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Historical perspective

1952 Robbins, formulation of the MAB problem

1985 Lai and Robbins : lower bound, first asymptotically optimal algorithm

1987 Lai, asymptotic regret of kl-UCB

1995 Agrawal, UCB algorithms

1995 Katehakis and Robbins, a UCB algorithm for Gaussian bandits

2002 Auer et al : UCB1 with finite-time regret bound

2009 UCB-V, MOSS...

2011,13 Cappé et al : finite-time regret bound for kl-UCB
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Historical perspective

1933 Thompson : a Bayesian mechanism for clinical trials

1952 Robbins, formulation of the MAB problem

1956 Bradt et al, Bellman : optimal solution of a Bayesian MAB problem

1979 Gittins : first Bayesian index policy

1985 Lai and Robbins : lower bound, first asymptocally optimal algorithm

1985 Berry and Fristedt : Bandit Problems, a survey on the Bayesian MAB

1987 Lai, asymptotic regret of kl-UCB + study of its Bayesian regret

1995 Agrawal, UCB algorithms

1995 Katehakis and Robbins, a UCB algorithm for Gaussian bandits

2002 Auer et al : UCB1 with finite-time regret bound

2009 UCB-V, MOSS...

2010 Thompson Sampling is re-discovered

2011,13 Cappé et al : finite-time regret bound for kl-UCB

2012,13 Thompson Sampling is asymptotically optimal
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Recap : the multi-armed bandit setup

ν = (ν1, . . . , νK ) set of arms
νa has mean µa

At round t, an agent :

I chooses an arm At (based on past observation)

I receives a reward Rt ∼ νAt

(Ya,s)s∈N? : stream of successive rewards from arm a, i.i.d. under νa
Rt = Ya,Na(t) where Na(t) =

∑t
s=1 1(As = a)

Goal : Maximize E
[∑T

t=1 Rt

]
↔ minimize the regret

Rν(T ) = Eν

[
T∑
t=1

(µ? − µAt )

]
=

K∑
a=1

(µ? − µa)Eν [Na(T )]
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Recap : the multi-armed bandit setup

ν = (νµ1 , . . . , νµK ) set of arms (parametric distributions)
νµa has mean µa

At round t, an agent :

I chooses an arm At (based on past observation)

I receives a reward Rt ∼ νAt

(Ya,s)s∈N? : stream of successive rewards from arm a, i.i.d. under νa
Rt = Ya,Na(t) where Na(t) =

∑t
s=1 1(As = a)

Goal : Maximize E
[∑T

t=1 Rt

]
↔ minimize the regret

Rµ(T ) = Eµ

[
T∑
t=1

(µ? − µAt )

]
=

K∑
a=1

(µ? − µa)Eµ[Na(T )]
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Two probabilistic models

νµ = (νµ1 , . . . , νµK ) ∈ (P)K .

I Two probabilistic models

Frequentist model Bayesian model
µ1, . . . , µK µ1, . . . , µK drawn from a

unknown parameters prior distribution : µ ∼ π

arm a : (Ya,s)s
i.i.d.∼ νµa arm a : (Ya,s)s |µ

i.i.d.∼ νµa

Frequentist regret Bayesian regret
(regret) (Bayes risk)

Rµ(A,T )= Eµ

[∑T
t=1 (µ? − µAt )

]
Rπ(A,T )= Eµ∼π

[∑T
t=1 (µ? − µAt )

]
=
∫
Rµ(A,T )dπ(µ)

Particular case : product prior π = (π1 ⊗ · · · ⊗ πK )
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Two types of algorithms

I Two types of tools to build bandit algorithms :

Frequentist tools Bayesian tools

MLE estimators of the means Posterior distributions
Confidence Intervals πt

a = L(µa|Ya,1, . . . ,Ya,Na(t))

0

1

9 3 448 18 21

0

1

6 3 451 5 34

Remark : Tools 6= objective !

