frontiéres.

dépasser les

Quelques outils statistiques pour
la prise de décision séquentielle



The multi-armed bandit model

K arms <+ K probability distributions : v, has mean i,

I

V1 V2

Vg

At round t, an agent :
» chooses an arm A;

> receives a a sample X; ~ vy,

Sequential sampling strategy (bandit algorithm) :

At+1 - Ft(A].ale . '7AtﬂXf)'

Emilie Kaufmann | CRIStAL
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A reinforcement learning problem ?

K arms <+ K probability distributions : v, has mean i,

%’ ?'
Vg Vs

141 V2 V3

At round t, an agent :
» chooses an arm A;

> receives a a reward X; ~ v,
Sequential sampling strategy (bandit algorithm) :

Ari1 = Fe(Ar, X, o A XL,
Possible goal : maximize the sum of collected rewards £ {Zz,l Xt]

Emilie Kaufmann | CRIStAL



Clinical trials

Historical motivation [Thompson, 1933]

R
B(p1) B(p2) B(us)  B(ua) B(ps)
For the t-th patient in a clinical study,

» chooses a treatment A;
> observes a response X; € {0,1} : P(X; = 1|A; = a) = pa

Goal : Maximize the expected number of patients healed

Emilie Kaufmann | CRIStAL



Online content optimization

Modern motivation ($$) [Li et al., 2010]
(recommender systems, online advertisement)

3(1) B(Mz)

For the t-th visitor of a website,

» display an advertisement A;
> observe a possible click X; ~ B(ji4,)

Goal : Maximize the total number of clicks

Emilie Kaufmann | CRIStAL



Cognitive radios

Opportunistic spectrum access
[Jouini et al., 2009, Anandkumar et al., 2010]

Channel 1 X172 A Xl,t . X17T ~ 11
Channel 2 X271 A X2,t . ~ UV
Channel K [[ Xka [ Xk2 | ... [XKEN - | Xk.m | ~vk

At round t, the device :
» selects a channel A;
» observes the quality of its communication X; = Xa, ; € [0, 1]

Goal : Maximize the overall quality of communications

Emilie Kaufmann | CRIStAL



A performance measure : Regret

[y = Max [, A&, = argmax [i,.
ae{l,...,K} ae{l,...,K}

Maximizing rewards <> selecting a, as much as possible
< minimizing the regret [Robbins, 52]

:
>
t=1

sum of rewards of
the strategy. A

RL/(A? T) = T,LL* - E

sum of rewards of
an oracle strategy
always selecting a,

Regret decomposition

K
Ru(A,T)= ZED[Na(T)](IJ’* — 1a)
a=1

N,(T) : number of selections of arm a up to round T.

= Wanted : R, (A, T)=0o(T)
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A performance measure : Regret

[y = Max [, A&, = argmax [i,.
ae{l,...,K} ae{l,...,K}

Maximizing rewards <> selecting a, as much as possible
< minimizing the regret [Robbins, 52]

.
> Xi
t=1

sum of rewards of
the strategy. A

RL/(A? T) = T,LL* - E

sum of rewards of
an oracle strategy
always selecting a,

Regret decomposition

K
Ru(A,T)= ZED[Na(T)](IJ’* — 1a)
a=1

N,(T) : number of selections of arm a up to round T.

=» sub-linear regret requires an exploration/exploitation trade-off

Emilie Kaufmann | CRIStAL



How to minimize regret ?

» ldea 1 :

Draw each arm T /K times

= EXPLORATION
» lIdea 2 : Always trust the empirical best arm

Ari1 = argmax [i,(t)
ac{l,....K}

1 t
(2(t) = —— Xslip—
,ua( ) Na(t) Sz:; s (As=a)

is an estimate of the unknown mean p,.

where

= EXPLOITATION
Linear regret...
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How to minimize regret ?

» ldea 1 :

Draw each arm T /K times

= EXPLORATION
» lIdea 2 : Always trust the empirical best arm

Ari1 = argmax [i,(t)
ac{l,....K}

1 t
(2(t) = —— Xslip—
,ua( ) Na(t) Sz:; s (As=a)

is an estimate of the unknown mean p,.

where

= EXPLOITATION
Linear regret...

