Bandits (for) Games

Emilie Kaufmann,

joint work with Wouter M. Koolen (CWI)

Paris Symposium on Game Theory, Paris, June 13th, 2018

The multi-armed bandit model

K arms = K probability distributions (ν_a has mean μ_a)

At round t, an agent:

- chooses an arm A_t
- observes a sample $X_t \sim \nu_{A_t}$

using a sequential sampling strategy (A_t) :

$$A_{t+1}=F_t(A_1,X_1,\ldots,A_t,X_t).$$

Generic goal: learn the best arm, $a^* = \operatorname{argmax}_a \mu_a$ of mean $\mu^* = \max_a \mu_a$

Bernoulli bandit model

K arms = K Bernoulli distributions

 $\mathcal{B}(\mu_1)$ $\mathcal{B}(\mu_2)$ $\mathcal{B}(\mu_3)$ $\mathcal{B}(\mu_4)$ $\mathcal{B}(\mu_5)$

At round *t*, an agent:

- chooses an arm A_t
- observes a sample $X_t \sim \mathcal{B}(\mu_{A_t})$: $\mathbb{P}(X_t = 1|A_t) = \mu_{A_t}$

using a sequential sampling strategy (A_t) :

$$A_{t+1} = F_t(A_1, X_1, \ldots, A_t, X_t).$$

Generic goal: learn the best arm, $a^* = \operatorname{argmax}_a \mu_a$

1 First Bandit Game: Regret Minimization

2 Second Bandit Game: Best Arm Identification

1 First Bandit Game: Regret Minimization

2 Second Bandit Game: Best Arm Identification

Bandit Tools for Planning in Games

Regret minimization in a bandit model

Samples = **rewards**, (A_t) is adjusted to

• maximize the (expected) sum of rewards,

$$\mathbb{E}\left[\sum_{t=1}^{T} X_t
ight]$$

• or equivalently minimize the *regret*:

$$R_{T} = T\mu^{*} - \mathbb{E}\left[\sum_{t=1}^{T} X_{t}\right] = \sum_{a=1}^{K} (\mu^{*} - \mu_{a})\mathbb{E}[N_{a}(T)]$$

 $N_a(T)$: number of draws of arm a up to time T

⇒ Exploration/Exploitation tradeoff or... Learning while Earning

The UCB approach

• A UCB-type (or optimistic) algorithm chooses at round t

$$A_{t+1} = \underset{a=1...K}{\operatorname{argmax}} \operatorname{UCB}_{a}(t).$$

where $UCB_a(t)$ is an Upper Confidence Bound on μ_a .

[Lai and Robbins 1985, Agrawal 1995, Auer et al. 02...]

The kl-UCB algorithm

The kl-UCB index

$$\mathrm{UCB}_{a}(t) := \max\left\{q: d\left(\hat{\mu}_{a}(t),q
ight) \leq rac{\log(t)}{N_{a}(t)}
ight\},$$

with $d(x, y) = KL(\mathcal{B}(x), \mathcal{B}(y))$

satisfies $\mathbb{P}(\mu_a \leq \text{UCB}_a(t)) \gtrsim 1 - \frac{1}{t}$.

The kl-UCB algorithm

[Cappé et al. 13]: kl-UCB satisfies

$$\mathbb{E}_{\mu}[N_{a}(T)] \leq \frac{1}{d(\mu_{a}, \mu^{*})} \log T + O(\sqrt{\log(T)}).$$

→ matches the lower bound of [Lai and Robbins 1985]

1 First Bandit Game: Regret Minimization

2 Second Bandit Game: Best Arm Identification

Bandit Tools for Planning in Games

Regret minimization:

maximize the number of conversions while learning which version of your webpage is the best

Alternative goal: quickly find out the best version for your webpage (no focus on conversions during the A/B testing phase)

The agent has to identify the arm with highest mean a^* (no loss when drawing "bad" arms)

The agent

- uses a sampling strategy (A_t)
- stops at some (random) time au
- upon stopping, recommends an arm $\hat{a}_{ au}$

His goal:

Fixed-budget setting	Fixed-confidence setting
au = T	minimize $\mathbb{E}[au]$
$minimize\;\mathbb{P}(\hat{a}_{\tau}\neq a^{*})$	$\mathbb{P}(\hat{a}_ au eq a^*) \leq \delta$
[Bubeck et al. 2010]	[Even Dar et al. 2006]

The agent has to identify the arm with highest mean a^* (no loss when drawing "bad" arms)

The agent

- uses a sampling strategy (A_t)
- stops at some (random) time au
- upon stopping, recommends an arm $\hat{a}_{ au}$

His goal:

Fixed-budget setting	Fixed-confidence setting
au = T	minimize $\mathbb{E}[au]$
minimize $\mathbb{P}(\hat{a}_{ au} eq a^*)$	$\mathbb{P}(\mu_{\hat{m{a}}_ au} < \mu^* - \epsilon) \leq \delta$