Ü we can analyze the (frequentist) regret of Bayesian algorithms
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Two types of algorithms

I Two types of tools to build bandit algorithms :

Frequentist tools Bayesian tools

MLE estimators of the means Posterior distributions
Confidence Intervals πt

a = L(µa|Ya,1, . . . ,Ya,Na(t))

0

1

9 3 448 18 21

0

1

6 3 451 5 34

Remark : Tools 6= objective !

Ü we can analyze the Bayes risk of frequentist algorithms
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Example : Bernoulli bandits

Bernoulli bandit model µ = (µ1, . . . , µK )

I Bayesian view : µ1, . . . , µK are random variables

prior distribution : µa
i.i.d.∼ U([0, 1])

Ü posterior distribution :

πa(t) = L (µa|R1, . . . ,Rt)

= Beta
(
Sa(t)︸ ︷︷ ︸
#ones

+1,Na(t)− Sa(t)︸ ︷︷ ︸
#zeros

+1
)

Na(t) =
∑t

s=1 1(As=a) number of observations from arm a

Sa(t) =
∑t

s=1 Rs1(As=a) sum of the rewards from arm a
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Example : Gaussian bandits

Gaussian bandit model µ = (µ1, . . . , µK ), known variance σ2

I Bayesian view : µ1, . . . , µK are random variables

prior distribution : µa
i.i.d.∼ N (0, κ2)

Ü posterior distribution :

πa(t) = L (µa|R1, . . . ,Rt)

= N

(
Sa(t)

Na(t) + σ2

κ2

,
σ2

Na(t) + σ2

κ2

)

Na(t) =
∑t

s=1 1(As=a) number of observations from arm a

Sa(t) =
∑t

s=1 Rs1(As=a) sum of the rewards from arm a
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Bayesian algorithms

A Bayesian bandit algorithm exploits the posterior distributions of the
means to decide which arm to select.

0

1

2 4 346 107 40
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Outline

1 Bayesian Optimal Solution and Gittins Indices

2 A Bayesian view on optimism

3 Thompson Sampling

4 Re-sampling methods
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Bayesian optimal solution

Bernoulli bandit model (B(µ1), . . . ,B(µK ))

πt
a = Beta

(
Sa(t)︸ ︷︷ ︸
#ones

+1,Na(t)− Sa(t)︸ ︷︷ ︸
#zeros

+1
)

The posterior distribution is fully summarized by a matrix containing the
two parameters of the Beta distribution for each arm.

Πt =


1 3
4 4

14 5
6 3
2 4


“State” Πt
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A Markov Decision Process

After each arm selection At , we receive a reward Rt such that

P
(
Rt = 1|Πt−1 = Π,At = a

)
=

Πt−1(a, 1)

Πt−1(a, 1) + Πt−1(a, 2)︸ ︷︷ ︸
mean of πa(t−1)

and the posterior gets updated :

Πt(At , 1) = Πt−1(At , 1) + Rt

Πt(At , 2) = Πt−1(At , 2) + (1− Rt)

Example of transition :1 2
5 1
0 2

 At=2−→

1 2
6 1
0 2

 if Rt = 1

Ü Markov Decision Process with S = {possible posteriors Π},
A = {1, . . . ,K} and known dynamics
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A Markov Decision Process

After each arm selection At , we receive a reward Rt such that

P
(
Rt = 1|Πt−1 = Π,At = a

)
=
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Ü Markov Decision Process with S = {possible posteriors Π},
A = {1, . . . ,K} and known dynamics
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Solving the MDP

Solving the Bayesian bandit problem (i.e. minimizing Bayes risk)
↔ maximizing rewards in some Markov Decision Process

There exists an exact solution to

I The finite-horizon MAB :

argmax
(At)

Eµ∼π

[
T∑
t=1

Rt

] I The discounted MAB :

argmax
(At)

Eµ∼π

[ ∞∑
t=1

γt−1Rt

]

[Berry and Fristedt, Bandit Problems, 1985]

Optimal solution : solution to dynamic programming equations.

