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Why bandits ?

I one-armed bandit = old name for a slot machine

an agent facing arms in a Multi-Armed Bandit

Ü How to sequentially chose which arm to pull in order to maximize our profit ?
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Sequential resource allocation

Clinical trials

I K treatment for a given symptom (with unknown effect)

I Which treatment should be allocated to the next patient based on
responses observed on previous patients ?

Online advertisement

I K adds that can be displayed

I Which add should be displayed for a user, based on the previous
clicks of previous (similar) users ?
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Dynamic allocation of computational resource

Numerical experiments :

I where to evaluate a costly function in order to find its maximum ?

Artificial intelligence for games :

I how to choose the next game to simulate in order to find the best
move to play next ?
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Outline

1 The multi-armed bandit problem

2 Fixing the greedy strategy

3 Upper Confidence Bound (UCB) algorithms

4 Towards optimal algorithms
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The Multi-Armed Bandit Setting

K arms ↔ K rewards streams (Xa,t)t∈N

At round t, an agent :

I chooses an arm At

I receives a reward Rt = XAt ,t

Sequential sampling strategy (bandit algorithm) :

At+1 = Ft(A1,R1, . . . ,At ,Rt).

Goal : Maximize
∑T

t=1 Rt .
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The Stochastic Multi-Armed Bandit Setting

K arms ↔ K probability distributions : νa has mean µa

ν1 ν2 ν3 ν4 ν5

At round t, an agent :

I chooses an arm At

I receives a reward Rt = XAt ,t ∼ νAt

Sequential sampling strategy (bandit algorithm) :

At+1 = Ft(A1,R1, . . . ,At ,Rt).

Goal : Maximize E
[∑T

t=1 Rt

]
Ü a particular reinforcement learning problem

.
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Clinical trials

Historical motivation [Thompson, 1933]

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

For the t-th patient in a clinical study,

I chooses a treatment At

I observes a response Rt ∈ {0, 1} : P(Rt = 1|At = a) = µa

Goal : maximize the expected number of patients healed
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Online content optimization

Modern motivation ($$) [Li et al., 2010]
(recommender systems, online advertisement)

ν1 ν2 ν3 ν4 ν5

For the t-th visitor of a website,

I recommend a movie At

I observe a rating Rt ∼ νAt (e.g. Rt ∈ {1, . . . , 5})

Goal : maximize the sum of ratings

Emilie Kaufmann |CRIStAL - 8



Regret of a bandit algorithm

Bandit instance : ν = (ν1, ν2, . . . , νK ), mean of arm a : µa = EX∼νa [X ].

µ? = max
a∈{1,...,K}

µa a? = argmax
a∈{1,...,K}

µa.

Maximizing rewards ↔ selecting a? as much as possible
↔ minimizing the regret [Robbins, 1952]

Rν(A,T ) := Tµ?︸︷︷︸
sum of rewards of
an oracle strategy

always selecting a?

− E

[
T∑
t=1

Rt

]
︸ ︷︷ ︸

sum of rewards of
the strategyA

What regret rate can we achieve ?

Ü consistency : Rν(A,T )
T → 0

Ü can we be more precise ?
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Regret decomposition

Na(t) : number of selections of arm a in the first t rounds
∆a := µ? − µa : sub-optimality gap of arm a

Regret decomposition

Rν(A,T ) =
K∑

a=1

∆aE [Na(T )] .

Proof.

Rν(A,T ) = µ?T − E

[
T∑
t=1

XAt ,t

]
= µ?T − E

[
T∑
t=1

µAt

]

= E

[
T∑
t=1

(µ? − µAt )

]

=
K∑

a=1

µ? − µa︸ ︷︷ ︸
∆a

E
[ T∑

t=1

1(At = a)︸ ︷︷ ︸
Na(T )

]
.
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Regret decomposition

Na(t) : number of selections of arm a in the first t rounds
∆a := µ? − µa : sub-optimality gap of arm a

Regret decomposition

Rν(A,T ) =
K∑

a=1

∆aE [Na(T )] .

