arm

$$k^* = \mathop{\mathrm{argmax}}_{k \in \{1, \dots, K\}} \mu_k \quad \text{with mean} \quad \mu^* = \mathop{\mathrm{max}}_{k \in \{1, \dots, K\}} \mu_k.$$

Can we be almost as good as the oracle?

$$\mathbb{E}\left[\sum_{t=1}^T X_t\right] \simeq T\mu^*?$$

## Performance measure: the regret

Maximizing rewards ↔ minimizing regret

$$R_{T} := T\mu^{*} - \mathbb{E}\left[\sum_{t=1}^{T} X_{t}\right]$$
$$= \sum_{k=1}^{K} (\mu^{*} - \mu_{k}) \mathbb{E}[N_{k}(T)],$$

 $N_k(t)$ : number of draws of arm k up to round t.

→ Need for an Exploration/Exploitation tradeoff

## Performance measure: the regret

Maximizing rewards  $\leftrightarrow$  minimizing regret

$$R_T := T\mu^* - \mathbb{E}\left[\sum_{t=1}^T X_t\right]$$

We want the regret to grow sub-linearly:

$$\frac{R_T}{T} \underset{T \to \infty}{\longrightarrow} 0$$
 (consistency)

→ what rate of regret can we expect?

## A lower bound on the regret

Bernoulli bandit model,  $\mu = (\mu_1, \dots, \mu_K)$ 

$$R_{\mathcal{T}}(\boldsymbol{\mu}) = \sum_{k=1}^{K} (\mu^* - \mu_k) \mathbb{E}_{\boldsymbol{\mu}}[N_k(\mathcal{T})]$$

When T grows, all the arms should be drawn infinitely many!

▶ [Lai & Robbins, 1985]: for any "uniformly good" strategy,

$$\mu_k < \mu^* \Rightarrow \liminf_{T o \infty} rac{\mathbb{E}_{\mu}[N_k(T)]}{\log T} \geq rac{1}{\mathrm{d}(\mu_k, \mu^*)},$$

where

$$d(p, p') = KL(\mathcal{B}(p), \mathcal{B}(p'))$$
$$= p \log \frac{p}{p'} + (1 - p) \log \frac{1 - p}{1 - p'}.$$

→ the regret is at least logarithmic

## A lower bound on the regret

Bernoulli bandit model,  $\mu = (\mu_1, \dots, \mu_K)$ 

$$R_{\mathcal{T}}(\boldsymbol{\mu}) = \sum_{k=1}^{K} (\mu^* - \mu_k) \mathbb{E}_{\boldsymbol{\mu}}[N_k(\mathcal{T})]$$

When T grows, all the arms should be drawn infinitely many!

► [Lai & Robbins, 1985]: for any "uniformly good" strategy,

$$\mu_k < \mu^* \Rightarrow \liminf_{T o \infty} rac{\mathbb{E}_{\mu}[N_k(T)]}{\log T} \geq rac{1}{\mathrm{d}(\mu_k, \mu^*)},$$

where

$$d(p, p') = KL(\mathcal{B}(p), \mathcal{B}(p'))$$

$$= p \log \frac{p}{p'} + (1-p) \log \frac{1-p}{1-p'}.$$

→ can we find asymptotically optimal algorithm, i.e. algorithms matching the lower bound?

### Outline

Bandit algorithms for maximizing rewards First ideas

UCB algorithms Bayesian algorithms

Bandit algorithms for Optimal Exploration

A Glimpse at Structured Bandit Problems

# Some (naive) strategies

▶ **Idea 1 :** Draw each arm T/K times

#### ⇒ EXPLORATION

$$R(T) = \left(\frac{1}{K} \sum_{a=2}^{K} (\mu_1 - \mu_a)\right) T$$

# Some (naive) strategies

▶ **Idea 1 :** Draw each arm T/K times

#### ⇒ EXPLORATION

$$R(T) = \left(\frac{1}{K} \sum_{a=2}^{K} (\mu_1 - \mu_a)\right) T$$

▶ Idea 2 : Always trust the empirical best arm

$$A_{t+1} = \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} \hat{\mu}_k(t)$$

where

$$\hat{\mu}_k(t) = \frac{1}{N_k(t)} \sum_{s=1}^t X_s \mathbb{1}_{(A_s=k)}$$

is an estimate of the unknown mean  $\mu_k$ .