Problem : The state space is very large (if not infinite)

 often intractable
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Optimal solution : tractability

For the Finite-Horizon case, the optimal policy can be computed using
backwards induction : V ?

T+1 = 0 and

V ?
h (Π) = max

a∈{1,...,K}

(
Eµ∼Π [µa] + EX∼νµa

µa∼µ

[
V ?
h+1 (Πa,X )

])
Πa,X : new posterior obtained from Π after an additional reward X from arm a

Bernoulli bandits :

V ?
h (Π) = max

a∈{1,...,K}

(
Π(a, 1)

Π(a, 1) + Π(a, 2)
+

Π(a, 1)

Π(a, 1) + Π(a, 2)
V ?

h+1 (Πa,1)

+
Π(a, 2)

Π(a, 1) + Π(a, 2)
V ?

h+1 (Πa,0)

)
Ü requires a lot of memory !
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Gittins indices

[Gittins, 1979] : for product priors, the solution of the discounted MAB

argmax
(At)

Eµ∼π

[ ∞∑
t=1

γt−1Rt

]
is an index policy :

At+1 = argmax
a=1...K

Gγ(πa(t)).

I The Gittins indices :

Gγ(p) = inf
{
λ ∈ R : V ∗γ (p, λ) = 0

}
,

with

V ∗γ (p, λ) = sup
stopping

times τ>0

E
Yt

i.i.d∼B(µ)
µ∼p

[
τ∑

t=1

γt−1(Yt − λ)

]
.

“price worth paying for committing to arm µ ∼ p
when rewards are discounted by γ”
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Gittins indices for finite horizon ?

The solution of the finite horizon MAB

argmax
(At)

Eµ∼π

[
T∑
t=1

Rt

]

is NOT an index policy. [Berry and Fristedt, 1985]

I Finite-Horizon Gittins indices :
depend on the remaining time to play r

G (p, r) = inf{λ ∈ R : V ∗r (p, λ) = 0},
with

V ∗r (p, λ) = sup
stopping times

0<τ≤r

E
Yt

i.i.d∼B(µ)
µ∼p

[
τ∑

t=1

(Yt − λ)

]
.

“price worth paying for playing arm µ ∼ p for at most r rounds”
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Finite Horizon Gittins algorithm

FH-Gittins algorithm :

At+1 = argmax
a=1...K

G (πa(t),T − t)

does NOT coincide with the Bayesian optimal solution but is conjectured
to be a good approximation !
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Dynamic Programming solution

FH−Gittins algorithm

I good performance in terms of (frequentist) regret as well

I logarithmic regret proved for Gaussian bandits [Lattimore, 2016]

I Gittins indices remain costly compared to UCB [Nino-Mora, 2011]
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Outline

1 Bayesian Optimal Solution and Gittins Indices

2 A Bayesian view on optimism

3 Thompson Sampling

4 Re-sampling methods
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Approximations of the FH-Gittins indices

I [Burnetas and Katehakis, 2003] : when r is large,

G (πa(t − 1), r) ' max

{
q : Na(t)× kl (µ̂a(t), q) ≤ log

(
r

Na(t)

)}

I [Lai, 87] : the index policy associated to

Ia(t) = max

{
q : Na(t)× kl (µ̂a(t), q) ≤ log

(
T

Na(t)

)}

is a good approximation of the Bayesian solution for large T .

Ü looks like the kl-UCB index, with a different exploration rate...
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Bayes-UCB

I Π0 = (π1(0), . . . , πK (0)) be a prior distribution over (µ1, ..., µK )

I Πt = (π1(t), . . . , πK (t)) be the posterior distribution over the means
(µ1, ..., µK ) after t observations

Bayes-UCB selects at time t + 1

At+1 = argmax
a=1,...,K

Q

(
1− 1

t(log t)c
, πa(t)

)
where Q(α, π) is the quantile of order α of the distribution π.