A strategy with small regret should :

I select not too often arms for which ∆a > 0

I ... which requires to try all arms to estimate the values of the ∆a’s

⇒ Exploration / Exploitation trade-off
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The greedy strategy

Select each arm once and, for t ≥ K , exploit the current knowledge :

At+1 = argmax
a∈[K ]

µ̂a(t)

where

I Na(t) =
∑t

s=1 1(As = a) is the number of selections of arm a

I µ̂a(t) = 1
Na(t)

∑t
s=1 Xs1(As = a) is the empirical mean of the

rewards collected from arm a

Properties :

- a simple (non-parametric) algorithm

, suffers linear regret

e.g. in a two armed Bernoulli bandit with means µ1 > µ2

Rν(T ) ≥ (1− µ1)µ2(µ1 − µ2)× (T − 1)

Emilie Kaufmann |CRIStAL - 11



The greedy strategy

Select each arm once and, for t ≥ K , exploit the current knowledge :

At+1 = argmax
a∈[K ]

µ̂a(t)

where

I Na(t) =
∑t

s=1 1(As = a) is the number of selections of arm a

I µ̂a(t) = 1
Na(t)

∑t
s=1 Xs1(As = a) is the empirical mean of the

rewards collected from arm a

Properties :

- a simple (non-parametric) algorithm

, suffers linear regret

e.g. in a two armed Bernoulli bandit with means µ1 > µ2

Rν(T ) ≥ (1− µ1)µ2(µ1 − µ2)× (T − 1)

Emilie Kaufmann |CRIStAL - 11



Outline

1 The multi-armed bandit problem

2 Fixing the greedy strategy

3 Upper Confidence Bound (UCB) algorithms

4 Towards optimal algorithms
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Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
I draw each arm m times

I compute the empirical best arm â = argmaxa µ̂a(Km)

I keep playing this arm until round T

At+1 = â for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Rν(ETC,T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× P (µ̂2,m ≥ µ̂1,m)

µ̂a,m : empirical mean of the first m observations from arm a
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Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
I draw each arm m times

I compute the empirical best arm â = argmaxa µ̂a(Km)

I keep playing this arm until round T

At+1 = â for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Rν(ETC,T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× P (µ̂2,m ≥ µ̂1,m)

µ̂a,m : empirical mean of the first m observations from arm a
→ requires a concentration inequality
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Technical tool : Concentration Inequalities

Sub-Gaussian random variables : Z − µ is σ2-subGaussian if

E[Z ] = µ and E
[
eλ(Z−µ)

]
≤ e

λ2σ2

2 . (1)

I νa bounded in [0, 1] : 1/4 sub-Gaussian

I νa = N (µa, σ
2) : σ2 sub-Gaussian

Hoeffding inequality

Zi i.i.d. satisfying (1). For all s ≥ 1

P
(
Z1 + · · ·+ Zs

s
≥ µ+ x

)
≤ e−

sx2

2σ2
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Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
I draw each arm m times

I compute the empirical best arm â = argmaxa µ̂a(Km)

I keep playing this arm until round T

At+1 = â for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Assumption : ν1, ν2 are bounded in [0, 1].

Rν(T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× P (µ̂2,m ≥ µ̂1,m)

µ̂a,m : empirical mean of the first m observations from arm a
→ Hoeffding’s inequality
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Assumption : ν1, ν2 are bounded in [0, 1].

Rν(T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× exp(−m∆2/2)

µ̂a,m : empirical mean of the first m observations from arm a
→ Hoeffding’s inequality
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Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
I draw each arm m times

I compute the empirical best arm â = argmaxa µ̂a(Km)

I keep playing this arm until round T

At+1 = â for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Assumption : ν1, ν2 are bounded in [0, 1].

For m = 2
∆2 log

(
T∆2

2

)
,

Rν(ETC,T ) ≤ 2

∆

[
log

(
T∆2

2

)
+ 1

]
.

+ logarithmic regret !

− requires the knowledge of T and ∆
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Sequential Explore-Then-Commit

I explore uniformly until a random time of the form

τ = inf

{
t ∈ N : |µ̂1(t)− µ̂2(t)| >

√
c log(T/t)

t

}

0 200 400 600 800 1000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

I âτ = argmax a µ̂a(τ) and (At+1 = âτ ) for t ∈ {τ + 1, . . . ,T}

Ü [Garivier et al., 2016] for two Gaussian arms, for c = 8, same regret
as ETC, without the knowledge of ∆

Ü ... but larger regret as that of the best fully sequential strategy
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Another possible fix : ε-greedy

The ε-greedy rule [Sutton and Barto, 1998] is a simple randomized way
to alternate exploration and exploitation.