#### ⇒ EXPLOITATION

$$\mathbb{R}(T) \ge (1 - \mu_1) \times \mu_2 \times (\mu_1 - \mu_2) T$$

Given  $m \in \{1, \ldots, T/K\}$ ,

- draw each arm m times
- compute the empirical best arm  $\hat{k} = \operatorname{argmax}_k \hat{\mu}_k(Km)$
- ▶ keep playing this arm until round *T*

$$A_{t+1} = \hat{k}$$
 for  $t \ge Km$ 

⇒ EXPLORATION followed by EXPLOITATION

Given  $m \in \{1, \ldots, T/K\}$ ,

- draw each arm m times
- compute the empirical best arm  $\hat{k} = \operatorname{argmax}_k \hat{\mu}_k(Km)$
- ▶ keep playing this arm until round T

$$A_{t+1} = \hat{k}$$
 for  $t \ge Km$ 

#### ⇒ EXPLORATION followed by EXPLOITATION

**Analysis:** 2 arms, 
$$\mu_1 > \mu_2$$
.  $\Delta = \mu_1 - \mu_2$ .

$$R_T = \Delta \times \mathbb{E}[N_2(T)]$$

$$\begin{array}{lcl} \textit{N}_2(\textit{T}) & = & \textit{m} + (\textit{T} - 2\textit{m})\mathbb{1}_{(\hat{k} = 2)} \\ \mathbb{E}[\textit{N}_2(\textit{T})] & \leq & \textit{m} + (\textit{T} - 2\textit{m})\mathbb{P}\left(\hat{\mu}_1(2\textit{m}) < \hat{\mu}_2(2\textit{m})\right) \\ & \leq & \textit{m} + \textit{T}\exp\left(-\frac{\textit{m}\Delta^2}{2}\right) \quad \textit{(Hoeffding's inequality)} \end{array}$$

Given  $m \in \{1, \ldots, T/K\}$ ,

- ▶ draw each arm *m* times
- compute the empirical best arm  $\hat{k} = \operatorname{argmax}_k \hat{\mu}_k(Km)$
- ▶ keep playing this arm until round *T*

$$A_{t+1} = \hat{k}$$
 for  $t \ge Km$ 

#### ⇒ EXPLORATION followed by EXPLOITATION

**Analysis:** 2 arms,  $\mu_1 > \mu_2$ .  $\Delta = \mu_1 - \mu_2$ .

$$R_T \le \underbrace{\Delta m}_{\text{increases with } m} + \underbrace{\Delta T \exp\left(-\frac{m\Delta^2}{2}\right)}_{\text{decreases with } m}$$

A good choice:  $m = \left| \frac{2}{\Delta^2} \log \left( \frac{T\Delta^2}{2} \right) \right|$ 

Given  $m \in \{1, \ldots, T/K\}$ ,

- ▶ draw each arm *m* times
- compute the empirical best arm  $\hat{k} = \operatorname{argmax}_k \hat{\mu}_k(Km)$
- keep playing this arm until round T

$$A_{t+1} = \hat{k}$$
 for  $t \ge Km$ 

⇒ EXPLORATION followed by EXPLOITATION

**Analysis:** 2 arms,  $\mu_1 > \mu_2$ .  $\Delta = \mu_1 - \mu_2$ .

$$R_T \le \frac{2}{\Delta} \left[ \log \left( \frac{T\Delta^2}{2} \right) + 1 \right]$$

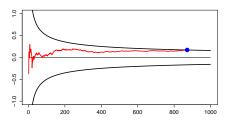
A good choice:  $m = \left| \frac{2}{\Delta^2} \log \left( \frac{T\Delta^2}{2} \right) \right|$ 

→ requires the knowledge of  $\Delta = \mu_1 - \mu_2!$ 

# Sequential Explore-Then-Exploit (2 arms)

explore uniformly until the random time

$$au = \inf \left\{ t \in \mathbb{N} : |\hat{\mu}_1(t) - \hat{\mu}_2(t)| > \sqrt{rac{4\log(T/t)}{t}} 
ight\}$$



