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Generic discrete PAC optimization

f : {1, . . . ,K} → R
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a question Q(f ), with (unknown) answer A∗

find A∗ using sequential noisy evaluations of f :
querry it and observe Xt : E[Xt ] = f (it).

PAC Learning framework: design a

sampling rule (it) / stopping rule τ / answering rule Â

such that P
(
Â = A∗

)
≥ 1− δ, and E[τ ] as small as possible.
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A particular example: (Bernoulli) bandit model

The querries of i are i.i.d. from a Bernoulli distribution of mean µi

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

⇒ Sequentially draw these “arms” to achieve a specific objective

Classical objective: maximize the sum of “rewards”
(reinforcement learning)

Alternative objective: answer

Q(µ) = “which arm has highest mean?”

(best arm identification)

... plenty of other objectives !
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Part I

Optimal Best Arm Identification
with Fixed Confidence

A. Garivier and E. Kaufmann
to appear in COLT 2016
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The best arm identification problem

A Bernoulli bandit model is denoted by µ = (µ1, µ2, . . . , µK )

S =

{
µ ∈ [0, 1]K : ∃a ∈ {1, . . . ,K} : µa > max

i 6=a
µi

}
A strategy is made of

a sampling rule: which arm At is chosen at round t?

a stopping rule τ : when should we stop sampling the arms?

a recommendation rule â: a guess for a∗ = argmax
a

µa

The strategy should satisfy

∀µ ∈ S, Pµ(â = a∗) ≥ 1− δ (δ-PAC strategy)

for all µ ∈ S, the sample complexity Eµ[τ ] is small.

All the results are stated for µ ∈ S : µ1 > µ2 ≥ · · · ≥ µK .
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A Racing algorithm

Successive Elimination [Even Dar el al. 06]

At start, all arms are active;

Then, repeatedly cycle thru active arms until only one arm is
still active

At the end of a cycle, eliminate arms with statistical evidence
of sub-optimality: desactivate a if

max
i
µ̂i (t)− µ̂a(t) ≥ 2

√
log(Kt2/δ)

t

Output: the single active arm â

Theorem

Successive Elimination is δ-PAC and with probability 1− δ,

τδ = O

(
K∑

a=2

log K
δ∆a

∆2
a

)
,

with ∆a = µ1 − µa.
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The LUCB algorithm

An algorithm based on confidence intervals

Ia(t) = [LCBa(t),UCBa(t)].

0

1
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At round t, draw

Lt = arg max
a

µ̂a(t)

Ct = arg max
a 6=Lt

UCBa(t)

Stop at round t if

LCBLt (t) > UCBCt (t)

Theorem [Kalyanakrishan et al.]

For well-chosen confidence intervals, LUCB is δ-PAC and

E [τδ] = O

([
1

∆2
2

+
K∑

a=2

1

∆2
a

]
log

(
1

δ

))
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A new lower bound

Notation: Kullback-Leibler divergence

d(µ, µ′) := KL
(
B(µ),B(µ′)

)
= µ log(µ/µ′) + (1− µ) log((1− µ)/(1− µ′))

From Pinsker inequality, d(µa, µ1) > 2∆2
a.

Theorem

For any δ-PAC algorithm,

Eµ[τ ] ≥ T ∗(µ) log

(
1

2.4δ

)
,

where

T ∗(µ)−1 = sup
w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)
with ΣK = {w ∈ [0, 1]K :

∑K
i=1 wi = 1} and

Alt(µ) = {λ ∈ S : a∗(λ) 6= a∗(µ)}.

Emilie Kaufmann Discrete PAC optimization



A new lower bound

Notation: Kullback-Leibler divergence

d(µ, µ′) := KL
(
B(µ),B(µ′)

)
= µ log(µ/µ′) + (1− µ) log((1− µ)/(1− µ′))

From Pinsker inequality, d(µa, µ1) > 2∆2
a.

Theorem

For any δ-PAC algorithm,

Eµ[τ ] ≥ T ∗(µ) log

(
1

2.4δ

)
,

where

T ∗(µ)−1 = sup
w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)
with ΣK = {w ∈ [0, 1]K :

∑K
i=1 wi = 1} and

Alt(µ) = {λ ∈ S : a∗(λ) 6= a∗(µ)}.
Emilie Kaufmann Discrete PAC optimization



Where does it come from ?

Change of distribution Lemma [K., Cappé, Garivier 15]

If a∗(µ) 6= a∗(λ), any δ-PAC algorithm satisfies
K∑

a=1

Eµ[Na(τ)]d(µa, λa) ≥ log

(
1

2.4δ

)
.