ε-greedy strategy

At round t,

I with probability ε
At ∼ U({1, . . . ,K})

I with probability 1− ε

At = argmax
a=1,...,K

µ̂a(t).

Ü Linear regret : Rν (ε-greedy,T ) ≥ εK−1
K ∆minT .

∆min = min
a:µa<µ?

∆a
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Another possible fix : ε-greedy

εt-greedy strategy

At round t,

I with probability εt := min
(
1, K

d2t

)
At ∼ U({1, . . . ,K})

I with probability 1− εt
At = argmax

a=1,...,K
µ̂a(t − 1).

Theorem [Auer et al., 2002]

If 0 < d ≤ ∆min, Rν (εt-greedy,T ) = O
(

K log(T )
d2

)
.

Ü requires the knowledge of a lower bound on ∆min...
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Outline

1 The multi-armed bandit problem

2 Fixing the greedy strategy

3 Upper Confidence Bound (UCB) algorithms

4 Towards optimal algorithms
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The optimism principle

Step 1 : construct a set of statistically plausible models

I For each arm a, build a confidence interval on the mean µa :

Ia(t) = [LCBa(t),UCBa(t)]

LCB = Lower Confidence Bound
UCB = Upper Confidence Bound

Figure – Confidence intervals on the means after t rounds
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The optimism principle

Step 2 : act as if the best possible model were the true model
(optimism in face of uncertainty)

Figure – Confidence intervals on the means after t rounds

I That is, select

At+1 = argmax
a=1,...,K

UCBa(t).
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How to build confidence intervals ?

We need UCBa(t) such that

P (µa ≤ UCBa(t)) & 1− t−1.

Ü tool : concentration inequalities

Example : rewards are σ2 sub-Gaussian

Hoeffding inequality, reloaded

Zi i.i.d. satisfying (1). For all s ≥ 1

P
(
Z1 + · · ·+ Zs

s
< µ− x

)
≤ e−

sx2

2σ2
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How to build confidence intervals ?

We need UCBa(t) such that

P (µa ≤ UCBa(t)) & 1− t−1.

Ü tool : concentration inequalities

Example : rewards are σ2 sub-Gaussian

Hoeffding inequality, reloaded

Zi i.i.d. satisfying (1). For all s ≥ 1

P
(
Z1 + · · ·+ Zs

s
< µ− x

)
≤ e−

sx2

2σ2

"Cannot be used directly in a bandit model as the number of
observations from each arm is random !
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How to build confidence intervals ?

I Na(t) =
∑t

s=1 1(As=a) number of selections of a after t rounds

I µ̂a,s = 1
s

∑s
k=1 Ya,k average of the first s observations from arm a

I µ̂a(t) = µ̂a,Na(t) empirical estimate of µa after t rounds

Hoeffding inequality + union bound

P

(
µa ≤ µ̂a(t) +

√
6σ2 log(t)

Na(t)

)
≥ 1− 1

t2

Proof.

P

(
µa > µ̂a(t) +

√
6σ2 log(t)

Na(t)

)
≤ P

(
∃s ≤ t : µa > µ̂a,s +

√
6σ2 log(t)

s

)

≤
t∑

s=1

P

(
µ̂a,s < µa −

√
6σ2 log(t)

s

)
≤

t∑
s=1

1

t3
=

1

t2
.
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A first UCB algorithm

UCB(α) selects At+1 = argmaxa UCBa(t) where

UCBa(t) = µ̂a(t)︸ ︷︷ ︸
exploitation term

+

√
α log(t)

Na(t)︸ ︷︷ ︸
exploration bonus

.

I popularized by [Auer et al., 2002] for bounded rewards :
UCB1, for α = 2

I the analysis of UCB(α) was further refined to hold for α > 1/2 in
that case [Bubeck, 2010, Cappé et al., 2013]
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A UCB algorithm in action
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Regret of UCB(α)

Theorem

For σ2-subGaussian rewards, the UCB algorithm with parameter α = 6σ2

satisfies, for any sub-optimal arm a,

Eµ[Na(T )] ≤ 24σ2

∆2
a

log(T ) + 1 +
π2

3

where ∆a = µ? − µa.

