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Stochastic Multi-Armed Bandit model

A simple stochastic model:
Vk=1,....,K, (Xkt)ten is iid. with a distribution v
K arms <> K (unknown) probability distribution

&y
i3

o

V1
At round t, an agent:
» chooses an arm A;
> observes a sample X; = X, + ~ va,
The sampling strategy (or bandit algorithm) (A;) is sequential:
Atr1 = Fe(A1, X1, ..o A, Xe).
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A simple stochastic model:
Vk=1,....,K, (Xkt)ten is iid. with a distribution v
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V1
At round t, an agent:
» chooses an arm A;
> observes a sample X, = X, ; ~ v, (reward)
The sampling strategy (or bandit algorithm) (A;) is sequential:
Atr1 = Fe(A1, X1, ..o A, Xe).
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Several bandit problems

A simple stochastic model:
Vk=1,...,K, (Xct)ten is iid. with a distribution vy

K arms <+ K (unknown) probability distribution

Several possible goals:

> find quickly the arm with largest mean
(optimal exploration)
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Several bandit problems

A simple stochastic model:
Vk=1,...,K, (Xct)ten is iid. with a distribution vy

K arms <+ K (unknown) probability distribution

Several possible goals:

> find quickly the arm with largest mean
(optimal exploration)

» maximize cumulated rewards E [2;1 Xt]

(exploration /exploitation tradeoff)
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Several bandit problems

A simple stochastic model:
Vk=1,...,K, (Xct)ten is iid. with a distribution vy

K arms <+ K (unknown) probability distribution

Several possible goals:

> find quickly the arm with largest mean
(optimal exploration)

» maximize cumulated rewards E [2;1 Xt]

(exploration /exploitation tradeoff)
» (more general) learn quickly something about the distributions v
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Why Bandits 7

%1 %) V3 Vg 1%

Goal: maximize ones' gains in a casino 7
(HOPELESS)
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Clinical trials
Historical motivation [Thompson 1933
& W =

B(p)  Blu2)  B(ps)  Blpa)  B(us)
For the t-th patient in a clinical study,

» chooses a treatment A;

> observes a response X, € {0, 1} 1 P(X, = 1) = g,

Goal: identify the best treatment / maximize the number of patients
healed
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Online content optimization

$$ Modern motivation
(recommender systems, online advertisement, A/B Testing...)

1%1 %) V3 Va Vs

For the t-th visitor of a website,
» recommend a movie A;

» observe a rating X; ~ v4, (e.g. Xe € {1,...,5})

Goal: maximize the sum of ratings
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Cogpnitive radios

Agent: a smart radio device
Arms: radio channels (frequency bands)

streams indicating channel availabilities

Channel 1 || X11 | X12 X1t Xi,1
Channel 2 || X21 | X22 Xot Xo,T
Channel K || Xk 1 | Xk2 Xk t Xk, T

At round t, the device:

» selects channel A;

» observes the channel availability X; = X4, s =0 or 1

Goal: Maximize the number of sucessfull transmissions

Emilie Kaufmann
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Cogpnitive radios

Agent: a smart radio device
Arms: radio channels (frequency bands)

streams indicating channel availabilities

Arm 1 X171 X1,2 Xl,t Xl,T
Arm 2 || Xo1 | X5 Xot XoT
Arm K || Xk 1 | Xk Xkt Xk.T

At round t, the device:

» selects arm A;

» observes the channel availability X; = X4, s =0 or 1

Goal: Maximize the number of sucessfull transmissions

Emilie Kaufmann
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Outline

Bandit algorithms for maximizing rewards
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Objective

Goal: find a strategy maximizing

T
B (3%
=1
Oracle: always play the arm
k* = argmax p with mean p" =  max .
ke{l,...,K} kef{l,..,K}

Can we be almost as good as the oracle?

T

Sox

t=1

E ~ Tu*?
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Performance measure: the regret
Maximizing rewards <+ minimizing regret
-
2 X

K
= > (0" = m)EN(T)],
k=1

Rr = Tu —E

Ni(t): number of draws of arm k up to round t.

