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Multi-armed bandit setting

From a single device point of view:

channels: streams of rewards

Channel 1 X1,1 X1,2 . . . X1,t . . . X1,T
Channel 2 X2,1 X2,2 . . . X2,t . . . X2,T

. . . . . . . . . . . . . . . . . .

Channel K XK ,1 XK ,2 . . . XK ,t . . . XK ,T

Example:
I Xa,t = 1 or 0 if the communication is successful or

unsuccessful on channel a at round t

At round t, the device:
I selects channel At
I receives the reward Xt = XAt ,t
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Stochastic multi-armed bandit model

A simple stochastic assumption:
∀k = 1, . . . ,K , (Xk,t)t∈N is i.i.d. with a distribution νk

arm ↔ (unknown) probability distribution

ν1 ν2 ν3 ν4 ν5

At round t, an agent:
I chooses an arm At
I observes a reward Xt = XAt ,t ∼ νAt

The sampling strategy (or bandit algorithm) (At) is sequential:
At+1 = Ft(A1,X1, . . . ,At ,Xt).
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Stochastic multi-armed bandit model

A simple stochastic assumption:

∀k = 1, . . . ,K , (Xk,t)t∈N is i.i.d. with a distribution νk

arm ↔ (unknown) probability distribution

ν1 ν2 ν3 ν4 ν5

At round t, an agent:
I chooses an arm At
I observes a reward Xt = XAt ,t ∼ νAt

Goal: find a strategy maximizing
∑T

t=1 Xt (cumulated rewards)
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Why bandits?

Historical motivation: clinical trials [Thompson 1933]
I arm ↔ medical treatment

I Which treatment should be allocated to each patient
based on the previously observed effects?

$$ Motivation: online advertisement [2010 ...]
I arm ↔ add

I Which add should be displayed to each visitor based on
the previously observed clicks?
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Stochastic bandits for cognitive radios

A frequency band:

ν1 ν2 ν3 ν4 ν5

What distributions for the arms?
I Bernoulli B(pk) to model the channel availability

P(Xk,t = 1) = pk and P(Xk,t = 0) = 1− pk

pk : mean availability of channel k (unknown!)
I Other possible distributions νk to model the quality of the

communication, with mean pk (e.g., νk is bounded)
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Objective

Goal: find a strategy maximizing

E

[ T∑
t=1

Xt

]
.

Cognitive radios:
I maximize the (average) fraction of sucessfull transmissions
I maximize the (average) quality of the communications

Oracle: always play the arm
k∗ = argmax

k∈{1,...,K}
pk with mean p∗ = max

k∈{1,...,K}
pk .

Can we be almost as good as the oracle?

E

[ T∑
t=1

Xt

]
' Tp∗?
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Performance measure: the regret

Maximizing rewards ↔ minimizing regret

RT := Tp∗ − E

[ T∑
t=1

Xt

]

=
K∑

k=1
(p∗ − pk)E[Tk(T )],

Tk(t): number of draws of arm k up to round t.

Ü Need for an Exploration/Exploitation tradeoff
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Performance measure: the regret

Maximizing rewards ↔ minimizing regret

RT := Tp∗ − E

[ T∑
t=1

Xt

]

We want the regret to grow sub-linearly :

RT
T −→

T→∞
0 (consistency)

Ü what rate of regret can we expect?
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A lower bound on the regret

Bernoulli bandit model, p = (p1, . . . , pK )

RT (p) =
K∑

k=1
(p∗ − pk)Ep[Tk(T )]

When T grows, all the arms should be drawn infinitely many!
I [Lai & Robbins, 1985]: for any “uniformly good” strategy,

pk < p∗ ⇒ lim inf
T→∞

Ep[Tk(T )]

log T ≥ 1
d(pk , p∗)

,

where
d(p, p′) = KL(B(p),B(p′))

= p log p
p′ + (1− p) log 1− p

1− p′ .

Ü the regret is at least logarithmic
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Bernoulli bandit model, p = (p1, . . . , pK )

RT (p) =
K∑

k=1
(p∗ − pk)Ep[Tk(T )]

When T grows, all the arms should be drawn infinitely many!
I [Lai & Robbins, 1985]: for any “uniformly good” strategy,

pk < p∗ ⇒ lim inf
T→∞

Ep[Tk(T )]

log T ≥ 1
d(pk , p∗)

,

where
d(p, p′) = KL(B(p),B(p′))

= p log p
p′ + (1− p) log 1− p

1− p′ .