(ϵ, δ)-PAC algortihm

The LUCB algorithm

An algorithm based on confidence intervals

 $\mathcal{I}_{a}(t) = [LCB_{a}(t), UCB_{a}(t)].$

• At round t, draw $b_{t} = \arg \max_{a} \hat{\mu}_{a}(t)$ $c_{t} = \arg \max_{a \neq b_{t}} \text{UCB}_{a}(t)$ • Stop at round t if $\text{LCB}_{b_{t}}(t) > \text{UCB}_{c_{t}}(t) - \epsilon$

Theorem [Kalyanakrishan et al. 2012]

For well-chosen confidence intervals, LUCB is (ϵ, δ) -PAC and $\mathbb{E}[\tau_{\delta}] = O\left(\left[\frac{1}{\Delta_{2}^{2} \vee \epsilon^{2}} + \sum_{a=2}^{K} \frac{1}{\Delta_{a}^{2} \vee \epsilon^{2}}\right] \log\left(\frac{1}{\delta}\right)\right)$ with $\Delta_{a} = \mu_{1} - \mu_{a}$.

Bandits (for) Games

Regret minimization versus Best Arm Identification

Algorithms for regret minimization and BAI are very different!

kl-UCB versus (kl)-LUCB

Next: how to use them for planning in games !

1 First Bandit Game: Regret Minimization

2 Second Bandit Game: Best Arm Identification

Bandit Tools for Planning in Games

Monte-Carlo Tree Search for games

Goal: decide for the next move based on evaluation of possible trajectories in the game

Monte-Carlo Tree Search for games

Goal: decide for the next move based on evaluation of possible trajectories in the game

Usual bandit approach: [UCT, Koczis and Szepesvari 2006]

- → use UCB in each node to decide the next children to explore
- ➔ no sample complexity guarantees

Monte-Carlo Tree Search for games

We introduce an idealized model:

- fixed maximin tree
- *i.i.d.* playouts starting from each leaf

and propose new algorithms with sample complexity guarantees

A fixed MAXMIN game tree \mathcal{T} , with leaves \mathcal{L} .

MAX node (= your move)

MIN node (= adversary move)

Leaf ℓ : stochastic oracle \mathcal{O}_{ℓ} that evaluates the position

A fixed MAXMIN game tree \mathcal{T} , with leaves \mathcal{L} .

MAX node (= your move)

MIN node (= adversary move)

Leaf ℓ : stochastic oracle \mathcal{O}_{ℓ} that evaluates the position

At round *t* a **MCTS algorithm**:

- picks a path down to a leaf L_t
- get an evaluation of this leaf $X_t \sim \mathcal{O}_{L_t}$

Assumption: i.i.d. sucessive evaluations, $\mathbb{E}_{X \sim \mathcal{O}_{\ell}}[X] = \mu_{\ell}$

At round *t* a **MCTS algorithm**:

- picks a path down to a leaf L_t
- get an evaluation of this leaf $X_t \sim \mathcal{O}_{L_t}$

Assumption: i.i.d. sucessive evaluations, $\mathbb{E}_{X \sim \mathcal{O}_{\ell}}[X] = \mu_{\ell}$

A MCTS algorithm should find the best move at the root:

$$V_{s} = \begin{cases} \mu_{s} & \text{if s} \in \mathcal{L}, \\ \max_{c \in \mathcal{C}(s)} V_{c} & \text{if s is a MAX node,} \\ \min_{c \in \mathcal{C}(s)} V_{c} & \text{if s is a MIN node.} \end{cases}$$
$$s^{*} = \underset{s \in \mathcal{C}(s_{0})}{\operatorname{argmax}} V_{s}$$

A structured BAI problem

MCTS algorithm: $(L_t, \tau, \hat{s}_{\tau})$, where

- L_t is the sampling rule
- τ is the stopping rule
- $\hat{s}_{\tau} \in \mathcal{C}(s_0)$ is the recommendation rule is $(\epsilon, \delta) - PAC$ if $\mathbb{P}(V_{\hat{s}_{\tau}} \geq V_{s^*} - \epsilon) \geq 1 - \delta$.

<u>Goal</u>: (ϵ, δ) -PAC algorithm with a small sample complexity τ .

Using the samples collected for the leaves, one can build, for $\ell \in \mathcal{L}$,

 $[LCB_{\ell}(t), UCB_{\ell}(t)]$ a confidence interval on μ_{ℓ}

Using the samples collected for the leaves, one can build, for $\ell \in \mathcal{L}$,

 $[LCB_\ell(t), UCB_\ell(t)]$ a confidence interval on μ_ℓ

Idea: Propagate these confidence intervals up in the tree

MAX node:

Emilie Kaufmann Bandits (for) Games

MAX node:

Emilie Kaufmann Bandits (for) Games

MIN node:

Emilie Kaufmann Bandits (for) Games

Property of this construction

Second tool: representative leaves

 $\ell_s(t)$: representative leaf of internal node $s \in \mathcal{T}$.

