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Two bandit problems

Bandit model

A multi-armed bandit model is a set of K arms where

Arm a is an unknown probability distribution νa with mean µa

Drawing arm a is observing a realization of νa

Arms are assumed to be independent

In a bandit game, at round t, a forecaster

chooses arm At to draw based on past observations, according to its
sampling strategy (or bandit algorithm)

observes ’reward’ Xt ∼ νAt

The forecaster is to learn which arm(s) is (are) the best

a∗ = argmaxa µa
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Two bandit problems

Bernoulli bandit model

A multi-armed bandit model is a set of K arms where

Arm a is a Bernoulli distribution B(pa) with unknown mean µa = pa

Drawing arm a is observing a realization of B(pa) (0 or 1)

Arms are assumed to be independent

In a bandit game, at round t, a forecaster

chooses arm At to draw based on past observations, according to its
sampling strategy (or bandit algorithm)

observes ’reward’ Xt ∼ B(pAt)

The forecaster is to learn which arm(s) is (are) the best

a∗ = argmaxa pa
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Two bandit problems Regret minimization

The classical bandit problem: regret minimization

The forecaster wants to maximize the reward accumulated during
learning or equivalentely minimize its regret:

Rn = nµa∗ − E

[
n∑
t=1

Xt

]

He has to find a sampling strategy (or bandit algorithm) that

realizes a tradeoff between exploration and exploitation
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Two bandit problems Regret minimization

An alternative: ’pure-exploration’

The forecaster has to find the best arm(s), and does not suffer a loss
when drawing ’bad arms’.

He has to find a sampling strategy that

optimaly explores the environnement,

together with a stopping criterion and to recommand a set S of m arms
such that

P(S is the set of m best arms) ≥ 1− δ.
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Two bandit problems Regret minimization

Zoom on an application: Online advertisement

Yahoo!(c) has to choose between K different advertisement the one to
display on its webpage for each user (indexed by t ∈ N).

Ad number a → unknown probability of click pa

Unknown best advertisement a∗ = argmaxa pa

If ad a is displayed for user t, he clicks on it with probability pa

Yahoo!(c):

chooses ad At to display for user number t

observes whether the user has clicked or not: Xt ∼ B(pAt)

Yahoo!(c) can ajust its strategy (At) so as to

Regret minimization Pure-exploration

Maximize the number of clicks Identify the best advertisement
during n interactions with probability at least 1− δ
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Regret minimization: Bayesian bandits, frequentist bandits Two probabilistic models

Two probabilistic modellings

K independent arms. µ∗ = µa∗ highest expectation among the arms.

Frequentist :
θ = (θ1, . . . , θK) unknown
parameter

(Ya,t)t is i.i.d. with distribution
νθa with mean µa = µ(θa)

Bayesian :

θa
i.i.d.∼ πa

(Ya,t)t is i.i.d. conditionally to
θa with distribution νθa

At time t, arm At is chosen and reward Xt = YAt,t is observed

Two measures of performance

Minimize regret

Rn(θ) = Eθ

[
n∑
t=1

µ∗ − µAt

] Minimize Bayes risk

Riskn =

∫
Rn(θ)dπ(θ)
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Regret minimization: Bayesian bandits, frequentist bandits Two probabilistic models

Frequentist tools, Bayesian tools

Bandit algorithms based on frequentist tools use:

MLE for the parameter of each arm

confidence intervals for the mean of each arm

Bandit algorithms based on Bayesian tools use:

Πt = (πt1, . . . , π
t
K) the current posterior over (θ1, ..., θK)

πta = p(θa|past observations from arm a)

One can separate tools and objectives:

Objective Frequentist Bayesian
algorithms algorithms

Regret ? ?

Bayes risk ? ?
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Regret minimization: Bayesian bandits, frequentist bandits Two probabilistic models

Our goal

We want to design Bayesian algorithm that are optimal
with respect to the frequentist regret
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Regret minimization: Bayesian bandits, frequentist bandits Frequentist optimality

Asymptotically optimal algorithms towards the regret

Na(t) the number of draws of arm a up to time t

Rn(θ) =

K∑
a=1

(µ∗ − µa)Eθ[Na(n)]

Lai and Robbins,1985 : every consistent algorithm satisfies

µa < µ∗ ⇒ lim inf
n→∞

Eθ[Na(n)]

lnn
≥ 1

KL(νθa , νθ∗)