=» Need for an Exploration/Exploitation tradeoff

Emilie Kaufmann MAB: a tutorial
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Performance measure: the regret

Maximizing rewards <> minimizing regret

T

> x

t=1

Rr = Tu" —E

We want the regret to grow sub-linearly:

Rt
— — 0 st
= (consistency)

=» what rate of regret can we expect?
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A lower bound on the regret

Bernoulli bandit model, g = (11, ..., k)

K

Rr(p) =Y (1" — ) Eu[Ni(T)]
k=1

When T grows, all the arms should be drawn infinitely many!

» [Lai & Robbins, 1985]: for any “uniformly good” strategy,

E, [NA(T 1
pi < p* = liminf [N )]>

T—oo  log T = d(pk, p*)’
where
d(p,p") = KL(B(p).B(r))
p 1-p
= plog = +(1-p)l .
pogp,+( p)ogl_p,

=¥ the regret is at least logarithmic
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A lower bound on the regret

Bernoulli bandit model, g = (11, ..., k)

K

Rr(p) =Y (1" — ) Eu[Ne(T)]
k=1

When T grows, all the arms should be drawn infinitely many!

» [Lai & Robbins, 1985]: for any “uniformly good” strategy,
CEulN(TY] 1

pk < p* = limin

Tooo  log T = d(pk, p*)’
where
d(p.p’) = KL(B(p). B(p"))
p 1-p
— plog 2 +(1-p)l .
pogp,+( p)ogl_p,

=» can we find asymptotically optimal algorithm,
i.e. algorithms matching the lower bound?
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Outline

Bandit algorithms for maximizing rewards
First ideas
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Some (naive) strategies

» Idea 1 : Draw each arm T /K times
= EXPLORATION

| K
R(T) = (K > (- Ma)> T
a=2
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Some (naive) strategies

» Idea 1 : Draw each arm T /K times
= EXPLORATION

| K
R(T) = (K > (- Ma)> T
a=2

» Idea 2 : Always trust the empirical best arm

A1 = argmax [ix(1)
ke{l,...,.K}

1 t
ik (t) = Xsla—
/k( ) Nk(t) ; s (As=k)
is an estimate of the unknown mean p.

= EXPLOITATION

R(T) > (1 — 1) x p2 X (1 — p2) T
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A better idea: Explore-Then-Exploit

Given me {1,..., T/K},
> draw each arm m times
» compute the empirical best arm k = argmax,, i, (Km)
> keep playing this arm until round T
Aty = k fort > Km

= EXPLORATION followed by EXPLOITATION
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A better idea: Explore-Then-Exploit

Given me {1,..., T/K},
» draw each arm m times
» compute the empirical best arm k = argmax,, i, (Km)

> keep playing this arm until round T
Aty = k fort > Km

= EXPLORATION followed by EXPLOITATION

Analysis: 2 arms, p1 > po. A = pg — po.
RT =AXx ]E[N2(T)]

No(T) = m+(T—-2m)1;_,
ENAT)] < m+ (T - 2m)P (fi(2m) < fio(2m))

v

) (Hoeftding’s inequality)
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A better idea: Explore-Then-Exploit

Given me {1,...,T/K},
» draw each arm m times
» compute the empirical best arm k = argmax;, fix(Km)

> keep playing this arm until round T
Atp1 = k fort > Km

= EXPLORATION followed by EXPLOITATION
Analysis: 2 arms, p1 > po. A = pg — po.

mA?
Ry < Am —i—ATexp(— > >

increases with m

decreases with m

A good choice: m = ng log <%>J
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A better idea: Explore-Then-Exploit

Given me {1,..., T/K},
» draw each arm m times
» compute the empirical best arm k = argmax, jix(Km)

> keep playing this arm until round T
Apr1 = k fort > Km

= EXPLORATION followed by EXPLOITATION
Analysis: 2 arms, p1 > po. A = pg — po.