» A Better Idea : Mix Exploration and Exploitation

Emilie Kaufmann | CRIStAL



The optimism principle

Step 1 : construct a set of statistically plausible models

» For each arm a, build a confidence interval on the mean g, :

T.(t) = [LCB,(t), UCB,(t)]

LCB = Lower Confidence Bound
UCB = Upper Confidence Bound

F1GURE — Confidence intervals on the means after t rounds

Emilie Kaufmann | CRIStAL



The optimism principle

Step 2 : act as if the best possible model were the true model
(optimism in face of uncertainty)

b

» That is, select

Apy1 = argmax UCB,(t).
a=1,...,K

[Agrawal, 1995, Katehakis and Robbins, 1995, Auer, 2002, Audibert et al., 2009,
Cappé et al., 2013] and others

Emilie Kaufmann | CRIStAL



The optimism principle

Step 2 : act as if the best possible model were the true model
(optimism in face of uncertainty)

» That is, select

Aey1 = argmax UCB,(t).
a=1,...,K

[Agrawal, 1995, Katehakis and Robbins, 1995, Auer, 2002, Audibert et al., 2009,
Cappé et al., 2013] and others

P (UCB,(t) > pa) 21—

~ | =
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The optimism principle

Step 2 : act as if the best possible model were the true model
(optimism in face of uncertainty)

» That is, select
Air1 = argmax UCB,(t).
a=1

[Agrawal, 1995, Katehakis and Robbins, 1995, Auer, 2002, Audibert et al., 2009,
Cappé et al., 2013] and others

. _ 5 In(t)
Example : UCB,(t) = fa(t) + 2N,(t) [Auer, 2002]
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The optimism principle

Step 2 : act as if the best possible model were the true model
(optimism in face of uncertainty)

» That is, select

A¢r1 = argmax UCB,(t).
a=1,

[Agrawal, 1995, Katehakis and Robbins, 1995, Auer, 2002, Audibert et al., 2009,
Cappé et al., 2013] and others

Example : UCB,(t) = max{q : N,(t)kl(7.(t), q) < In(t)}

Emilie Kaufmann | CRIStAL



Emilie Kaufmann

A UCB algorithm

in action

CRIStAL
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A Bayesian algorithm : Thompson Sampling

Two equivalent interpretations :
» ‘“randomize the arm selection so that the probability to select an arm is
equal to its posterior probability of being the best arm” [Thompson, 1933]

» ‘“sample a possible bandit model from the posterior distribution and act
optimally in this sampled model”

= optimistic
Thompson Sampling : a randomized Bayesian algorithm

Aer1 = argmax 6,(t).
a=1...K

{ Va € {1..K}, 0a(t) ~ ma(t)

Emilie Kaufmann | CRIStAL -1



Regret minimization is “solved”
(in simple cases)

Example : Bernoulli bandit model v = (B(u1), ..., B(uk))

A regret lower bound

[Lai and Robbins, 1985] : any uniformly efficient bandit algorithm satisfies
fa < fly = I|m|nf M[IN7(' )l > " s ,
where n (Maa N*)
1 / K 1- H
K, ') = KL(B(p), B(u')) = pIn " +(L—p)in )

Matching upper bounds

kl-UCB and Thompson Sampling satisfy, for any sub-optimal arm a,

BuN(T)] < s o+ o(in(T),

[Cappé et al., 2013, Kaufmann et al., 2012, Agrawal and Goyal, 2013]

Emilie Kaufmann | CRIStAL
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But... should we maximize rewards ?

&v‘fr&%é’/

B(1) B(u2) B(us3) B(p14) B(us)
Best treatment : a, = argmax p,
a=1,... K

Sequential protocol : for the t-th patient,

» choose a treatment A;
> observe a response X; € {0,1} : P(X; = 1) = ua,

Maximize rewards <> cure as many patients as possible

Emilie Kaufmann | CRIStAL -13



But... should we maximize rewards ?

& w =~ 30 &

B(in) B(p2) B(ps)  B(ua) B(us)

Best treatment : a, = argmax p,
a=1,... K

Sequential protocol : for the t-th patient,

» choose a treatment A;

> observe a response X; € {0,1} : P(X; = 1) = ua,

Maximize rewards <> cure as many patients as possible

Alternative goal : identify as quickly as possible the best treatment
(without trying to cure patients during the study)

Emilie Kaufmann | CRIStAL
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But... should we maximize rewards ?