Ü can we find asymptotically optimal algorithm,
i.e. algorithms matching the lower bound? 9 / 43
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Some (naive) strategies

I Idea 1 : Draw each arm T/K times
⇒ EXPLORATION

R(T ) =

(
1
K

K∑
a=2

(p1 − pa)

)
T

I Idea 2 : Always trust the empirical best arm
At+1 = argmax

k∈{1,...,K}
X̂k(t)

where
X̂k(t) =

sum of the rewards observed from k up to round t
number of selections of k up to round t

is an estimate of the unknown mean pk .

⇒ EXPLOITATION
R(T ) ≥ (1− p1)× µ2 × (p1 − µ2)T
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A better idea: Explore-Then-Exploit

Given m ∈ {1, . . . ,T/K},
I draw each arm m times
I compute the empirical best arm k̂ = argmaxk X̂k(Km)
I keep playing this arm until round T

At+1 = k̂ for t ≥ Km
⇒ EXPLORATION followed by EXPLOITATION

Analysis: 2 arms, p1 > p2. ∆ = p1 − p2.
RT = ∆× E[T2(T )]

T2(T ) = m + (T − 2m)1(k̂=2)

E[T2(T )] ≤ m + (T − 2m)P
(

X̂1(2m) < X̂2(2m)
)

≤ m + T exp
(
−m∆2

2

)
(Hoeffding’s inequality)
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A better idea: Explore-Then-Exploit

Given m ∈ {1, . . . ,T/K},
I draw each arm m times
I compute the empirical best arm k̂ = argmaxk X̂k(Km)
I keep playing this arm until round T

At+1 = k̂ for t ≥ Km
⇒ EXPLORATION followed by EXPLOITATION

Analysis: 2 arms, p1 > p2. ∆ = p1 − p2.

RT ≤ ∆m︸︷︷︸
increases with m

+ ∆T exp
(
−m∆2

2

)
︸ ︷︷ ︸

decreases with m

A good choice: m =
⌊

2
∆2 log

(
T ∆2

2

)⌋

Ü requires the knowledge of ∆ = p1 − p2!
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I draw each arm m times
I compute the empirical best arm k̂ = argmaxk X̂k(Km)

I keep playing this arm until round T
At+1 = k̂ for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis: 2 arms, p1 > p2. ∆ = p1 − p2.

RT ≤
2
∆

[
log
(

T ∆2

2

)
+ 1
]

A good choice: m =
⌊

2
∆2 log

(
T ∆2

2

)⌋
Ü requires the knowledge of ∆ = p1 − p2!
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Sequential Explore-Then-Exploit (2 arms)

I explore uniformly until the random time

τ = inf
{

t ∈ N : |X̂1(t)− X̂2(t)| >
√

4 log(T/t)

t

}

0 200 400 600 800 1000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

I k̂ = argmaxk X̂k(τ) and (At+1 = k̂) for t ∈ {τ, . . . ,T}

RT ≤
2
∆

log (T ) + C
√

log(T ).

Ü same regret rate, without knowing ∆
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The optimism principle

I For each arm k, assume we have a confidence interval on
the unknown mean pk :

Ik(t) = [LCBk(t),UCBk(t)]

LCB = Lower Confidence Bound
UCB = Upper Confidence Bound

Figure: Confidence intervals on the means after t rounds
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The optimism principle

I We apply the following principle:

“act as if the best possible model was the true model”

(optimism in face of uncertainty)

Figure: Confidence intervals on the means after t rounds

I Thus, one selects at time t + 1 the arm

At+1 = argmax
k=1,...,K

UCBk(t)

[Lai and Robbins 1985] [Agrawal 1995]
17 / 43



How to build the Confidence Intervals?

We need to build Uk(t) such that

P (pk ≤ Uk(t)) & 1− 1
t .

UCB1 [Auer et al. 02] chooses At+1 = argmaxk Uk(t) with

Uk(t) = X̂k(t)︸ ︷︷ ︸
exploitation term

+

√
2 log(t)

Tk(t)︸ ︷︷ ︸
exploration bonus

.