Letting Alt(µ) = {λ : a∗(λ) 6= a∗(µ)},

inf
λ∈Alt(µ)

K∑
a=1

Eµ[Na(τ)]d(µa, λa) ≥ log

(
1

2.4δ

)

Eµ[τ ]× inf
λ∈Alt(µ)

K∑
a=1

Eµ[Na(τ)]

Eµ[τ ]
d(µa, λa) ≥ log

(
1

2.4δ

)

Eµ[τ ]×

(
sup

w∈ΣK

inf
λ∈Alt(µ)

K∑
a=1

wad(µa, λa)

)
≥ log

(
1

2.4δ

)
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Optimal proportion of draws

The vector

w∗(µ) = argmax
w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)

contains the optimal proportions of draws of the arms, i.e. an
algorithm matching the lower bound should satisfy

∀a ∈ {1, . . . ,K}, Eµ[Na(τ)]

Eµ[τ ]
' w∗a (µ).

We show that:

Ü w∗(µ) is well-defined (unique maximizer)

Ü w∗(µ) can be computed efficiently for all µ
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Sampling rule: Tracking the optimal proportions

µ̂(t) = (µ̂1(t), . . . , µ̂K (t)): vector of empirical means

Introducing

Ut = {a : Na(t) <
√
t},

the arm sampled at round t + 1 is

At+1 ∈


argmin
a∈Ut

Na(t) if Ut 6= ∅ (forced exploration)

argmax
1≤a≤K

[t w∗a (µ̂(t))− Na(t)] (tracking)

Lemma

Under the Tracking sampling rule,

Pµ

(
lim
t→∞

Na(t)

t
= w∗a (µ)

)
= 1.
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Stopping rule: performing statistical tests

High values of the Generalized Likelihood Ratio

Za,b(t) := log
max{λ:λa≥λb} `(X1, . . . ,Xt ;λ)

max{λ:λa≤λb} `(X1, . . . ,Xt ;λ)
,

reject the hypothesis that (µa < µb).

We stop when one arm is accessed to be significantly larger than
all other arms, according to a SGLR Test:

τδ = inf {t ∈ N : ∃a ∈ {1, . . . ,K}, ∀b 6= a,Za,b(t) > β(t, δ)}

= inf

{
t ∈ N : max

a∈{1,...,K}
min
b 6=a

Za,b(t) > β(t, δ)

}
Chernoff stopping rule [Chernoff 59]
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A δ-PAC stopping rule

One has Za,b(t) = −Zb,a(t) and, if µ̂a(t) ≥ µ̂b(t),

Za,b(t) = Na(t) d
(
µ̂a(t), µ̂a,b(t)

)
+ Nb(t) d

(
µ̂b(t), µ̂a,b(t)

)
,

where µ̂a,b(t) := Na(t)
Na(t)+Nb(t) µ̂a(t) + Nb(t)

Na(t)+Nb(t) µ̂b(t).

A link with the lower bound

max
a

min
b 6=a

Za,b(t) = t×

(
inf

λ∈Alt(µ̂(t))

K∑
a=1

Na(t)

t
d(µ̂a(t), λa)

)
' t

T ∗(µ)

under a “good” sampling strategy (for t large)

Lemma

If µa < µb, for any sampling rule it holds that

Pµ (∃t ∈ N : Za,b(t) > log(2t/δ)) ≤ δ.
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An asymptotically optimal algorithm

Theorem [K. and Garivier, 2016]

The Track-and-Stop strategy, that uses

the Tracking sampling rule

the Chernoff stopping rule with β(t, δ) = log
(

2(K−1)t
δ

)
and recommends â = argmax

a=1...K
µ̂a(τ)

is δ-PAC for every δ ∈]0, 1[ and satisfies

lim sup
δ→0

Eµ[τδ]

log(1/δ)
= T ∗(µ).
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Numerical experiments

Experiments on two Bernoulli bandit models:

µ1 = [0.5 0.45 0.43 0.4], such that

w∗(µ1) = [0.417 0.390 0.136 0.057]

µ2 = [0.3 0.21 0.2 0.19 0.18], such that

w∗(µ2) = [0.336 0.251 0.177 0.132 0.104]

In practice, set the threshold to β(t, δ) = log
(

log(t)+1
δ

)
.