 $\hat{k} = \operatorname{argmax}_k \hat{\mu}_k(\tau)$  and  $(A_{t+1} = \hat{k})$  for  $t \in \{\tau, \dots, T\}$ 

$$R_T \le \frac{2}{\Lambda} \log(T) + C\sqrt{\log(T)}.$$

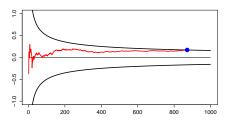
same regret rate, without knowing Δ

Emilie Kaufmann MAB: a tutorial 16 / 46

## Sequential Explore-Then-Exploit (2 arms)

explore uniformly until the random time

$$au = \inf \left\{ t \in \mathbb{N} : |\hat{\mu}_1(t) - \hat{\mu}_2(t)| > \sqrt{rac{4\log(T/t)}{t}} 
ight\}$$



 $\hat{k} = \operatorname{argmax}_k \hat{\mu}_k(\tau)$  and  $(A_{t+1} = \hat{k})$  for  $t \in \{\tau, \dots, T\}$ 

$$R_T \le \frac{2}{\Delta} \log(T) + C\sqrt{\log(T)}.$$

→ still requires the knowledge of T...

Emilie Kaufmann MAB: a tutorial 16 / 46

### Outline

Bandit algorithms for maximizing rewards

First ideas

UCB algorithms

Bayesian algorithms

Bandit algorithms for Optimal Exploration

A Glimpse at Structured Bandit Problems

### The optimism principle

▶ For each arm k, build a confidence interval on the mean  $\mu_k$ :

$$\mathcal{I}_k(t) = [\mathrm{LCB}_k(t), \mathrm{UCB}_k(t)]$$

LCB = Lower Confidence Bound UCB = Upper Confidence Bound

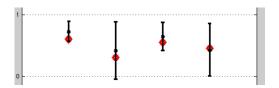


Figure: Confidence intervals on the means after t rounds

### The optimism principle

We apply the following principle:

"act as if the best possible model was the true model"

(optimism in face of uncertainty)



Figure: Confidence intervals on the means after t rounds

▶ Thus, one selects at time t + 1 the arm

$$A_{t+1} = \underset{k=1,...,K}{\operatorname{argmax}} \operatorname{UCB}_k(t)$$

[Lai and Robbins 1985] [Agrawal 1995]

Emilie Kaufmann MAB: a tutorial 19 / 46

#### How to build the Confidence Intervals?

We need to build  $U_k(t)$  such that

$$\mathbb{P}\left(\mu_k \leq \mathrm{UCB}_k(t)\right) \gtrsim 1 - \frac{1}{t}.$$

UCB1 [Auer et al. 02] chooses  $A_{t+1} = \operatorname{argmax}_k \operatorname{U}_k(t)$  with

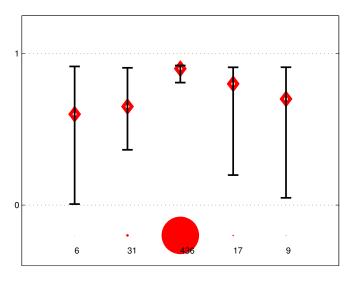
$$\mathrm{UCB}_k(t) = \underbrace{\hat{\mu}_k(t)}_{\text{exploitation term}} + \underbrace{\sqrt{\frac{2\log(t)}{N_k(t)}}}_{\text{exploration bonus}}.$$

(for distributions that are bounded in [0,1])

- ▶ tools: Hoeffding's inequality + a union bound
- ▶ a (simple!) finite time analysis

Emilie Kaufmann MAB: a tutorial 20 / 46

# A UCB algorithm in practice



## An improved analysis of UCB1

Define the index

$$\mathrm{UCB}_k(t) = \hat{\mu}_k(t) + \sqrt{\frac{\alpha \log(t)}{N_k(t)}}$$

### Theorem [Bubeck '11], [Cappé et al.'13]

For  $\alpha > 1/2$ , the UCB algorithm using the above index satisfies

$$\mathbb{E}[N_k(T)] \le \frac{\alpha}{(\mu_1 - \mu_2)^2} \log(T) + O(\sqrt{\log(T)}).$$

"order-optimal" for Bernoulli distributions

[Pinsker's inequality:  $d(\mu_a, \mu_1) \ge 2(\mu_1 - \mu_a)^2$ ]

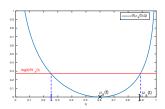
### The kl-UCB algorithm

(for Bernoulli bandits, or other simple parametric families)

- ▶ A UCB-type algorithm:  $A_{t+1} = \underset{k}{\operatorname{argmax}} u_k(t)$
- ... associated to the right upper confidence bound:

$$u_k(t) = \max \left\{ q : d\left(\hat{\mu}_k(t), q\right) \leq \frac{\log(t)}{N_k(t)} \right\},$$

with  $d(x, y) = KL(\mathcal{B}(x), \mathcal{B}(y))$ .



