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The multi-armed bandit model

K arms = K probability distributions (v, has mean pu,)

11 %) V3 Va4 143

At round t, an agent:

@ chooses an arm A;

@ observes a sample X; ~ 14,

using a sequential sampling strategy (A;):
Arp1 = Fe(Ar, Xe, .. A Xe).

Generic goal: learn the best arm, a" = argmax, i,
of mean u* = max, ji,
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Bernoulli bandit model

K arms = K Bernoulli distributions

B(p1) B(p2)  B(ps) B(pa) B(us)
At round t, an agent:
@ chooses an arm A;
@ observes a sample X, ~ B(4,): P(X; = 1|A¢) = pa,
using a sequential sampling strategy (A;):
At+1 = Ft(A]_, )(]_7 PR 7At7 Xt)

Generic goal: learn the best arm, a" = argmax, 1,
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@ First Bandit Game: Regret Minimization
@ Second Bandit Game: Best Arm Identification

© Bandit Tools for Planning in Games
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@ First Bandit Game: Regret Minimization
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Regret minimization in a bandit model

Samples = rewards, (A;) is adjusted to

@ maximize the (expected) sum of rewards,
T

DX
t=1

@ or equivalently minimize the regret:
T

DX
t=1

N,(T) : number of draws of arm a up to time T

E

K

= Z(M* - Ma)E[Na( T)]

a=1

RT: TILL**E

= Exploration/Exploitation tradeoff
or... Learning while Earning
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The UCB approach

e A UCB-type (or optimistic) algorithm chooses at round t
A¢i1 = argmax UCB,(t).
a=1..K
where UCB,(t) is an Upper Confidence Bound on .

1k

T ?

<

[Lai and Robbins 1985, Agrawal 1995, Auer et al. 02...]

Emilie Kaufmann Bandits (for) Games



The kl-UCB algorithm

The klI-UCB index

UCB,(t) := max {q d (fa(t), ) < Iog(t)} )

with d(x. y) = KL(B(x). B(y))
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satisfies P11, < UCB,(t)) > 1 — L.
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The kl-UCB algorithm

[Cappé et al. 13]: klI-UCB satisfies
1

=» matches the lower bound of [Lai and Robbins 1985]

T hi
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@ Second Bandit Game: Best Arm Identification
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A pure-exploration objective

Regret minimization:
maximize the number of conversions while learning which version
of your webpage is the best

Controlled Test

Visitors Conversion

” &

‘Control” Q
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“Control” Variation A ’ m
E "

Variation B

Alternative goal: quickly find out the best version for your webpage
(no focus on conversions during the A/B testing phase)
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Best arm identification

The agent has to identify the arm with highest mean a*
(no loss when drawing “bad” arms)

The agent
@ uses a sampling strategy (Ay)
@ stops at some (random) time 7

@ upon stopping, recommends an arm &,

His goal:
Fixed-budget setting | Fixed-confidence setting
T=T minimize E[7]
minimize P(4, # a*) P(a; #a*) <o

[Bubeck et al. 2010] [Even Dar et al. 2006]
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Best arm identification

The agent has to identify the arm with highest mean a*
(no loss when drawing “bad” arms)

The agent
@ uses a sampling strategy (Ay)
@ stops at some (random) time 7

@ upon stopping, recommends an arm &,

His goal:

Fixed-budget setting | Fixed-confidence setting
T=T minimize E[7]
minimize P(3; # a*) | P(ps, < p* —€) <4

(e,0)-PAC algortihm
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The LUCB algorithm

An algorithm based on confidence intervals
Z,(t) = [LCB,(t), UCB,(t)].

@ At round t, draw

by = argmax [i,(t)
a

¢ 3 % } l l ¢ = arién;tax UCB,(t)

@ Stop at round t if

Qe - . . . LCBp,(t) > UCBg (1) — e

For well-chosen confidence intervals, LUCB is (¢, §)-PAC and

1 K1 1
E[rs] =0 ([—A§ V2 +Z;—Ag \/62] log (5)>

with Ay = 1 — pa.
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Regret minimization versus Best Arm Identification

Algorithms for regret minimization and BAI are very different!

kl-UCB versus (kl)-LUCB

9% II§}ll

Qe - .
1 459 200 45 48 23
39 11

Next: how to use them for planning in games !
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© Bandit Tools for Planning in Games
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Monte-Carlo Tree Search for games

Selection Expansion Simulation Backpropagation
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Goal: decide for the next move based on evaluation of possible
trajectories in the game
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Monte-Carlo Tree Search for games

Selection Expansion Simulation Backpropagation
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Goal: decide for the next move based on evaluation of possible
trajectories in the game

Usual bandit approach: [UCT, Koczis and Szepesvari 2006]
=?» use UCB in each node to decide the next children to explore

=» no sample complexity guarantees
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Monte-Carlo Tree Search for games

Selection Expansion Simulation Backpropagation
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We introduce an idealized model:
@ fixed maximin tree
@ i.id. playouts starting from each leaf

and propose new algorithms with sample complexity guarantees
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A simple model for MCTS

A fixed MAXMIN game tree T, with leaves L.
V' MAX node (= your move)

A N node (= adversary move)

® Leaf ¢: stochastic oracle O, that evaluates the position
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A simple model for MCTS