2 TA?
< —
RT_A[Iog< > >+1]

A good choice: m = LAA log (T2AZ>J

=» requires the knowledge of A = pg — po!
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Sequential Explore-Then-Exploit (2 arms)

» explore uniformly until the random time
4log(T/t
T = inf {t e N: |a1(t) — fia(t)] > g(/)}

a¥—

T
0 200 400 600 800 1000

1.0

05

0.5

A~

> k= argmax, [ix(7) and (Appy = k) for t € {r,..., T}

RT<ZIog ) + C/log(T

=» same regret rate, without knowing A
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Sequential Explore-Then-Exploit (2 arms)

» explore uniformly until the random time
4log(T/t
T = inf {t e N: |a1(t) — fia(t)] > g(/)}

a¥—
[rf_(

T
0 200 400 600 800 1000

1.0
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0.5

A~

> k= argmax, [ix(7) and (Appy = k) for t € {r,..., T}

RT<ZIog ) + C/log(T

=» still requires the knowledge of T...
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Outline

Bandit algorithms for maximizing rewards

UCB algorithms
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The optimism principle

> For each arm k, build a confidence interval on the mean g :

Ti(t) = [LCBy(t), UCBy(t)]

LCB = Lower Confidence Bound
UCB = Upper Confidence Bound

1]

Figure: Confidence intervals on the means after t rounds
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The optimism principle

> We apply the following principle:
“act as if the best possible model was the true model”

(optimism in face of uncertainty)

Figure: Confidence intervals on the means after t rounds

» Thus, one selects at time t + 1 the arm
A¢+1 = argmax UCB(t)
k=1,..K
[Lai and Robbins 1985] [Agrawal 1995]

Emilie Kaufmann MAB: a tutorial
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How to build the Confidence Intervals?
We need to build Ug(t) such that

1
P(ue < UCB(£) 21— .

UCB1 [Auer et al. 02] chooses A¢1 = argmax, Ug(t) with

, [210g(t)

UCB(t) =t J
0= Ldt) +
exploitation term ———

exploration bonus

(for distributions that are bounded in [0, 1])

» tools: Hoeffding’s inequality + a union bound
> a (simple !) finite time analysis

Emilie Kaufmann MAB: a tutorial
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A UCB algorithm in practice

6 31 ' 17 9
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An improved analysis of UCB1

Define the index
alog(t)
Ni(t)

UCBk(t) = ﬁk(t) +

Theorem

For a > 1/2, the UCB algorithm using the above index satisfies

m log(T) 4+ O(+\/log(T)).

E[Nk(T)] <

=» “order-optimal” for Bernoulli distributions

[Pinsker's inequality: d(pa, 1) > 2(p1 — ua)2]

Emilie Kaufmann MAB: a tutorial 22 / 46



The kl-UCB algorithm

(for Bernoulli bandits, or other simple parametric families)

» A UCB-type algorithm: A;;1 = argmax wuy(t)
k

» ... associated to the right upper confidence bound:
log(¢)
t) = sd (e (t <
un(e) = max { g (u(e). ) < T
with d(x, y) = KL(B(x), B(y))-

—din,0a

g
|
|
1,0 10,0

|
r 1
0z L oa e 05 66 o7 os  bs

(Cappé et al. 131 EnNe(T)] < - log T + O(y/log(T)).
d (e, 1)
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The kl-UCB algorithm

(for Bernoulli bandits, or other simple parametric families)

» A UCB-type algorithm: A;;1 = argmax wuy(t)
k

> ... associated to the right upper confidence bound:

() = max {q o (ule).0) < ) |

with d(x,y) = KL(B(x), B(y)).