Proof :
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A worse-case regret bound

Corollary

Rν(UCB(6σ2),T ) ≤ 10
√
KT log(T ) +

(
1 +

π2

3

)( K∑
a=1

∆a

)

Proof. For any algorithm satisfying E[Na(T )] ≤ C log(T )
∆a

+ D for all
sub-optimal arm a, for any ∆ > 0,

Rν(T ) =
∑

a:∆a≤∆

∆aE[Na(T )] +
∑

a:∆a≥∆

∆aE[Na(T )]

≤ ∆T +
∑

a:∆a≥∆

(
C

log(T )

∆a
+ D∆a

)

≤ ∆T +
CK log(T )

∆
+ D

(
K∑

a=1

∆a

)

= 2
√

CKT log(T ) + D

(
K∑

a=1

∆a

)
for ∆ =

√
CK log(T )

T
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An improved problem-dependent result

Context : σ2 sub-Gaussian rewards

UCBa(t) = µ̂a(t) +

√
2σ2(log(t) + c log log(t))

Na(t)

(c = 0 corresponds to UCB(α) with α = 2σ2)

Theorem [Cappé et al.’13]

For c ≥ 3, the UCB algorithm associated to the above index satisfy

E[Na(T )] ≤ 2σ2

∆2
a

log(T ) + Cµ

√
log(T ).
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Summary

For UCB(α) applied to σ2-subGaussian reward, setting α = 2σ2 yields

I a problem-dependent regret bound of(
K∑

a=1

2σ2

∆a

)
log(T ) + o(log(T ))

I a worse-case regret of order

O
(√

KT log(T )
)

Ü how good are these regret rates ?
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Outline

1 The multi-armed bandit problem
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3 Upper Confidence Bound (UCB) algorithms

4 Towards optimal algorithms
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The Lai and Robbins lower bound

Context : a parametric bandit model where each arm is parameterized
by its mean ν = (νµ1 , . . . , νµK

), µa ∈ I.

ν ↔ µ = (µ1, . . . , µK )

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) := KL (νµ, νµ′) = EX∼νµ

[
log

dνµ
dνµ′

(X )

]

Theorem
For uniformly good algorithm,

µa < µ? ⇒ lim inf
T→∞

Eµ[Na(T )]

logT
≥ 1

kl(µa, µ?)

[Lai and Robbins, 1985]
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The Lai and Robbins lower bound

Context : a parametric bandit model where each arm is parameterized
by its mean ν = (νµ1 , . . . , νµK

), µa ∈ I.

ν ↔ µ = (µ1, . . . , µK )

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) := µ log

(
µ

µ′

)
+ (1− µ) log

(
1− µ
1− µ′

)
(Bernoulli bandits)

Theorem
For uniformly good algorithm,

µa < µ? ⇒ lim inf
T→∞

Eµ[Na(T )]

logT
≥ 1
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UCB compared to the lower bound

Gaussian distributions with variance σ2

I Lower bound : E[Na(T )] & 2σ2

(µ?−µa)2 log(T )

I Upper bound : for UCB(α) with α = 2σ2

E[Na(T )] .
2σ2

(µ? − µa)2
log(T )

Ü UCB is asymptotically optimal for Gaussian rewards !

Bernoulli distributions (bounded, σ2 = 1/4)

I Lower bound : E[Na(T )] & 1
kl(µa,µ?) log(T )

I Upper bound : for UCB(α) with α = 1/2

E[Na(T )] .
1

2(µ? − µa)2
log(T )

Pinsker’s inequality : kl(µa, µ?) > 2(µ? − µa)2

Ü UCB is not asymptotically optimal for Bernoulli rewards...

Emilie Kaufmann |CRIStAL - 33



UCB compared to the lower bound

Gaussian distributions with variance σ2

I Lower bound : E[Na(T )] & 2σ2

(µ?−µa)2 log(T )

I Upper bound : for UCB(α) with α = 2σ2

E[Na(T )] .
2σ2

(µ? − µa)2
log(T )

Ü UCB is asymptotically optimal for Gaussian rewards !

Bernoulli distributions (bounded, σ2 = 1/4)

I Lower bound : E[Na(T )] & 1
kl(µa,µ?) log(T )

I Upper bound : for UCB(α) with α = 1/2

E[Na(T )] .
1

2(µ? − µa)2
log(T )

Pinsker’s inequality : kl(µa, µ?) > 2(µ? − µa)2

Ü UCB is not asymptotically optimal for Bernoulli rewards...