α

Q(α,π)
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Bayes-UCB

I Π0 = (π1(0), . . . , πK (0)) be a prior distribution over (µ1, ..., µK )

I Πt = (π1(t), . . . , πK (t)) be the posterior distribution over the means
(µ1, ..., µK ) after t observations

Bayes-UCB selects at time t + 1

At+1 = argmax
a=1,...,K

Q

(
1− 1

t(log t)c
, πa(t)

)
where Q(α, π) is the quantile of order α of the distribution π.

Bernoulli reward with uniform prior :

I πa(0)
i.i.d∼ U([0, 1]) = Beta(1, 1)

I πa(t) = Beta(Sa(t) + 1,Na(t)− Sa(t) + 1)
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Bayes-UCB

I Π0 = (π1(0), . . . , πK (0)) be a prior distribution over (µ1, ..., µK )

I Πt = (π1(t), . . . , πK (t)) be the posterior distribution over the means
(µ1, ..., µK ) after t observations

Bayes-UCB selects at time t + 1

At+1 = argmax
a=1,...,K

Q

(
1− 1

t(log t)c
, πa(t)

)
where Q(α, π) is the quantile of order α of the distribution π.

Gaussian rewards with Gaussian prior :

I πa(0)
i.i.d∼ N (0, κ2)

I πa(t) = N
(

Sa(t)
Na(t)+σ2/κ2 ,

σ2

Na(t)+σ2/κ2

)
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Bayes UCB in action

0

1

6 19 443 4 27
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Theoretical guarantees

I Bayes-UCB is asymptotically optimal for Bernoulli rewards

Theorem [Kaufmann et al., 2012a]

Let ε > 0. The Bayes-UCB algorithm using a uniform prior over the arms
and parameter c ≥ 5 satisfies

Eµ[Na(T )] ≤ 1 + ε

kl(µa, µ?)
log(T ) + oε,c (log(T )) .

Why ? posterior quantile ' kl-UCB index : ũa(t) ≤ qa(t) ≤ ua(t) where

ua(t) = max

{
q : kl

(
Sa(t)

Na(t)
, q

)
≤ log(t) + c log(log(t))

Na(t)

}

ũa(t) = max

q : kl

(
Sa(t)

Na(t) + 1
, q

)
≤

log
(

t
Na(t)+2

)
+ c log(log(t))

(Na(t) + 1)
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Outline

1 Bayesian Optimal Solution and Gittins Indices

2 A Bayesian view on optimism

3 Thompson Sampling

4 Re-sampling methods
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Historical perspective

1933 Thompson : in the context of clinical trial with two treatments, the
allocation of a treatment should be some increasing function of its
posterior probability to be optimal

2010 Thompson Sampling rediscovered under different names

Bayesian Learning Automaton [Granmo, 2010]

Randomized probability matching [Scott, 2010]

2011 An empirical evaluation of Thompson Sampling : an efficient algorithm,
beyond simple bandit models

[Chapelle and Li, 2011]

2012 First (logarithmic) regret bound for Thompson Sampling

[Agrawal and Goyal, 2012]

2012 Thompson Sampling is asymptotically optimal for Bernoulli bandits

[Kaufmann et al., 2012b, Agrawal and Goyal, 2013]

2013- Many successful uses of Thompson Sampling beyond Bernoulli bandits
(contextual bandits, reinforcement learning)
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Thompson Sampling

Two equivalent interpretations :

I “select an arm at random according to its probability of being the best”

I “draw a possible bandit model from the posterior distribution and act
optimally in this sampled model” 6= optimistic

Thompson Sampling : a randomized Bayesian algorithm{
∀a ∈ {1..K}, θa(t) ∼ πa(t)
At+1 = argmax

a=1...K
θa(t).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

μ
1

θ
1
(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

μ
2

θ
2
(t)

Emilie Kaufmann |CRIStAL - 25



Thompson Sampling is asymptotically optimal

Problem-dependent regret

∀ε > 0, Eµ[Na(T )] ≤ (1 + ε)
1

kl(µa, µ?)
log(T ) + oµ,ε(log(T )).