Probability that some version of a website generates a conversion :

L ==
O [] [
L [ O

M1 H2 MK

Best version : a, = argmax i,
a=1,...,.K
Sequential protocol : for the t-th visitor :
» display version A;

> observe conversion indicator X; ~ B(pa,).

Maximize rewards <+ maximize the number of conversions

Emilie Kaufmann | CRIStAL -14



But... should we maximize rewards ?

Probability that some version of a website generates a conversion :

L ==
O [] [
L [ O

M1 H2 MK

Best version : a, = argmax i,
a=1,...,.K

Sequential protocol : for the t-th visitor :
» display version A;

> observe conversion indicator X; ~ B(pa,).

Maximize rewards <+ maximize the number of conversions

Alternative goal : identify the best version
(without trying to maximize conversions during the test)

Emilie Kaufmann | CRIStAL -14



Outline

Optimal Best Arm Identification
Active Identification in a Bandit Model

A Particular Case : Murphy Sampling

? -
A‘-

based on joint works with Aurélien Garivier & Wouter Koolen

Emilie Kaufmann | CRIStAL
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Outline

Optimal Best Arm Identification

' e
An

based on joint works with Aurélien Garivier & Wouter Koolen

Emilie Kaufmann | CRIStAL
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Best Arm ldentification

Assumption : Bernoulli bandit model (can be extended to any
one-dimensional exponential family)

p=(p1,..-,pk)  a.(p)=argmax u,
a=1,....K
A best arm identification algorithm is made of
» a sampling rule A; : which arm is sampled at round t?
» a stopping rule 7 : when can we stop sampling the arms?

» a recommendation rule &; : a guess for a,(p) when we stop

BAI in the fixed-confidence setting
The objective is to build [Even-Dar et al., 2006]
» a d-correct algorithm : YV, P, (47 = a.(p)) > 1 —6.

» with a small sample complexity E,,[7]

Emilie Kaufmann | CRIStAL
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The LUCB algorithm [Kalyanakrishnan et al., 2012]

Z.(t) = [LCB,(t), UCB,(t)].

» At round t, draw
i ] B; = argmax [ip(t)
b

é C: = argmax UCB((t)
Y % c#B;
» Stop at round t if

. ° LCBg,(t) > UCBc,(t)
o ..
459 200 45 48 23 » Recommend é\T = BT

- 1 S a4
E. [75] = O (l(ﬂl —u2)2 +Z (Nl —Ma)Z] In <5>>

a=2

Emilie Kaufmann | CRIStAL -17



The best we can do? Lower bound.

» a change-of-measure lemma

Lemma (e.g., )

p and A two different bandit instances.
T a stopping time and £ an event in o(Xy,..., X;).

KL (P, PR > (P, (), PA(E)),

where KL is the Kullback-Leibler divergence and

Kl(x,y) = KL (B(x), B(y)) = xIn (;) F(@=)n G :;>

Emilie Kaufmann | CRIStAL -18



The best we can do? Lower bound.

» a change-of-measure lemma

Lemma (e.g., )

@ and A two different bandit instances.
T a stopping time and & an event in o(Xy,..., X;).
K

S Eu[Na(T)]Kl(pa, Aa) > KI(Pu(E), PA(E)),

a=1

where KL is the Kullback-Leibler divergence and
kl(x,y) = KL (B(x), B(y)) = xIn (}f/) +(1=x)In G :;)
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The best we can do? Lower bound.

» a change-of-measure lemma

Lemma (e.g., )

p and A two different bandit instances.

T a stopping time and & an event in o(Xy,...,X;).
K
D Eu[Na(7)IKl (12, As) > KI(PL(E), PA(€)),
a=1

where KL is the Kullback-Leibler divergence and

Kl(x,y) = KL (B(x),B(y)) = xIn (;) T8 =) G :;>

Under a §-correct algorithm,

A such that a, () # a,(p) Pu(&) <o
£ = (5, = 2 (\)) };‘{ PA(£) > 16

Emilie Kaufmann | CRIStAL



The best we can do? Lower bound.

p and A be such that a, () # a.(\). For any d-correct algorithm,

K
> B[N (7)IK(1a, A) > KI(8,1 = 5).

a=1

Emilie Kaufmann | CRIStAL
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The best we can do? Lower bound.

p and A be such that a, () # a.(\). For any d-correct algorithm,

> B[N (7)IK(1a, A) > KI(8,1 = 5).

a=1

> Let Alt(u):{kza*( ) # a.(m)}.

f B[N (7)]k(pay Aa) > KI(6,1 —
)‘EX‘]W)Z [N ()] (122, Aa) (6,1-0)

\Y
=2
A/~
gl
~—

- B [Na(7)]
1 Wkl% )

) (2, S ke )

Y
=2
A~
gl
~—

Emilie Kaufmann | CRIStAL
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The best we can do? Lower bound.