(for distribution bounded in [0, 1])

I tools: Hoeffding’s inequality + a union bound
I a (simple !) finite time analysis
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A UCB algorithm in practice

0

1

6 31 436 17 9
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An improved analysis of UCB1

Define the index

Uk(t) = X̂k(t) +

√
α log(t)

Tk(t)

Theorem [Bubeck ’11],[Cappé et al.’13]
For α > 1/2, the UCB algorithm using the above index satisfies

E[Tk(T )] ≤ α

(p1 − pa)2 log(T ) + O(
√

log(T )).

Ü “order-optimal” w.r.t. Lai and Robbins’ lower bound[
Pinsker’s inequality: d(pa, p1) ≥ 2(p1 − pa)2]
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The kl-UCB algorithm

I A UCB-type algorithm: At+1 = argmax
k

uk(t)

I ... associated to the right upper confidence bound:

uk(t) = max
{

q : d
(

X̂k(t), q
)
≤ log(t)

Tk(t)

}
,

with d(x , y) = KL(B(x),B(y)).

q
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a
(t),q)

[Cappé et al. 13] : Eµ[Tk(T )] ≤ 1
d(pk , p∗)

log T +O(
√

log(T )).
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I kl-UCB is asymptotically optimal for Bernoulli bandits!
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The Bayesian choice

Bernoulli bandit model p = (p1, . . . , pK )

I frequentist view: p1, . . . , pK are unknown parameters
Ü tools: estimators, confidence intervals
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The Bayesian choice

Bernoulli bandit model p = (p1, . . . , pK )

I Bayesian view: p1, . . . , pK are random variables
prior distribution : pa ∼ U([0, 1])

Ü tool: posterior distribution
πk(t) = L (pk |X1, . . . ,Xt)
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Bayesian algorithm

A Bayesian bandit algorithm exploits the posterior distributions
of the means to decide which arm to select.

0

1

2 4 346 107 40
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The Bayes-UCB algorithm

πk(t) the posterior distribution over pk at the end of round t.

Bayes-UCB [K., Cappé, Garivier 2012] selects

At+1 = argmax
k∈{1,...,K}

Q
(

1− 1
t , πk(t)

)
where Q(α, ν) is the quantile of order α of the distribution ν.

PX∼ν(X ≤ Q(α, ν)) = α.

Properties:
Ü easy to implement (quantiles of Beta distributions)
Ü also asymptotically optimal for Bernoulli bandits!

qk(t) = Q
(

1− 1
t , πk(t)

)
' uk(t)

Ü efficient in practice and easy to generalize
25 / 43



Bayes-UCB in practice

0

1

6 3 451 5 34
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Thompson Sampling

{
∀a ∈ {1..K}, θa(t) ∼ πa(t)
At+1 = argmax

a=1...K
θa(t).
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Figure: TS selects arm 2 as θ2(t) ≥ θ1(t)

Ü the first bandit algorithm! [Thompson 1933]
Ü very efficient, beyond Bernoulli bandits
Ü matches the Lai and Robbins bound for Bernoulli bandits

K., Korda and Munos, Thompson Sampling: an
Asymptotically Optimal Finite-Time Analysis, ALT 2012
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TS for structured stochastic bandits ?

I Arms are edges on a graph
I M is a set of possible configurations (subsets of edges)
I The agent chooses mt ∈M at time t and observe a

realization of all arms in M

Example: find a matching between users and channels
Lelarge et al., Spectrum Bandit Optimization, ITW 2013
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A restless bandit example

Restless Markov bandit

for all k, (Xk,t)t∈N is a Markov chain

Cognitive radio:
I the behavior of primary users is evolving according to a

Markovian dynamic
I simple model: state space {0, 1} occupied/available

Idea: If arm k has stationnary distribution πk , aim to always
select the channel

argmax
k∈{1,...,K}

EX∼πk [X ]

Ü may be a bad idea...
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Optimal strategies?

Example: a transition matrix on {0, 1}

Pε =

(
1− ε ε
ε 1− ε

)
Pε has invariant measure πε = [1/2, 1/2], with mean 1/2.