[Cappé et al. 13]: 
$$\mathbb{E}_{\mu}[N_k(T)] \leq \frac{1}{d(\mu_k, \mu^*)} \log T + O(\sqrt{\log(T)}).$$

Emilie Kaufmann MAB: a tutorial 23 / 4

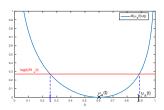
## The kl-UCB algorithm

(for Bernoulli bandits, or other simple parametric families)

- A UCB-type algorithm:  $A_{t+1} = \underset{k}{\operatorname{argmax}} u_k(t)$
- ... associated to the right upper confidence bound:

$$u_k(t) = \max \left\{ q : d\left(\hat{\mu}_k(t), q\right) \leq \frac{\log(t)}{N_k(t)} \right\},$$

with  $d(x, y) = KL(\mathcal{B}(x), \mathcal{B}(y))$ .



kl-UCB is asymptotically optimal for Bernoulli bandits!

Emilie Kaufmann MAB: a tutorial 23 / 46

### Outline

Bandit algorithms for maximizing rewards

First ideas

UCB algorithms

Bayesian algorithms

Bandit algorithms for Optimal Exploration

A Glimpse at Structured Bandit Problems

### The Bayesian choice

Bernoulli bandit model  $\mu = (\mu_1, \dots, \mu_K)$ 

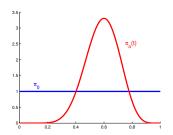
- frequentist view:  $\mu_1, \dots, \mu_K$  are unknown parameters
- → tools: estimators, confidence intervals

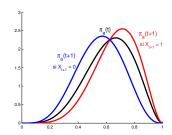
### The Bayesian choice

Bernoulli bandit model  $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)$ 

- ▶ Bayesian view:  $\mu_1, ..., \mu_K$  are random variables prior distribution :  $\mu_a \sim \mathcal{U}([0,1])$
- → tool: posterior distribution

$$\pi_k(t) = \mathcal{L}(\mu_k|X_1,...,X_t)$$
  
= Beta( $S_k(t) + 1, N_k(t) - S_k(t) + 1$ )



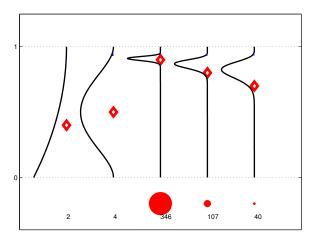


 $S_k(t) = \sum_{s=1}^t X_s \mathbb{1}_{(A_s = k)}$  sum of the rewards from arm k

Emilie Kaufmann MAB: a tutorial 25 / 46

### Bayesian algorithm

A Bayesian bandit algorithm exploits the posterior distributions of the means to decide which arm to select.



### The Bayes-UCB algorithm

 $\pi_k(t)$  the posterior distribution over  $\mu_k$  at the end of round t.

Bayes-UCB [K., Cappé, Garivier 2012] selects

$$A_{t+1} = \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} Q\left(1 - \frac{1}{t}, \pi_k(t)\right)$$

where  $Q(\alpha, \nu)$  is the quantile of order  $\alpha$  of the distribution  $\nu$ .

$$\mathbb{P}_{X \sim \nu}(X \leq Q(\alpha, \nu)) = \alpha.$$

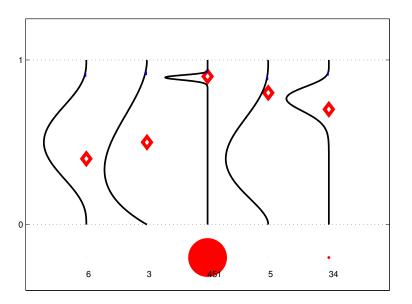
#### **Properties:**

- → easy to implement (quantiles of Beta distributions)
- → also asymptotically optimal for Bernoulli bandits!