A bandit algorithm is asymptotically optimal if

µa < µ∗ ⇒ lim sup
n→∞

Eθ[Na(n)]

lnn
≤ 1

KL(νθa , νθ∗)

Emilie Kaufmann (Telecom ParisTech) Bandits bayésiens Aussois, 28/08/13 15 / 36



Regret minimization: Bayesian bandits, frequentist bandits The optimism principle

A family of frequentist algorithms

The following heuristic defines a family of optimistic index policies:

For each arm a, compute a confidence interval on the unknown mean:

µa ≤ UCBa(t) w.h.p

Use the optimism-in-face-of-uncertainty principle:

’act as if the best possible model was the true model’

The algorithm chooses at time t

At = arg max
a

UCBa(t)
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Regret minimization: Bayesian bandits, frequentist bandits UCB

Towards optimal algorithms for Bernoulli bandits

UCB [Auer et al. 02] uses Hoeffding bounds:

UCBa(t) = p̂a(t) +

√
α log(t)

2Na(t)

where p̂a(t) = Sa(t)
Na(t)

is the empirical mean of arm a.

Finite-time bound:

E[Na(n)] ≤ K1

2(p∗ − pa)2
lnn+K2, with K1 > 1.
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Regret minimization: Bayesian bandits, frequentist bandits KL-UCB

Towards optimal algorithms for Bernoulli bandits

KL-UCB[Cappé et al. 2013] uses the index:

ua(t) = max {q ≥ p̂a(t) : Na(t)K(p̂a(t), q) ≤ log t+ c log log t}
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with

K(p, q) := KL (B(p),B(q)) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
Finite-time bound:

E[Na(n)] ≤ 1

K(pa, p∗)
lnn+ C
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Two Bayesian bandit algorithms Bayesian algorithms

UCBs versus Bayesian algorithms

Figure : Confidence intervals for the arms means after t rounds of a bandit game

Figure : Posterior over the arms means after t rounds of a bandit game

⇒ How do we exploit the posterior in a Bayesian bandit algorithm?
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Two Bayesian bandit algorithms The algorithm

The Bayes-UCB algorithm

Let :

Π0 = (π01, . . . , π
0
K) be a prior distribution over (θ1, ..., θK)

Λt = (λt1, . . . , λ
t
K) be the posterior over the means (µ1, ..., µK) a the

end of round t

The Bayes-UCB algorithm chooses at time t

At = argmax
a

Q

(
1− 1

t(log t)c
, λt−1a

)
where Q(α, π) is the quantile of order α of the distribution π.

For Benoulli bandits with uniform prior on the means:
θa = µa = pa Λt = Πt

θa
i.i.d∼ U([0, 1]) = Beta(1, 1)

λta = πta = Beta(Sa(t) + 1, Na(t)− Sa(t) + 1)
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Two Bayesian bandit algorithms Theoretical results

Theoretical results for Bernoulli bandits

Bayes-UCB is asymptotically optimal

Theorem [K.,Cappé,Garivier 2012]
Let ε > 0. The Bayes-UCB algorithm using a uniform prior over the arms
and with parameter c ≥ 5 satisfies

Eθ[Na(n)] ≤ 1 + ε

K(pa, p∗)
log(n) + oε,c (log(n)) .
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Two Bayesian bandit algorithms Theoretical results

Link to a frequentist algorithm

Bayes-UCB index is close to KL-UCB index: ũa(t) ≤ qa(t) ≤ ua(t)
with:

ua(t) = max

{
q ≥ Sa(t)

Na(t)
: Na(t)K

(
Sa(t)

Na(t)
, q

)
≤ log t+ c log log t

}
ũa(t) = max

{
q ≥ Sa(t)

Na(t) + 1
: (Na(t) + 1)K

(
Sa(t)

Na(t) + 1
, q

)
≤ log

(
t

Na(t) + 2

)
+ c log log t

}

Bayes-UCB appears to build automatically confidence intervals
based on Kullback-Leibler divergence, that are adapted to the
geometry of the problem in this specific case.
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Two Bayesian bandit algorithms The algorithm

Thompson Sampling

A randomized Bayesian algorithm:

∀a ∈ {1..K}, θa(t) ∼ πta
At = argmaxa µ(θa(t))

(Recent) interest for this algorithm:

a very old algorithm
[Thompson 1933]
partial analysis proposed
[Granmo 2010][May, Korda, Lee, Leslie 2012]

extensive numerical study beyond the Bernoulli case
[Chapelle, Li 2011]

first logarithmic upper bound on the regret
[Agrawal,Goyal 2012]
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Two Bayesian bandit algorithms The algorithm

Thompson Sampling (Bernoulli bandits)

A randomized Bayesian algorithm:

∀a ∈ {1..K}, θa(t) ∼ Beta(Sa(t) + 1, Na(t)− Sa(t) + 1)

At = argmaxa θa(t)
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Two Bayesian bandit algorithms Theoretical results

An optimal regret bound for Bernoulli bandits

Assume the first arm is the unique optimal arm.