This results holds :

I for Bernoulli bandits, with a uniform prior
[Kaufmann et al., 2012b, Agrawal and Goyal, 2013]

I for Gaussian bandits, with Gaussian prior [Agrawal and Goyal, 2017]

I for exponential family bandits, with Jeffrey’s prior
[Korda et al., 2013]

Problem-independent regret [Agrawal and Goyal, 2017]

For Bernoulli and Gaussian bandits, Thompson Sampling satisfies

Rµ(TS,T ) = O
(√

KT log(T )
)
.

Emilie Kaufmann |CRIStAL - 26



Understanding Thompson Sampling

I a key ingredient in the analysis of [Kaufmann et al., 2012b]

Proposition

There exists constants b = b(µ) ∈ (0, 1) and Cb <∞ such that
∞∑
t=1

P
(
N1(t) ≤ tb

)
≤ Cb.

{
N1(t) ≤ tb

}
= {there exists a time range of length at least t1−b − 1

with no draw of arm 1 }
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Practical performance

I Short horizon, T = 1000

2 arms Bernoulli bandit problem
µ1 = 0.2, µ2 = 0.25
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Regret as a function of time
(averaged over N = 10000 runs)
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Practical performance

I Long horizon, T = 20000

10 arms Bernoulli bandit problem
µ = [0.1 0.05 0.05 0.05 0.02 0.02 0.02 0.01 0.01 0.01]

Regret as a function of time
(average over N = 50000 runs)
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Non parametric algorithms

Thompson Sampling relies on a parametric assumption to maintain a
posterior distribution

I Gaussian rewards with known variance : TS with Gaussian prior

I Bernoulli rewards∗ : TS with Beta prior

Idea : replace the posterior sampling step by a non-parametric
history-resampling method

∗A binarization trick can be used to handle more general bounded rewards
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Perturbed History Exploration

First idea : Non-parameteric Bootstrap

I Ha,t = (Ya,1, . . . ,Ya,Na(t)) : history of collected rewards from arm a

I sample Na(t) rewards from Ha,t with replacement, and average
them to define an index Ba(t)

I At+1 = argmaxa Ba(t)

[Kveton et al., 2019b] : linear regret even for two Bernoulli arms

Ü possible fix : Perturbing the history

Perturbed History Exploration (PHE)

Ba(t) is the empirical means of the rewards in Ha,t and a× Na(t) fake
rewards drawn iid from B(1/2)

Ü a > 2 : logarithmic regret for bounded rewards in [0, 1]
[Kveton et al., 2019a]
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Non Parametric Thompson Sampling

Context : rewards bounded in [0,B]
Idea : random re-weighting of the augmented history

[Riou and Honda, 2020]

Index of arm a after t rounds

I Ha,t = (Ya,1, . . . ,Ya,Na(t),B) : history of collected rewards from arm
a augmented by the upper bound B on the support

I wa,t ∼ Dir(1, . . . , 1︸ ︷︷ ︸
Na(t)+1

) a random probability vector

Ba(t) =

Na(t)∑
s=1

wa,t(s)Ya,s + Bwa,Na(t)+1
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Non Parametric Thompson Sampling

Context : rewards bounded in [0,B]
Idea : random re-weighting of the augmented history

[Riou and Honda, 2020]

Index of arm a after t rounds

I Ha,t = (Ya,1, . . . ,Ya,Na(t),B) : history of collected rewards from arm
a augmented by the upper bound B on the support

I wa,t ∼ Dir(1, . . . , 1︸ ︷︷ ︸
Na(t)+1

) a random probability vector

Ba(t) = mean
(
F̃a,t

)
where F̃a,s =

Na(t)∑
s=1

wa,t(s)δYa,s + wa,Na(t)+1δB

(perturbed CDF view)
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Non Parameteric Thompson Sampling

Let B be the set of distributions that are supported on [0,B].