A fixed MAXMIN game tree T, with leaves L.
V' MAX node (= your move)

A N node (= adversary move)

® Leaf ¢: stochastic oracle O, that evaluates the position
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A simple model for MCTS

At round t a MCTS algorithm:
@ picks a path down to a leaf L;

@ get an evaluation of this leaf X; ~ Oy,

Assumption: i.i.d. sucessive evaluations, Ex.o,[X] = s
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A simple model for MCTS

At round t a MCTS algorithm:
@ picks a path down to a leaf L;

@ get an evaluation of this leaf X; ~ Oy,

Assumption: i.i.d. sucessive evaluations, Ex.o,[X] = s
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Goal

A MCTS algorithm should find the best move at the root:
Ihs ifs € L,
Vs = ¢ maxcee(s) Ve if sis a MAX node,
mincee(s) Ve if sis a MIN node.
s* = argmax Vs
seC(so)
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A structured BAI problem

MCTS algorithm: (L, 7, 5;), where
@ L; is the sampling rule
@ 7 is the stopping rule
@ 5, € C(sp) is the recommendation rule
is (6,0) —PACif P(Vz > Ve —¢)>1—0.

Goal: (€, 6)-PAC algorithm with a small sample complexity 7.
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First tool: confidence intervals

Using the samples collected for the leaves, one can build, for ¢ € L,

[LCB(t), UCBy(t)] a confidence interval on py
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First tool: confidence intervals

Using the samples collected for the leaves, one can build, for £ € L,

[LCBy(t), UCBy(t)] a confidence interval on ti

Idea: Propagate these confidence intervals up in the tree
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First tool: confidence intervals

MAX node:
UCBs(t) = max UCB.(t) LCBs(t) = max LCB(t)

ceC(s) ceC(s)

-
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First tool: confidence intervals

MAX node:

UCBs(t) = max UCB.(t) LCBs(t) = max LCB(t)
ceC(s) ceC(s)
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First tool: confidence intervals

MIN node:

UCBs4(t) = min UCB.(t) LCBs(t) = min LCB(t)
ceC(s) ceC(s)

.
A

m| law |

T

e

A e

(' ]

gy Ly Jia =

L Ll

Emilie Kaufmann Bandits (for) Games




Property of this construction

_
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() (e € Zu(t)) = ) (Vs € Zs(1))
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Second tool: representative leaves

ls(t): representative leaf of internal node s € 7.

q
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Idea: alternate optimistic/pessimistic moves starting from s
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Generic BAI-MCTS algorithm

Input: 2 BAI algorithm

Initialization: t = 0.

while not BAIStop ({s € C(so)}) do

Re+1 — BAIStep ({s € C(s0)})

Sample the representative leaf Ly 1 = (g, (1)
Update the information about the arms. t =t + 1.

end
Output: BAIReco ({s € C(s)})
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Generic BAI-MCTS algorithm

Input: 2 BAI algorithm

Initialization: t = 0.

while not BAIStop ({s € C(sp)}) do

Ree1 = BAIStep ({s € C(s0)})

Sample the representative leaf Ly 1 = (g, (1)
Update the information about the arms. t =t 4+ 1.

end
Output: BAIReco ({s € C(s)})

... typically the confidence intervals
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LUCB-MCTS

@ Sampling rule: Ry is the least sampled among two
promising depth-one nodes:

b, = argmax Vi(t) and ¢, = argmax UCB(t),
s€C(s0) se€C(s0)\{b;}

where V;(t) = floy(e)(t)-
(empirical value of the representative leaf)
@ Stopping rule:
7 =inf {t € N: LCBy (t) > UCB (t) — €}
@ Recommendation rule: 5, = b,

Variant: UGapE-MCTS, based on [Gabillon et al. 12]
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Theoretical guarantees

We choose confidence intervals of the form

LOB() = fu(e) — | PGaes
UCBi(t) = fu(t) + 5%%5)

where (s, ) is some exploration function.

If & < max(0.1|£],1), for the choice

B(s, ) = log(|L£]/d) + 3loglog(|L|/d) + (3/2) log(logs + 1)

UGapE-MCTS and LUCB-MCTS are (¢, 0)-PAC.
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Theoretical guarantees

H ) = Y 22

AZV A2V e

LeLl
where
A* = V(S*) _ V(S;()
A = ma V aren - Vs
¢ sEAncestor)s((Z)\{sO}| P t(s) |

Sample complexity

With probability larger than 1 — §, the total number of leaves
explorations performed by UGapE-MCTS is upper bounded as

=0 (ruame (2)).
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Theoretical guarantees

. 1
HZ (1) ::ZAgvAi\/é

el
where
A, = V(s*)—V(s3)
A a Vparen — V.
¢ SGAncesTor)s((l)\{so}| P t(s) Sl
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Conclusion

Our contributions:
@ a generic way to use a BAI algorithm for MCTS

@ PAC and sample complexity guarantees for UGapE-MCTS and
LUCB-MCTS...

@ ... that also displays good empirical performance

Future work:

o identify the optimal sample complexity of the MCTS
problem... (i.e. matching upper and lower bounds)

@ ... and that of other structured Best Arm ldentification
problems [Huang et al., ALT 17]

Reference:
E. Kaufmann & W.M. Koolen,
Monte-Carlo Tree Search by Best Arm Identification
NIPS 2017
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