2-armed bandit:
I arm 1 is a Markov chain with transition Pε1
I arm 2 is a Markov chain with transition Pε2

Strategies:
I static strategy playing a single arm → average reward 1/2
I a much better strategy when ε1 and ε2 are small:

switch arm when the current state is 0
Ü regret with respect to the best static action is no longer

(always) the right notion [Ryabko et al. 2014] 32 / 43



Some tools for restless bandits

I Bayesian approaches based on Whittle indices
Liu and Zhao, Indexability of Restless Bandit Problems
and Optimality of Whittle Index for Dynamic Multichannel
Access. I.T., 2010

I Using reinforcement learning algorithms
(restless Markov bandit = a Markov Decision Process)
Ortner, Ryabko, Auer and Munos, Regret bounds for
restless Markov bandits, TCS, 2014

I Can we modify the UCB approach?
Liu et al, Learning in a Changing World: Restless
Multiarmed Bandit With Unknown Dynamics. IEEE I.T.,
2013

Experiments:
I plain UCB may still be robust on some Markovian arms

33 / 43



Outline

Stochastic bandit model and algorithms
First algorithms
UCB algorithms
Bayesian algorithms

Beyond the stochastic MAB
Relaxing the i.i.d. assumption
Relaxing the stochastic assumption

Bandits for multiple devices

34 / 43



A new bandit game

At round t
I the player chooses arm At
I simultaneously, an adversary chooses the vector of rewards

(x1,t , . . . , xK ,t)

I the player receives the reward xt = xAt ,t

Goal: maximize rewards, or minimize regret

R(T ) = max
a

E

[ T∑
t=1

xa,t

]
− E

[ T∑
t=1

xt

]
.
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Exponential Weighted Forecaster

The full-information game: at round t
I the player chooses arm At
I simultaneously, an adversary chooses the vector of rewards

(xt,1, . . . , xt,K )

I the player receives the reward xt = xAt ,t
I and he observes the reward vector (xt,1, . . . , xt,K )

The EWF algorithm [Littelstone, Warmuth 1994]
With p̂t the probability distribution

p̂t(k) ∝ eη(
∑t−1

s=1 xk,s)

at round t, choose
At ∼ p̂t

36 / 43



The EXP3 strategy

We don’t have access to the (xk,t) for all k...

x̂k,t =
xk,t
p̂k,t

1(At =k)

satisfies E[x̂k,t ] = xa,t .

The EXP3 algorithm

With p̂t the probability distribution

p̂t(k) ∝ eη(
∑t−1

s=1 x̂k,s)

at round t, choose
At ∼ p̂t

Auer, Cesa-Bianchi, Freund, Schapire, The nonstochastic
multiarmed bandit problem, SIAM J. Comput., 2002
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Theoretical results

The EXP3 strategy

With p̂t the probability distribution

p̂t(k) ∝ eη(
∑t−1

s=1 x̂k,s)

at round t, choose
At ∼ p̂t

Theorem [Bubeck and Cesa-Bianchi 12]
EXP3 with

η =

√
log(K )

KT
satisfies

R(T ) ≤
√

2 log K
√

KT
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Multi-players bandits: setup

M players playing the same K -armed bandit (M ≤ K )

At round t,
I player m selects Am,t
I player m observes XAm,t ,t
I and receives the reward

Xm,t =

{
XAm,t ,t if no other player chose the same arm

0 else
Goal:

I maximize
∑M

m=1
∑T

t=1 Xm,t
I ... without communication between players

Cognitive radio: (OSA) sensing, attempt of transmission if no
PU, possible collisions with other SUs
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Multi-players bandits: algorithms

Idea: combine a good bandit algorithm with an
orthogonalization strategy (collision avoidance protocol)

Example: UCB1 + ρrand. At round t each player
I has a stored rank Rm,t ∈ {1, . . . ,M}
I selects the arm that has the Rm,t-largest UCB
I if a collision occurs, draws a new rank

Rm,t+1 ∼ U({1, . . . ,M})

Early references:
Liu and Zhao, Distributed Learning in Multi-Armed Bandit
with Multiple Players, IEEE Trans. S. P., 2010
Anandkumar et al., Distributed Algorithms for Learning
and Cognitive Medium Access with Logarithmic Regret,
IEEE Journal on Selected Areas in Communications, 2011
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Remarks:
I M has to be known → try to estimate it
I does not handle an evolving number of devices
I is it a fair orthogonalization rule?
I any index policy may be used in place of UCB1
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I selects the arm that has the Rm,t-largest UCB
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I any index policy may be used in place of UCB1

Ü How does it perform in practice?
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To read more...
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