For any §-correct algorithm,

Ep[7] > To(p)In <3_1<5> ,

T.(u)™t = sup inf <Z WK1 (122, Aa ) .

WGZK A€AILt(p)

where

Moreover, the vector of optimal proportions,

w, (@) = argmax  inf (Z w,k1(pa, Aa )

wEX Kk AEAlt(p)

is well-defined, and can be computed efficiently.
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The best we can do? Lower bound.

For any §-correct algorithm,

Ep[7] > To(p)In <3_1<5> ,

T.(u)™t = sup inf <Z WK1 (122, Aa ) .

WGZK A€AILt(p)

where

Moreover, the vector of optimal proportions,
w, (@) = argmax  inf (Z w,k1(pa, Aa )

wEX Kk AEAlt(p)

is well-defined, and can be computed efficiently.
=» inspires (optimal) algorithms!

Emilie Kaufmann | CRIStAL -20



How to match the lower bound ?
Sampling rule.

2(t) = (fir(t), ..., ik (t)) : vector of empirical means

» Introducing U; = {a D NL(t) < \/f},

argmin N(t) if Uy # 0 (forced exploration)
A c acU;
o argmax [ (wi(f(2)))a — N%(t)} (tracking)
1<a<K

Under the Tracking sampling rule,

P (im0 = (), ) =1

t—o00 t

Emilie Kaufmann | CRIStAL



How to match the lower bound ?
Stopping rule.

Idea : perform statistical tests

Individual Generalized Likelihood Ratio test : fix a € {1,..., K}
Ho : (ax(pe) # a) against Hy : (ax(p) = a)
High values of the GLR statistic tend to reject H, :

2 (t) —In SUP{)\e[O?l]K}K(Xl’ o Xe )\)
a SUP{:a, (A)£a} E(Xl"'th;)\)'

GLRT stopping rule for BAI : run the K GLR tests in parallel, and stop
when one of them rejects Hy :

r=inf{teN: , max Z,(t) > B(t,6)}

=2(1) [Chernoff, 1959]

Emilie Kaufmann | CRIStAL
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Rewriting the stopping statistic

Using that Z,(t) = 0 for a # By, Z(t) = Zg,(t) and

5 E(X]_,,Xt,ﬂ(t))
Z(t) =1 N ( ), A
(t) =In max O(Xq, ..., Xe; )\) AEAlt Z 2)
AeAlt(A(t))

=» reminiscent of the lower bound

Emilie Kaufmann | CRIStAL -23



Rewriting the stopping statistic

Using that Z,(t) = 0 for a # B;, Z(t) = Zp,(t) and

4 e(le"-aXt;ﬂ(t)) =
Z(t) =1 a
(t) =In max O(Xq, ..., Xe; ) )\eAlt Z ):Aa)

AcAlt(A(t)) =1

=» reminiscent of the lower bound

inf{t €N: inf ZN (t)kI(fa(t), Na) > B(t, 5)}

AeAlt(a(t)) £

B, = argmax fi,(7).
a=1,...,K

PRLLD)

» How to choose the threshold to ensure a d-correct algorithm ?
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An asymptotically optimal algorithm

The Track-and-Stop strategy, that uses
» the Tracking sampling rule
» the GLRT stopping rule with

B(e.5) = n (2521)

» and recommends &,, = argmax [i,(7)
a=1...K

is 0-correct for every ¢ €]0, 1[ and satisfies

Euln] _
e

Why ?