Theorem [Riou and Honda, 2020]

On an instance ν = (ν1, . . . , νK ) such that νa ∈ B for all a.

Rν(NPTS,T ) ≤
∑

a:µa<µ?

∆a logT

Kinf(νa, µ?)
+ o(logT ) .

where Kinf(ν, µ) = inf {KL (ν, ν′) : ν′ ∈ B : EX∼ν′ [X ] ≥ µ}.

Ü matching the lower bound of [Burnetas and Katehakis, 1996]
for general (possibly non-parametric) reward distributions
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A sub-sampling alternative

Idea : perform fair comparisons between pairs of arms (duels)
[Baransi et al., 2014, Chan, 2020, Baudry et al., 2020]

Sub-Sampling Duelling Algorithms (SDA) use a round-based structure

1 Find the leader : arm with largest number of observations

2 Organize K − 1 duels : leader vs challengers.

3 Draw a set of arms : winning challengers xor leader .

How do duels work ?

I challenger : compute µ̂c , the empirical mean

I leader : compute µ̃`, the mean of a sub-sample of the same size as
the history of the challenger.

I challenger wins if µ̂c ≥ µ̃`
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Random Block SDA

Input of SDA : how to sub-sample n elements from N ?

I Random-Block Sampling (RB-SDA) : return a block of size n
starting from random n0 ∼ U([1,N − n])

Theorem [Baudry et al., 2020]

RB-SDA is asymptotically optimal for any bandit model whose rewards
belong to an exponential family (e.g. Bernoulli, Gaussian with known
variance, Poisson, Exponential).

... but it can fail for some other distributions
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Practical performance

Average Regret on N = 10000 random instances with K = 10 arms

I Bernoulli arms

T TS (Beta) PHE SSMC RB-SDA
100 13.8 16.7 16.5 14.8
1000 27.8 39.5 34.2 31.8
10000 45.8 72.3 55.0 51.1
20000 52.2 85.6 61.9 57.7

I Gaussian arms

T TS (Gaussian) SSMC RB-SDA
100 41.2 40.6 38.1
1000 76.4 76.2 70.4
10000 118.5 120.1 111.8
20000 132.6 135.1 125.7

Emilie Kaufmann |CRIStAL - 37



Conclusion

Bayesian (inspired) algorithms

I are competitive alternative to optimistic approaches
(but their analysis is generally harder)

I are flexible algorithms that can be used whenever a prior/posterior
pair is available

I ... and even beyond

Bayesian algorithms

I can be extended to more complex (e.g. contextual) bandit models

I and to exploration strategies for reinforcement learning

[Osband et al., 2013, Tiapkin et al., 2022]
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Thompson Sampling for RL

MDP M is drawn from some prior distribution ν0.

νt ∈ ∆(M) : posterior distribution over the set of MDPs

Optimism Posterior Sampling
Set of possible MDPs Posterior distribution over MDPs

Compute the optimistic MDP Sample from the posterior distribution
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Posterior Sampling for RL

Algorithm 1: PSRL in episodic MDPs

Input : Prior distribution ν0

1 for t = 1, 2, . . . do
2 s1 ∼ ρ \\ get the starting state of episode t

3 Sample M̃t ∼ νt−1 \\ sample an MDP from the current posterior distribution

4 Compute π̃t an optimal policy for M̃t

5 for h = 1, . . . ,H do
6 ah = π̃t

h(sh) \\ choose next action according to π̃t

7 rh, sh+1 = step(sh, ah)

8 end

9 Compute νt based on νt−1 and {(sh, ah, rh, sh+1)}Hh=1

10 end

[Strens, 2000, Osband et al., 2013, Agrawal and Jia, 2017]
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