Emilie Kaufmann |CRIStAL - 33



The kl-UCB algorithm

Exploits the KL-divergence in the lower bound !

UCBa(t) = max

{
q ∈ [0, 1] : kl (µ̂a(t), q) ≤ log(t)

Na(t)

}
.

q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ
a
(t)
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a
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A tighter concentration inequality [Garivier and Cappé, 2011]

For Bernoulli rewards,

P(UCBa(t) > µa) & 1− 1

t log(t)
.
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An asymptotically optimal algorithm

kl-UCB selects At+1 = argmaxa UCBa(t) with

UCBa(t) = max

{
q ∈ [0, 1] : kl (µ̂a(t), q) ≤ log(t) + c log log(t)

Na(t)

}
.

Theorem [Cappé et al., 2013]

If c ≥ 3, for every arm such that µa < µ?,

Eµ[Na(T )] ≤ 1

kl(µa, µ?)
log(T ) + Cµ

√
log(T ).

I asymptotically optimal for Bernoulli rewards

Rµ(kl-UCB,T ) '

( ∑
a:µa<µ?

∆a

kl(µa, µ?)

)
log(T ).
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A worse case lower bound

Theorem [Cesa-Bianchi and Lugosi, 2006]

Fix T ∈ N. For every bandit algorithm A, there exists a stochastic bandit
model ν with rewards supported in [0, 1] such that

Rν(A,T ) ≥ 1

20

√
KT

I worse-case model :{
νa = B(1/2) for all a 6= i
νi = B(1/2 + ∆)

with ∆ '
√
K/T .

Remark. (kl)-UCB only achieves O(
√

KT log(T ))
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Going further

We saw different type of frequentist algorithms :

I either based on comparing (MLE) estimates of the mean rewards
(ETC, ε-greedy)

I or using confidence intervals (UCB, kl-UCB)

Next lecture : Bayesian bandits
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Going further

Perspectives :

I algorithms which are asymptotically optimal and minimax optimal
[Garivier et al., 2018]

I algorithms which are asymptotically optimal for different families of
distributions (e.g. one algorithm for Gaussian and Bernoulli bandits)
[Baudry et al., 2020]

I algorithms which are robust to adversarial rewards
(Best Of Both worlds)
[Zimmert and Seldin, 2021]

I algorithms which are robust to non-stationary rewards
[Garivier and Moulines, 2011, Suk and Kpotufe, 2022]
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The KL-UCB algorithm for bounded stochastic bandits and beyond.
In Proceedings of the 24th Conference on Learning Theory.

Garivier, A., Hadiji, H., Ménard, P., and Stoltz, G. (2018).

Kl-ucb-switch : optimal regret bounds for stochastic bandits from both a
distribution-dependent and a distribution-free viewpoints.



arXiv :1805.05071.

Garivier, A., Kaufmann, E., and Lattimore, T. (2016).

On explore-then-commit strategies.
In Advances in Neural Information Processing Systems (NeurIPS).

Garivier, A. and Moulines, E. (2011).

On Upper-Confidence Bound Policies For Switching Bandit Problems.
In Algorithmic Learning Theory (ALT), pages 174–188. PMLR.

Lai, T. and Robbins, H. (1985).

Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6(1) :4–22.

Lattimore, T. and Szepesvari, C. (2019).

Bandit Algorithms.
Cambridge University Press.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010).

A contextual-bandit approach to personalized news article recommendation.
In WWW.

Robbins, H. (1952).

Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 58(5) :527–535.

Suk, J. and Kpotufe, S. (2022).

Tracking most significant arm switches in bandits.



In Conference On Learning Theory COLT.

Sutton, R. and Barto, A. (1998).

Reinforcement Learning : an Introduction.
MIT press.

Thompson, W. (1933).

On the likelihood that one unknown probability exceeds another in view of the evidence of
two samples.
Biometrika, 25 :285–294.

Zimmert, J. and Seldin, Y. (2021).

Tsallis-inf : An optimal algorithm for stochastic and adversarial bandits.
J. Mach. Learn. Res., 22 :28 :1–28 :49.


	The multi-armed bandit problem
	Fixing the greedy strategy
	Upper Confidence Bound (UCB) algorithms
	Towards optimal algorithms