1
! 1300 Ju,0
o Tos or o5 08 o s b

» kI-UCB is asymptotically optimal for Bernoulli bandits!
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Outline

Bandit algorithms for maximizing rewards

Bayesian algorithms
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The Bayesian choice

Bernoulli bandit model g = (p1, .. ., 1K)

» frequentist view: pu1,..., K are unknown parameters

=>» tools: estimators, confidence intervals

Emilie Kaufmann MAB: a tutorial
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The Bayesian choice

Bernoulli bandit model g = (pa, ..., k)
» Bayesian view: 1, ...,k are random variables
prior distribution : s ~ U([0,1])
=» tool: posterior distribution
m(t) = L(u|Xt,. ., Xt)
= Beta(Sk(t) + 1, Nk(t) — Sk(t) + 1)

T
o o o o :

0

Sk(t)=>"t, Xs1(a,—k) sum of the rewards from arm k
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Bayesian algorithm

A Bayesian bandit algorithm exploits the posterior distributions of the
means to decide which arm to select.
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The Bayes-UCB algorithm

7k (t) the posterior distribution over iy at the end of round t.

Bayes-UCB [K., Cappé, Garivier 2012] selects
1
Ari1 = argmax Q@ (1 — ./7rk(t))
ke{l,..K} t
where Q(a, v) is the quantile of order « of the distribution v.
Px, (X < Q(a,v)) = a.
Properties:

=» easy to implement (quantiles of Beta distributions)

=» also asymptotically optimal for Bernoulli bandits!

)= Q (1 1m(0)) = (1)

=» efficient in practice and easy to generalize

Emilie Kaufmann MAB: a tutorial 27 / 46



Bayes-UCB in practice

Emilie Kaufmann

MAB: a tutorial
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Thompson Sampling
{ Va e {1.K}, 04(t) ~ ma(t)

At41 = argmax 0,(t).
a=1...K

Figure: TS selects arm 2 as 6,(t) > 0:(t)

the first bandit algorithm! [Thompson 1933]
very efficient, beyond Bernoulli bandits
matches the Lai and Robbins bound for Bernoulli bandits

K., Korda and Munos, Thompson Sampling: an Asymptotically
Optimal Finite-Time Analysis, ALT 2012

Ll
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Outline

Bandit algorithms for Optimal Exploration
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A pure-exploration objective

Regret minimization:
maximize the number of patients healed during the trial

& @ ~ i H

Alternative goal: identify as quickly as possible the best treatment
(no focus on curing patients during the study)
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Two possible frameworks

The agent has to identify the arm with highest mean a*
(no loss when drawing “bad” arms)

The agent
> uses a (Ar)
> at some (random) time 7
> upon stopping, an arm 3,

His goal:

Fixed-budget setting | Fixed-confidence setting
T=T minimize E[7]

minimize P(a, # a*) P(a, #a*) <o
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Fixed-budget: an elimination algorithm

SEQUENTIAL HALVING [Karnin et al. 13]

=» log,(K) phases of equal length, remaining arms are uniformly
sampled and half of them are eliminated at the end of each phase

Initialisation: Sp = {1,...,K};
For r =0 to [log,(K)] — 1, do

sample each arm i € S, for t, = LWJ times;
let fif be the empirical mean of arm i;
let S;41 be the set of [|S,|/2] arms with largest [if

Return k, is the arm in STlog,(K)]
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Fixed-confidence: using confidence intervals
LUCB [Kalyanakrishnan et al. 12] relies on Upper AND Lower
confidence bounds. For KL-LUCB:
us(t) = max{q: Na(t)d(fia(t), q) < log(Kt/d)}
0(6) = min{q: Na()d(a(t), q) < log(Ke/3)}

» sampling rule: By11 = argmax f[is(t), Cry1 = argmax up(t)
a FAt+1

» stopping rule: 7 = inf{t € N: {p,(t) > uc,(t)}
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KL-LUCB in action

‘ . . . ' .
1 459 200 45 48 23
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Theoretical garantees

H1 > pl2 2 -0 2 UK.
> Fixed-budget setting

Theorem

Sequential Halving using a budget T satisfies

P(ar # 1) < 3logy(K) exp (_Wzgz(KQ

with H(p) ~ 2522 Klg and A, = p1 — pa.