Idea: alternate optimistic/pessimistic moves starting from s

Input: a BAI algorithm Initialization: t = 0. while not BAIStop ({ $s \in C(s_0)$ }) do $R_{t+1} = BAIStep ({<math>s \in C(s_0)$ }) Sample the representative leaf $L_{t+1} = \ell_{R_{t+1}}(t)$ Update the information about the arms. t = t + 1. end

Output: **BAIReco** ({ $s \in C(s_0)$ })

Input: a BAI algorithm Initialization: t = 0. while not BAIStop ($\{s \in C(s_0)\}$) do $\begin{vmatrix} R_{t+1} = BAIStep (\{s \in C(s_0)\}) \\ Sample the representative leaf <math>L_{t+1} = \ell_{R_{t+1}}(t) \\ Update the information about the arms. <math>t = t + 1$. end Output: BAIReco ($\{s \in C(s_0)\}$)

... typically the confidence intervals

LUCB-MCTS

• Sampling rule: R_{t+1} is the least sampled among two promising depth-one nodes:

 $\underline{b}_t = \underset{s \in \mathcal{C}(s_0)}{\operatorname{argmax}} \hat{V}_s(t) \quad \text{and} \quad \underline{c}_t = \underset{s \in \mathcal{C}(s_0) \setminus \{\underline{b}_t\}}{\operatorname{argmax}} \operatorname{UCB}_s(t),$

where $\hat{V}_s(t) = \hat{\mu}_{\ell_s(t)}(t)$.

(empirical value of the representative leaf)

• Stopping rule:

 $\tau = \inf \left\{ t \in \mathbb{N} : \mathrm{LCB}_{\underline{b}_t}(t) > \mathrm{UCB}_{\underline{c}_t}(t) - \epsilon \right\}$

• Recommendation rule: $\hat{s}_{\tau} = \underline{b}_{\tau}$

Variant: UGapE-MCTS, based on [Gabillon et al. 12]

Theoretical guarantees

We choose confidence intervals of the form

$$\begin{split} \mathrm{LCB}_{\ell}(t) &= \hat{\mu}_{\ell}(t) - \sqrt{\frac{\beta(N_{\ell}(t),\delta)}{2N_{\ell}(t)}} \\ \mathrm{UCB}_{\ell}(t) &= \hat{\mu}_{\ell}(t) + \sqrt{\frac{\beta(N_{\ell}(t),\delta)}{2N_{\ell}(t)}} \end{split}$$

where $\beta(s, \delta)$ is some exploration function.

Correctness

If $\delta \leq \max(0.1|\mathcal{L}|, 1)$, for the choice

 $eta(s,\delta) = \log(|\mathcal{L}|/\delta) + 3\log\log(|\mathcal{L}|/\delta) + (3/2)\log(\log s + 1)$

UGapE-MCTS and LUCB-MCTS are (ϵ, δ) -PAC.

Theoretical guarantees

$$H^*_\epsilon(oldsymbol{\mu}) \coloneqq \sum_{\ell \in \mathcal{L}} rac{1}{\Delta_\ell^2 ee \Delta_*^2 ee \epsilon^2}$$

where

$$\begin{array}{lll} \Delta_* & := & V(s^*) - V(s_2^*) \\ \Delta_\ell & := & \max_{s \in \texttt{Ancestors}(\ell) \setminus \{s_0\}} \left| V_{\texttt{Parent}(s)} - V_s \right| \end{array}$$

Sample complexity

With probability larger than $1 - \delta$, the total number of leaves explorations performed by UGapE-MCTS is upper bounded as

$$au = \mathcal{O}\left(\mathcal{H}^*_\epsilon(oldsymbol{\mu}) \log\left(rac{1}{\delta}
ight)
ight).$$

Theoretical guarantees

$$H^*_\epsilon(oldsymbol{\mu}) := \sum_{\ell \in \mathcal{L}} rac{1}{\Delta_\ell^2 ee \Delta_*^2 ee \epsilon^2}$$

where

Conclusion

Our contributions:

- a generic way to use a BAI algorithm for MCTS
- PAC and sample complexity guarantees for UGapE-MCTS and LUCB-MCTS...
- ... that also displays good empirical performance

Future work:

- identify the *optimal* sample complexity of the MCTS problem... (i.e. matching upper and lower bounds)
- ... and that of other structured Best Arm Identification problems [Huang et al., ALT 17]

Reference:

E. Kaufmann & W.M. Koolen, Monte-Carlo Tree Search by Best Arm Identification NIPS 2017