$$q_k(t) = Q\left(1 - \frac{1}{t}, \pi_k(t)\right) \simeq u_k(t)$$

→ efficient in practice and easy to generalize

# Bayes-UCB in practice



### Thompson Sampling

$$\left\{ \begin{array}{l} \forall a \in \{1..K\}, \quad \theta_a(t) \sim \pi_a(t) \\ A_{t+1} = \mathop{\operatorname{argmax}}_{a=1...K} \theta_a(t). \end{array} \right.$$

Figure: TS selects arm 2 as  $\theta_2(t) \ge \theta_1(t)$ 

0.5

- → the first bandit algorithm! [Thompson 1933]
- → very efficient, beyond Bernoulli bandits
- → matches the Lai and Robbins bound for Bernoulli bandits K., Korda and Munos, Thompson Sampling: an Asymptotically Optimal Finite-Time Analysis, ALT 2012

Emilie Kaufmann MAB: a tutorial 29 / 46

#### Outline

Bandit algorithms for maximizing rewards
First ideas
UCB algorithms
Bayesian algorithms

Bandit algorithms for Optimal Exploration

A Glimpse at Structured Bandit Problems

### A pure-exploration objective

# Regret minimization: maximize the number of patients healed during the trial









Alternative goal: identify as quickly as possible the best treatment (no focus on curing patients during the study)

### Two possible frameworks

The agent has to **identify the arm with highest mean**  $a^*$  (no loss when drawing "bad" arms)

#### The agent

- uses a sampling strategy  $(A_t)$
- **ightharpoonup** stops at some (random) time au
- upon stopping, recommends an arm  $\hat{a}_{\tau}$

#### His goal:

| Fixed-budget setting                         | Fixed-confidence setting                        |
|----------------------------------------------|-------------------------------------------------|
| au = T                                       | minimize $\mathbb{E}[	au]$                      |
| minimize $\mathbb{P}(\hat{a}_{	au}  eq a^*)$ | $\mathbb{P}(\hat{a}_\tau \neq a^*) \leq \delta$ |

### Fixed-budget: an elimination algorithm

#### SEQUENTIAL HALVING [Karnin et al. 13]

 $\rightarrow$   $\log_2(K)$  phases of equal length, remaining arms are uniformly sampled and half of them are eliminated at the end of each phase

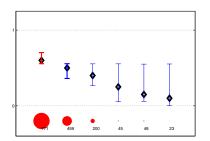
Initialisation: 
$$S_0 = \{1, \dots, K\};$$
For  $r = 0$  to  $\lceil \log_2(K) \rceil - 1$ , do sample each arm  $i \in S_r$  for  $t_r = \left\lfloor \frac{T}{|S_r| \lceil \log_2(K) \rceil} \right\rfloor$  times; let  $\hat{\mu}_i^r$  be the empirical mean of arm  $i$ ; let  $S_{r+1}$  be the set of  $\lceil |S_r|/2 \rceil$  arms with largest  $\hat{\mu}_i^r$  Return  $\hat{k}_n$  is the arm in  $S_{\lceil \log_2(K) \rceil}$ 

Emilie Kaufmann MAB: a tutorial 33 / 46

### Fixed-confidence: using confidence intervals

LUCB [Kalyanakrishnan et al. 12] relies on Upper AND Lower confidence bounds. For KL-LUCB:

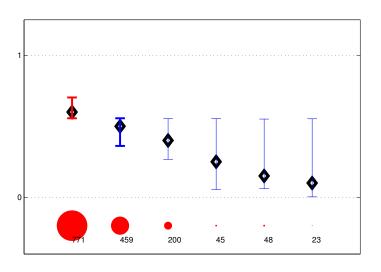
$$u_a(t) = \max\{q : N_a(t)d(\hat{\mu}_a(t), q) \le \log(Kt/\delta)\}$$
  
$$\ell_a(t) = \min\{q : N_a(t)d(\hat{\mu}_a(t), q) \le \log(Kt/\delta)\}$$



- lacktriangleright sampling rule:  $B_{t+1} = \operatorname*{argmax}_{a} \hat{\mu}_{a}(t)$ ,  $C_{t+1} = \operatorname*{argmax}_{b 
  eq A_{t+1}} u_b(t)$
- ▶ stopping rule:  $\tau = \inf\{t \in \mathbb{N} : \ell_{B_t}(t) > u_{C_t}(t)\}$

Emilie Kaufmann MAB: a tutorial 34 / 46

### KL-LUCB in action



### Theoretical garantees

$$\mu_1 > \mu_2 \geq \cdots \geq \mu_K$$
.