K
s = inf{t €N, AeAlt Zl LK (71,(), Xa) > B(t, 6)}

Emilie Kaufmann | CRIStAL
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An asymptotically optimal algorithm

The Track-and-Stop strategy, that uses
» the Tracking sampling rule
» the GLRT stopping rule with

B(e.0) =1n (2521)

> and recommends &,;, = argmax i (7)
a=1...

is 0-correct for every ¢ €]0, 1[ and satisfies

el 7 (),

’
30" In(1/9)

Why ?
_ e Na(8) s
Ts=inf{te N, :tx  inf Z Tkl (fa(t), Na) > B(t,0)

XeAlt((t)
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An asymptotically optimal algorithm

The Track-and-Stop strategy, that uses
» the Tracking sampling rule
» the GLRT stopping rule with

2(K = 1)t
B(t,6) = In <())
0
» and recommends &,;, = argmax [i,(7)
a=1...K

is 0-correct for every ¢ €]0, 1[ and satisfies

el 7 (),

|-
5" In(1/3)

Why ?
K
75 ~ inf {t eN,:tx inf Z(W*(N))akl (tay Aa) > B(t, 5)}

AEALt(p) puet
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An asymptotically optimal algorithm

The Track-and-Stop strategy, that uses
» the Tracking sampling rule
» the GLRT stopping rule with

Be.0) =1n (25521)

> and recommends &,;, = argmax fi,(7)
a=1...K

is 0-correct for every ¢ €]0, 1[ and satisfies

el 7 (),

r
5o In(1/3)

Why ?
Ts o~ inf{t EN, 1t x T, () > ﬂ(t,é)}
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Numerical experiments

Experiments on two Bernoulli bandit models :

> pg = [0.50.45 0.43 0.4], such that
w, (p1) = [0.417 0.390 0.136 0.057]
> pp =1[0.30.21 0.2 0.19 0.18], such that

w, (p12) = [0.336 0.251 0.177 0.132 0.104]

In practice, set the threshold to 5(t.0) = In (M) .

Track-and-Stop | kI-LUCB | kl-Racing
o 4052 8437 9590
o 1406 2716 3334

TABLE — Expected number of draws E,[7s] for § = 0.1,
averaged over N = 3000 experiments.
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Outline

Active Identification in a Bandit Model

Emilie Kaufmann | CRIStAL
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A more general objective

p=(p1,-- pk)

Ri,...,Rm be M regions of possible parameters (R; C [0, 1]¥).

R = Uf\il Ri.

Active identification : identify one region to which p belongs.
/\the regions may be overlapping

Formalization : build a
» sampling rule (A;)
» stopping rule 7
» recommendation rule i, € {1,..., M}

such that, for some risk parameter 4, for all p € R

P,(n ¢ Ri.) <6 and E,[r]is small.

Emilie Kaufmann | CRIStAL
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Example : Dose Finding in Clinical Trials

° Toxicity

£e]

g3

3

]

g

z

S«

$3

3

F o
° Maximum acceptable
o targeted toxicity
o4

00

Goal : identify the arm whose mean (= toxicity probability) is closest to
a threshold 6

Ri= {N:Ml <-o- < pk, 1= argmin |Hk—9}
k

[Garivier et al., 2017]

Emilie Kaufmann | CRIStAL
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Example : Back to A/B Testing

Conversion probabilities :

C1 ===
o [] O
O [ O

Ha M2 HK
There may be several near-optimal versions.

c-Best arm identification :

Ri= {u €[0,2]" : i > Max ta — ‘}

Goal :
» small error probability : Ve, Py, (115, < pi, —€) <6

> test as short as possible : E,,[7] small

[Even-Dar et al., 2006]
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A GLRT stopping rule

=» the stopping rule introduced for best arm identification can be
generalized to any active identification problem !

Individual Generalized Likelihood Ratio test : fix j € {1,..., M}
Ho: (1 € R\R;) against Hi:(p€R;)
High values of the GLR statistic tend to reject Hp :

2(t) = In supgaery U(X1, -, Xei A)
! SUP{AeR\R,} X1,y Xes A)

GLRT stopping rule for Active ldentification : run the M GLR tests
in parallel, and stop when one of them rejects H :

T=inf{teN: max 2,-(t)>6(t75)}

i=1,....M
————
=2(t)
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A GLRT stopping rule

=?» the stopping rule introduced for best arm identification can be
generalized to any active identification problem !