Track-and-Stop Chernoff-Racing KL-LUCB KL-Racing

µ1 4052 4516 8437 9590

µ2 1406 3078 2716 3334

Table : Expected number of draws Eµ[τδ] for δ = 0.1, averaged over
N = 3000 experiments.
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Part II

Maximin Action Identification:
A New Bandit Framework for Games

A. Garivier, E. Kaufmann, W. Koolen,
to appear in COLT 2016
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Monte-Carlo Tree Search for games

We introduce an idealized model:

depth-two complete tree

perfect rollouts

and give sample complexity guarantees in a PAC framework.
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Towards another discrete PAC optimization problem

Consider a two-player game in which

when A chooses action i ∈ {1, . . . ,K}
and then player B choose action j ∈ {1, . . . ,Ki},

the probability that A wins is µi ,j .

Best action for A given that B is strategic:

i∗ ∈ argmax
i∈{1,...,K}

min
j∈{1,...,Ki}

µi ,j (maximin action)

Goal: Learn i∗ by sequentially choosing pairs of actions P = (i , j)
and observing samples from B(µi ,j) (“rollouts”)

⇒ Depth 2 MCTS
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Maximin action identification

A bandit model parametrized by µ = (µi ,j)1≤i≤K ,
1≤j≤Ki

Q(µ) : What is the maximin action? i.e. find i∗ = arg max
i

min
j
µi ,j

Goal: Build a strategy (Pt , τ , ı̂) such that

∀µ, Pµ

(
min

j∈{1...Ki∗}
µi∗,j − min

j∈{1...Kı̂}
µı̂,j ≤ ε

)
≥ 1− δ,

and Eµ[τ ] is as small as possible.
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The Maximin-LUCB algorithm

Pick one representative per action Pi = (i , ji ),

ji = arg max
j

LCB(i ,j)(t)

Letting ı̂(t) = arg maxi minj µ̂(i ,j)(t), draw

Lt = (̂ı(t), ĵı(t)) and Ct = arg max
P∈{(i ,ji )}i 6=ı̂(t)

UCBP(t)

Stop if LCBLt (t) > UCBCt (t)− ε
Emilie Kaufmann Discrete PAC optimization



M-LUCB in action !
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Sample complexity analysis

LCBP(t) = µ̂P(t)−

√
β(t, δ)

2NP(t)
, UCBP(t) = µ̂P(t) +

√
β(t, δ)

2NP(t)

Theorem

Let α > 1. There exists C > 0 such that for the choice

β(t, δ) = log(Ct1+α/δ),

M-LUCB is δ-PAC and

lim sup
δ→0

Eµ[τδ]

log(1/δ)
≤ 8(1 + α)H∗(µ)

H∗(µ) :=
∑

(1,j)∈P1

1

(µ1,j − µ2,1)2
+

∑
(i ,j)∈P\P1

1

(µ1,1 − µi ,1)2 ∨ (µi ,j − µi ,1)2
.
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Lower bound and optimal algorithm ?

2 actions by player:

Theorem

Any δ-PAC algorithm satisfies

Eµ[τ ] ≥ P∗(µ) log(1/(2.4δ)),
where

P−1
∗ (µ) = max

w∈Σ4

inf
µ′:µ′1∧µ′2<µ′3∧µ′4

(
4∑

a=1

wa d(µa, µ
′
a)

)

Particular case: if µ4 > µ2,

w∗(µ) = argmax
w∈Σ4

inf
µ′:µ′1∧µ′2<µ′3∧µ′4

(
4∑

a=1

wa d(µa, µ
′
a)

)
can be computed and w∗4 (µ) = 0 !
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Lower bound and optimal algorithm ?

2 actions by player:

w∗(µ) = argmax
w∈Σ4

inf
µ′∈Alt(µ)

(
4∑

a=1

wa d(µa, µ
′
a)

)

Assuming, in general, that w∗(µ) is unique and well-behaved, with

Ẑ (t) = inf
µ′∈Alt(µ̂(t))

4∑
a=1

Na(t)d(µ̂a(t), µ′a),

a strategy such that Na(t)
t → w∗a (µ) and

τ = inf{t ∈ N : Ẑ (t) ≥ log(Ct/δ)},

would satisfy τδ ≤ P∗(µ) log(1/δ) + o(log(1/δ)), a.s.
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Conclusion and perspectives

For the best arm identification problem:

we exhibit a (non-explicit) characteristic time T ∗(µ)

we propose an (efficient !) asymptotically optimal algorithm

... finite-time analysis of strategies inspired by other successful
heuristics? (UCB/Thompson Sampling)

Remark: BAI 6= regret minimization (w∗(µ) 6= 1a∗)

For depth-two MCTS:

we devise efficient algorithms building on BAI tools, with
sample complexity guarantees

optimal strategies remain to be characterized

... we need to go deeper !
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