Fixed-budget setting

### Theorem [Karnin et al. 13]

Sequential Halving using a budget T satisfies

$$\mathbb{P}(\hat{\mathsf{a}}_T \neq 1) \leq 3\log_2(K) \exp\left(-\frac{T}{8H(\mu)\log_2(K)}\right)$$

with  $H(\mu)\simeq\sum_{a=2}^Krac{1}{\Delta_a^2}$  and  $\Delta_a=\mu_1-\mu_a$ .

► Fixed-confidence setting

#### Theorem [Kalyanakrishan et al.]

For well-chosen confidence intervals, LUCB is  $(\delta)$ -PAC and

$$\mathbb{E}\left[\tau_{\delta}\right] = O\left(\left\lceil\frac{1}{\Delta_{2}^{2}} + \sum_{a=2}^{K} \frac{1}{\Delta_{a}^{2}}\right\rceil \log\left(\frac{1}{\delta}\right)\right)$$

### The complexity of best-arm identification

#### Theorem [K. and Garivier, 16]

For any  $\delta$ -PAC algorithm,

$$\mathbb{E}_{\boldsymbol{\mu}}[ au] \geq \mathbf{\mathcal{T}}^*(\boldsymbol{\mu}) \log \left( \frac{1}{2.4\delta} \right),$$

where

$$T^*(\mu)^{-1} = \sup_{w \in \Sigma_K} \inf_{\lambda \in \mathrm{Alt}(\mu)} \left( \sum_{a=1}^K w_a d(\mu_a, \lambda_a) \right).$$

o an optimal strategy satisfies  $rac{\mathbb{E}_{m{\mu}}[N_a( au)]}{\mathbb{E}_{m{\mu}}[ au]} \simeq w_a^*(m{\mu})$  with

$$w^*(\mu) = \operatorname*{argmax}_{w \in \Sigma_K} \inf_{\lambda \in \operatorname{Alt}(\mu)} \left( \sum_{a=1}^K w_a d(\mu_a, \lambda_a) \right)$$

 $\rightarrow$  tracking these optimal proportions yield a  $\delta$ -PAC algorithm

such that 
$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}]}{\log(1/\delta)} = \mathcal{T}^*(\boldsymbol{\mu}).$$

Emilie Kaufmann MAB: a tutorial 37 / 46

#### Outline

Bandit algorithms for maximizing rewards
First ideas
UCB algorithms
Bayesian algorithms

Bandit algorithms for Optimal Exploration

A Glimpse at Structured Bandit Problems

#### Contextual bandits

→ incorporate *informations* about arms/agents in the model

At time t, a set of 'contexts'  $\mathcal{D}_t \subset \mathbb{R}^d$  is revealed. An agent

- ▶ chooses  $x_t \in \mathcal{D}_t$
- receives a reward  $r_t = x_t^T \theta + \epsilon_t$ .

**Correlated arms**: arm  $x_t$  has distribution  $\mathcal{N}\left(x_t^T \theta, \sigma^2\right)$ 

Bayesian model:

$$y_t = x_t^T \theta + \epsilon_t, \qquad \theta \sim \mathcal{N}\left(0, \kappa^2 I_d\right), \qquad \epsilon_t \sim \mathcal{N}\left(0, \sigma^2\right).$$

Explicit posterior:  $p(\theta|x_1, y_1, \dots, x_t, y_t) = \mathcal{N}\left(\hat{\theta}(t), \Sigma_t\right)$ .