» Fixed-confidence setting

Theorem

For well-chosen confidence intervals, LUCB is (§)-PAC and

1 &1 1
E[m]:o< A—%+Z;A—3] Iog(5)>
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The complexity of best-arm identification

Theorem

For any 6-PAC algorithm,

Eulr] > T (1 (%)

where K
T*(u)™t = sup inf (Z (1ta a))

wez AEAIL(p) -

=» an optimal strategy satisfies % ~ wi(p) with

=¥ tracking these optimal proportions yield a J-PAC algorithm

. E,[7s]
such that limsu B = T*(u).
" iog(1/) ~ | W)
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Outline

A Glimpse at Structured Bandit Problems
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Contextual bandits

=» incorporate informations about arms/agents in the model

At time t, a set of 'contexts’ D; C R is revealed. An agent
» chooses x; € D;
> receives a reward r; = x| 0 + ¢;.

Correlated arms: arm x; has distribution N (x, 0, 0?)

» Bayesian model:

ve=x/0+e, O~N(0,k%lg), e ~N(007).

Explicit posterior: p(f|x1,y1,...,xt,yt) =N <§(t), Zt>.

» Thompson Sampling

i(t) ~ /\/(é(t),zt),

Xep1 = argmax xO(t).
x€D¢ts1
[Li et al. 12],[Agrawal & Goyal 13]
Emilie Kaufmann MAB: a tutorial

39 / 46



Bandits for games

To decide the next move to play:

> sequential pick trajectories in the game tree

» use (random) evaluation of some positions (playouts)
=» How to sequentially select trajectories ?
(i.e. perform smart Monte Carlo Tree Search)

00 @ oo @ , 28
OREOD ORFND ORCVD ©QEODB
® 6 ®6 ©® 2l

© ©

0:1

UCT algorithm [Kocsis & Szepesvari 06]: UCB for Trees
BAI-MCTS algorithms [K. & Koolen 17]
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Multi-player bandits

M players simulatenously playing on the same MAB

At round t:
» player j selects arm A/(t)
» a collision occurs for player j if another player selects the same arm

» player j receives a reward r/(t) = XAj(t)yt]l(Cj—(t))

=» simultaneously learn the quality of the channels and how to
coordinate to avoid collisions and maximize global rewards

(cognitive radios: M smart devices in the same background traffic)

[Zhao et al. 10][Anandkumar et al. 11] [Besson and K. 17]
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To read more

———rTT
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A new bandit game

At round t

> the player chooses arm A;

» simultaneously, an adversary chooses the vector of rewards

(Xl,tv .. aXK,t)

» the player receives the reward x; = xa, ¢

Goal: maximize rewards, or minimize regret

T T
R(T) = maxE ZX‘” —E th
t=1 t=1
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Exponential Weighted Forecaster

The full-information game: at round t

> the player chooses arm A;

» simultaneously, an adversary chooses the vector of rewards
(Xt,15- -5 Xt,K)

» the player receives the reward x; = xa, ¢

» and he observes the reward vector (x; 1, ..., Xt K)

The EWF algorithm [Littelstone, Warmuth 1994]
With p; the probability distribution

ﬁt(k) X en(zi;ll Xk,s)

at round t, choose
At ~ IA7t
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The EXP3 strategy

We don't have access to the (x ) for all k...

I Xk,t]l
Xkt = = L(A=k)

t
satisfies E[Xx ¢] = Xk ¢.
The EXP3 algorithm
With p; the probability distribution
Pe(k) oc e(Zem )

at round t, choose
At ~ IA3t

Auer, Cesa-Bianchi, Freund, Schapire, The nonstochastic multiarmed
bandit problem, SIAM J. Comput., 2002

Emilie Kaufmann MAB: a tutorial
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Theoretical results

The EXP3 strategy
With p; the probability distribution
pe(k) o e(Zemt %)

at round t, choose
At ~ IADt

Theorem [Bubeck and Cesa-Bianchi 12]
EXP3 with

_  [log(K)
"=V TKT
satisfies
R(T) < +y/2log KVKT
Emilie Kaufmann MAB: a tutorial
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