Individual Generalized Likelihood Ratio test : fix i € {1,..., M}
Ho : (€ R\R;) against Hy:(u€R;)

High values of the GLR statistic tend to reject Hp :

K

Zi(t) = inf Ny (£)KI(2a(t), As)-
(1) Aegg\niaﬂ (t)kI(fa(t), Aa)

GLRT stopping rule for Active ldentification : run the M GLR tests
in parallel, and stop when one of them rejects H :

Emilie Kaufmann | CRIStAL - 30



A J-correct stopping rule

=1,.... M XeR\R;

Wy = inf{tEN:_max inf ZN )>B(t5)}

i, € argmax |nf ZN (B)k1(fa(t), Aa)-
i=1,..,MA

We can propose a threshold 3(t,d) such that

B(t,0) ~In(1/6) + KinIn(1/) + 3K In(1 + Int)

and forall p e R, P, (75 < oo, ¢ ng) <4é.

Emilie Kaufmann | CRIStAL
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Proof (1/2)

P, <T5 < oo, ¢ R%)

IN

K
P <at EN 3 p g Ry, nf ; No(t)KI(Ra(t), A7) > 5(r,5)>

K
It e N*, Jitp e R\R;, Y Ny()kI(f1a(t), 1a) > B(t, 5))

a=1

IN

P

IN

IP(EIteN*ZN YKI( 24 (t ua)>ﬁ(t,6)>
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Proof (1/2)

P, <T5 < oo, ¢ R%)

IN

K
P <at EN 3 p g Ry, nf ; N (t)KI(f1a(1), A7) > B(t, 6)

IN

K
P <at €N, 3i:peR\R, Y Na(t)KI(fia(t), pa) > B2, 5))

a=1

IN

<3teN* Z/\/ £)kl(fia(t), 11a) >ﬁ(t,6)>

Need for a deviation inequality with the following properties :

=¥ deviations are measured with KL-divergence

Emilie Kaufmann | CRIStAL

)

-32



Proof (1/2)

P, <T5 < oo, ¢ R%)

IN

K
P <at EN 3 p g Ry, nf ; No(t)KI(Ra(t), A7) > 5(r,5)>

IN

K
P <at €N, 3i:peR\R, Y Na(t)KI(fia(t), pa) > B2, 5))

a=1
< <3t e N* Z N kl Ma Ma) > ﬁ(t76)>

Need for a deviation inequality with the following properties :
=¥ deviations are measured with KL-divergence

=» deviations are uniform over time
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Proof (1/2)

P, <T5 < oo, ¢ R%)

IN

K
P (at EN 3 p g Ry, nf ; N (t)KI(f1a(1), A7) > B(t, 6)

IN

K
P <at €N, 3i:peR\R, Y Na(t)KI(fia(t), pa) > B2, 5))

a=1
< <E|t e N~ Z Na(t)kl(fia(t), pa) > ﬁ(t76)>

Need for a deviation inequality with the following properties :
=¥ deviations are measured with KL-divergence
=¥ deviations are uniform over time

=¥ deviations that take into account multiple arms

Emilie Kaufmann | CRIStAL
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Proof (2/2)

There exists 7 : RT — RT a threshold function such that

T(x) =~ x+In(x)

one has

<3teN ZN Jl(fi(t), p1a) >
3Z|n1+|n ))+KT( ))ge—X.

Consequence :
(31: Z No(t)KI(fa(t), a) > 3In(1 + In(t)) + KT (M)) <4

Emilie Kaufmann | CRIStAL -33



Optimal Active Identification ?

Non-Overlapping case : Same lower bound
E,[r] > To(p)In 1
wlTl = SR 35 )

K
T.(n)! = sup inf (Z wokl(pa, )\a)> .
a=1

weT ) AER\R), ()

with

» Tracking + GLRT is asymptotically optimal provided that the
optimal weights can easily be computed...

Overlapping case : can be slightly harder

[Degenne and Koolen, 2019, Garivier and Kaufmann, 2019]
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A Particular Case :

Emilie Kaufmann | CRIStAL

Outline

Murphy Sampling
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Comparing the Smallest Mean to a Threshold

Fix threshold .

min = mMin; pu; S ?] Fort=1,...,7
[N = e pick a leaf A;
% e observe X; ~ B(ua,)

After stopping, recommend M € {<, >}

Goal : controlled error P, (i1 # m,) <
and small sample complexity E,,[7]

[Kaufmann et al., 2018]
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Lower Bound and Oracle Allocation

Lower bound : for any §-correct algorithm,

Bl > Tuin(55)

For our problem the characteristic time and oracle weights are

1
—— fmin <7, L(a=a.) fimin <,
kl(,umim’y) 1

T.(p) = 1 (wi(w)a = {  ®Gum) Yo > 7
za: K,y Hmm = 2 W) |

(wi (), : fraction of selections of the leaf a under a strategy that would
match the lower bound
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Dichotomous Oracle Behaviour!