Known result : [Agrawal,Goyal 2012]

E[Rn] ≤ C

(
K∑
a=2

1

p∗ − pa

)
ln(n) + oµ(ln(n))

Our improvement : [K.,Korda,Munos 2012]

Theorem ∀ε > 0,

E[Rn] ≤ (1 + ε)

(
K∑
a=2

p∗ − pa
K(pa, p∗)

)
ln(n) + oµ,ε(ln(n))
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Two Bayesian bandit algorithms Practical conclusion

In practise
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Two Bayesian bandit algorithms Practical conclusion

In practise

In the Bernoulli case, for each arm,

KL-UCB requires to solve an optimization problem:

ua(t) = max {q ≥ p̂a(t) : Na(t)K(p̂a(t), q) ≤ log t+ c log log t}

Bayes-UCB requires to compute one quantile of a Beta distribution

Thompson requires to compute one sample of a Beta distribution

Other advantages of Bayesian algorithms:

they easily generalize to more complex models...

...even when the posterior is not directly computable (using MCMC)

the prior can incorporate correlation between arms

Emilie Kaufmann (Telecom ParisTech) Bandits bayésiens Aussois, 28/08/13 30 / 36



Two Bayesian bandit algorithms Practical conclusion

In practise

In the Bernoulli case, for each arm,

KL-UCB requires to solve an optimization problem:

ua(t) = max {q ≥ p̂a(t) : Na(t)K(p̂a(t), q) ≤ log t+ c log log t}

Bayes-UCB requires to compute one quantile of a Beta distribution

Thompson requires to compute one sample of a Beta distribution

Other advantages of Bayesian algorithms:

they easily generalize to more complex models...

...even when the posterior is not directly computable (using MCMC)

the prior can incorporate correlation between arms

Emilie Kaufmann (Telecom ParisTech) Bandits bayésiens Aussois, 28/08/13 30 / 36



Conclusion and perspectives
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Conclusion and perspectives

Summary for regret minimization

Objective Frequentist Bayesian
algorithms algorithms

Regret KL-UCB Bayes-UCB
Thompson Sampling

Bayes risk KL-UCB Gittins algorithm
for finite horizon

Future work:

Is Gittins algorithm optimal with respect to the regret?

Are our Bayesian algorithms efficient with respect to the Bayes risk?
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Conclusion and perspectives

Bayesian algorithm for pure-exploration?

At round t, the KL-LUCB algorithm ([K., Kalyanakrishnan, 13])

draws two well-chosen arms: ut and lt
stops when CI for arms in J(t) and J(t)c are separated

recommends the set of m empirical best arms

0

1

58 118 346 330 120 72

m=3. Set J(t), arm lt in bold Set J(t)c, arm ut in bold
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Conclusion and perspectives

Bayesian algorithm for pure-exploration?

KL-LUCB uses KL-confidence intervals:

La(t) = min {q ≤ p̂a(t) : Na(t)K(p̂a(t), q) ≤ β(t, δ)} ,
Ua(t) = max {q ≥ p̂a(t) : Na(t)K(p̂a(t), q) ≤ β(t, δ)} .

We use β(t, δ) = log
(
k1Ktα

δ

)
to make sure P(S = S∗m) ≥ 1− δ.

0

1

58 118 346 330 120 72

⇒ How to propose a Bayesian algorithm that adapts to δ?
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Conclusion and perspectives

Conclusion

Regret minimization: Go Bayesian!

Bayes-UCB show striking similarities with KL-UCB

Thompson Sampling is an easy-to-implement alternative to the
optimistic approach

both algorithms are asymptotically optimal towards frequentist regret
(and more efficient in practise)

TODO list:

Go deeper into the link between Bayes risk and (frequentist) regret
(Gittins’ frequentist optimality?)

Obtain theoretical guarantees for Bayes-UCB and Thompson
Sampling beyond Bernoulli bandit models (e.g. when rewards belong
to the exponential family)

Develop Bayesian algorithm for the pure-exploration objective?
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