► Thompson Sampling

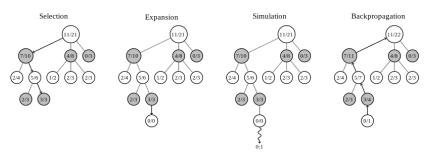
$$egin{array}{lll} ilde{ heta}(t) & \sim & \mathcal{N}\left(\hat{ heta}(t), \Sigma_t
ight), \ x_{t+1} & = & rgmax \ x \in \mathcal{D}_{t+1} \end{array}$$

[Li et al. 12],[Agrawal & Goyal 13]

### Bandits for games

To decide the next move to play:

- sequential pick trajectories in the game tree
- use (random) evaluation of some positions (playouts)
- ightharpoonup How to sequentially select trajectories ?
- (i.e. perform smart Monte Carlo Tree Search)



UCT algorithm [Kocsis & Szepesvari 06]: **UC**B for **T**rees BAI-MCTS algorithms [K. & Koolen 17]

Emilie Kaufmann MAB: a tutorial 40 / 46

### Multi-player bandits

#### M players simulatenously playing on the same MAB

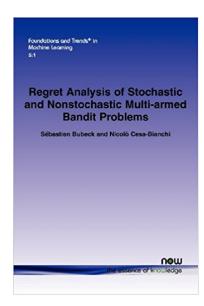
#### At round t:

- ▶ player j selects arm  $A^{j}(t)$
- $\triangleright$  a collision occurs for player j if another player selects the same arm
- lacktriangledown player j receives a reward  $r^j(t) = X_{\mathcal{A}^j(t),t} \mathbb{1}_{(\overline{C^j(t)})}$
- → simultaneously learn the quality of the channels and how to coordinate to avoid collisions and maximize global rewards

(cognitive radios: M smart devices in the same background traffic)

[Zhao et al. 10][Anandkumar et al. 11] [Besson and K. 17]

#### To read more



### A new bandit game

#### At round t

- $\blacktriangleright$  the player chooses arm  $A_t$
- ▶ simultaneously, an adversary chooses the vector of rewards

$$(x_{1,t},\ldots,x_{K,t})$$

• the player receives the reward  $x_t = x_{A_t,t}$ 

Goal: maximize rewards, or minimize regret

$$R(T) = \max_{a} \mathbb{E} \left[ \sum_{t=1}^{T} x_{a,t} \right] - \mathbb{E} \left[ \sum_{t=1}^{T} x_{t} \right].$$

### **Exponential Weighted Forecaster**

#### The full-information game: at round t

- $\triangleright$  the player chooses arm  $A_t$
- simultaneously, an adversary chooses the vector of rewards

$$(x_{t,1},\ldots,x_{t,K})$$

- the player receives the reward  $x_t = x_{A_t,t}$
- ▶ and he observes the reward vector  $(x_{t,1}, \dots, x_{t,K})$

The EWF algorithm [Littelstone, Warmuth 1994] With  $\hat{p}_t$  the probability distribution

$$\hat{p}_t(k) \propto e^{\eta \left(\sum_{s=1}^{t-1} x_{k,s}\right)}$$

at round t, choose

$$A_t \sim \hat{p}_t$$

## The EXP3 strategy

We don't have access to the  $(x_{k,t})$  for all k...

$$\hat{x}_{k,t} = \frac{x_{k,t}}{\hat{p}_{k,t}} \mathbb{1}_{(A_t=k)}$$

satisfies  $\mathbb{E}[\hat{x}_{k,t}] = x_{k,t}$ .

#### The EXP3 algorithm

With  $\hat{p}_t$  the probability distribution

$$\hat{p}_t(k) \propto e^{\eta\left(\sum_{s=1}^{t-1}\hat{x}_{k,s}\right)}$$

at round t, choose

$$A_t \sim \hat{p}_t$$

Auer, Cesa-Bianchi, Freund, Schapire, *The nonstochastic multiarmed bandit problem*, SIAM J. Comput., 2002

#### Theoretical results

#### The EXP3 strategy

With  $\hat{p}_t$  the probability distribution

$$\hat{p}_t(k) \propto e^{\eta\left(\sum_{s=1}^{t-1}\hat{x}_{k,s}\right)}$$

at round t, choose

$$A_t \sim \hat{p}_t$$

Theorem [Bubeck and Cesa-Bianchi 12]

EXP3 with

$$\eta = \sqrt{\frac{\log(K)}{KT}}$$

satisfies

$$R(T) \le \sqrt{2 \log K} \sqrt{KT}$$