© ©
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Dichotomous Oracle Behaviour!

© ©

X X ® & & & ® &

Two different ideas to get those sampling profiles :

» Thompson Sampling (N,_; is posterior after t — 1 rounds)
Sample 6 ~ T;_1, then play A; = argmin, 6,.

» a Lower Confidence Bound algorithm
Play A; = argmin, LCB,(t)
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A Solution : Murphy Sampling !

© ©

A more flexible idea :

» Murphy Sampling condition on fow minimum mean

Sample 8 ~ My (| min, 0, < ), then play A; = argmin, 6.,.

=» converges to the optimal allocation in both cases!

Emilie Kaufmann | CRIStAL
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Properties of Murphy Sampling

For all p, Murphy Sampling satisfies, for all a,

N,(t)
Tt

= (wi(p))a

Sampling rule

Lower Confidence Bounds

Thompson Sampling \'Z
®
Murphy Sampling v

C<%|©

Murphy Sampling combined with a “good” stopping rule satisfies

. i
lim sup —51 < T.(p), a.s.
s—0In 5

Emilie Kaufmann | CRIStAL
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A good stopping rule

Sufficient for asymptotic guarantees : a simple stopping rule based on
individual confidence intervals 78 := min (7<; 7s) where

inf{t € N:da: UCB,(t) <~}
inf{t € N:Va,LCB,(t) >~}

T<

7>

S
iﬁ' 8, oo, ;
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Better stopping rules

The GLRT stopping rule

Improved test for rejecting H~ : (summing evidence)

ERT =infdteN: > Ny A(1),7) > B(t,0)

a:fia(t) <y

» Beyond the GLRT : aggregating evidence

728 —inf {t € N : 35 : Ns(t)kI™(fis(t),7) > Bs(t, )}

where Ng(t) and jis(t) are computed based on all the samples gathered
from all arms in S.

=» new concentration inequality showing this rule is J-correct for

Bs(t,8) ~ In (ﬁ)—l—mn(l—i—ln(t)), where > 7(S) =1.

S
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Sample complexity results

Sample Complexity for delta=0.1 (N=1000 repetitions)

16001 , —— MS + GLRT
\ —— MS + Box
14009 | —— MS + Aggregate
' --- LCB + GLRT

212004 |\ —-=- LCB + Box
H \ --- LCB + Aggregate
£ 1000 1
o
S
2 800
£
b
c 600
©
(3
£

4004

200 -

01+ . - - . .
0 20 40 60 80 100
value of k

Agg beats Box and GLRT in adapting to the number k of low arms.
Here u, € {—1,0} and v = 0 (Gaussian arms).
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Sampling rule : p € H-

p = linspace(1/2,1,5) € H~

empirical proportions versus theoretical optimal weights

0.7
)‘ == LCB sampling rule
\ —¢- TS sampling rule
0.6 1 \ — MS sampling rule
'\ mm Optimal Weights

Sampling proportions vs oracle, § = e~
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Sampling rule : p € H_

p = linspace(—1,1,10) € H

empirical proportions versus theoretical optimal weights

1.0 =»%=- LCB sampling rule
—— MS sampling rule
—»- Conjectured Weights for LCB
0.8 Optimal Weights
0.6 1
0.4+
0.2
0.0 T T T T T
2 4 6 8 10
S li i §=e2
ampling proportions vs ,0=¢e .
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Conclusion

» Many interesting bandit problems beyond rewards maximization !

> Generalized Likelihood Ratios are powerful for general active
identification in a bandit model :

=» they can guarantee §-correct identification
=» they reach the optimal sample complexity when coupled with an
appropriate sampling rule

» Murphy Sampling : a first step beyond lower bound inspired
(Tracking) sampling rules

Emilie Kaufmann | CRIStAL
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