Multi-Armed Bandits : an introduction

Emilie Kaufmann

L
Université de Lille

EURO PhD school, July 2022

Why bandits?

- one-armed bandit $=$ old name for a slot machine

an agent facing arms in a Multi-Armed Bandit
\rightarrow How to sequentially chose which arm to pull in order to maximize our profit ?

Sequential resource allocation

Clinical trials

- K treatment for a given symptom (with unknown effect)

- Which treatment should be allocated to the next patient based on responses observed on previous patients?

Online advertisement

- K adds that can be displayed

- Which add should be displayed for a user, based on the previous clicks of previous (similar) users?

Dynamic allocation of computational resource

Numerical experiments :

- where to evaluate a costly function in order to find its maximum ?

Artificial intelligence for games :

- how to choose the next game to simulate in order to find the best move to play next?

Outline

1 The multi-armed bandit problem

2 Fixing the greedy strategy

3 Upper Confidence Bound (UCB) algorithms

4 Towards optimal algorithms

The Multi-Armed Bandit Setting

$$
K \text { arms } \leftrightarrow K \text { rewards streams }\left(X_{a, t}\right)_{t \in \mathbb{N}}
$$

At round t, an agent :

- chooses an arm A_{t}
- receives a reward $R_{t}=X_{A_{t}, t}$

Sequential sampling strategy (bandit algorithm) :

$$
A_{t+1}=F_{t}\left(A_{1}, R_{1}, \ldots, A_{t}, R_{t}\right) .
$$

Goal : Maximize $\sum_{t=1}^{T} R_{t}$.

The Stochastic Multi-Armed Bandit Setting

K arms $\leftrightarrow K$ probability distributions : ν_{a} has mean μ_{a}

ν_{1}

ν_{2}

ν_{3}

ν_{4}

ν_{5}

At round t, an agent :

- chooses an arm A_{t}
$>$ receives a reward $R_{t}=X_{A_{t}, t} \sim \nu_{A_{t}}$
Sequential sampling strategy (bandit algorithm) :

$$
A_{t+1}=F_{t}\left(A_{1}, R_{1}, \ldots, A_{t}, R_{t}\right) .
$$

Goal : Maximize $\mathbb{E}\left[\sum_{t=1}^{T} R_{t}\right]$
\rightarrow a particular reinforcement learning problem

Clinical trials

Historical motivation [Thompson, 1933]

$\mathcal{B}\left(\mu_{1}\right)$

$\mathcal{B}\left(\mu_{2}\right)$

$\mathcal{B}\left(\mu_{3}\right)$

$\mathcal{B}\left(\mu_{4}\right) \quad \mathcal{B}\left(\mu_{5}\right)$

For the t-th patient in a clinical study,

- chooses a treatment A_{t}
- observes a response $R_{t} \in\{0,1\}: \mathbb{P}\left(R_{t}=1 \mid A_{t}=a\right)=\mu_{a}$

Goal : maximize the expected number of patients healed

Online content optimization

Modern motivation (\$\$) [Li et al., 2010] (recommender systems, online advertisement)

For the t-th visitor of a website,

- recommend a movie A_{t}
- observe a rating $R_{t} \sim \nu_{A_{t}}$ (e.g. $R_{t} \in\{1, \ldots, 5\}$)

Goal : maximize the sum of ratings

Regret of a bandit algorithm

Bandit instance : $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{K}\right)$, mean of arm $a: \mu_{a}=\mathbb{E}_{X \sim \nu_{a}}[X]$.

$$
\mu_{\star}=\max _{a \in\{1, \ldots, K\}} \mu_{a} \quad a_{\star}=\underset{a \in\{1, \ldots, K\}}{\operatorname{argmax}} \mu_{a}
$$

Maximizing rewards \leftrightarrow selecting a_{\star} as much as possible $\leftrightarrow \quad$ minimizing the regret [Robbins, 1952]

$$
\mathcal{R}_{\nu}(\mathcal{A}, T):=\underbrace{T \mu_{\star}}_{\begin{array}{c}
\text { sum of rewards of } \\
\text { an oracle strategy } \\
\text { always selecting } a_{\star}
\end{array}}-\underbrace{\mathbb{E}\left[\sum_{t=1}^{T} R_{t}\right]}_{\begin{array}{c}
\text { sum of rewards of } \\
\text { the strategy } \mathcal{A}
\end{array}}
$$

What regret rate can we achieve?
\rightarrow consistency: $\frac{\mathcal{R}_{\nu}(\mathcal{A}, T)}{T} \rightarrow 0$
\rightarrow can we be more precise?

Regret decomposition

$N_{a}(t)$: number of selections of arm a in the first t rounds $\Delta_{a}:=\mu_{\star}-\mu_{a}$: sub-optimality gap of arm a

Regret decomposition

$$
\mathcal{R}_{\nu}(\mathcal{A}, T)=\sum_{a=1}^{K} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right]
$$

Proof.

$$
\begin{aligned}
\mathcal{R}_{\nu}(\mathcal{A}, T) & =\mu_{\star} T-\mathbb{E}\left[\sum_{t=1}^{T} X_{A_{t}, t}\right]=\mu_{\star} T-\mathbb{E}\left[\sum_{t=1}^{T} \mu_{A_{t}}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{T}\left(\mu_{\star}-\mu_{A_{t}}\right)\right] \\
& =\sum_{a=1}^{K} \underbrace{\mu_{\star}-\mu_{a}}_{\Delta_{a}} \mathbb{E}[\underbrace{\sum_{t=1}^{T} \mathbb{1}\left(A_{t}=a\right)}_{N_{a}(T)}]
\end{aligned}
$$

Regret decomposition

$N_{a}(t)$: number of selections of arm a in the first t rounds $\Delta_{a}:=\mu_{\star}-\mu_{a}$: sub-optimality gap of arm a

Regret decomposition

$$
\mathcal{R}_{\nu}(\mathcal{A}, T)=\sum_{a=1}^{K} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right] .
$$

A strategy with small regret should :

- select not too often arms for which $\Delta_{a}>0$
- ... which requires to try all arms to estimate the values of the Δ_{a} 's
\Rightarrow Exploration / Exploitation trade-off

The greedy strategy

Select each arm once and, for $t \geq K$, exploit the current knowledge :

$$
A_{t+1}=\underset{a \in[k]}{\operatorname{argmax}} \hat{\mu}_{a}(t)
$$

where

- $N_{a}(t)=\sum_{s=1}^{t} \mathbb{1}\left(A_{s}=a\right)$ is the number of selections of arm a
- $\hat{\mu}_{a}(t)=\frac{1}{N_{a}(t)} \sum_{s=1}^{t} X_{s} \mathbb{1}\left(A_{s}=a\right)$ is the empirical mean of the rewards collected from arm a

The greedy strategy

Select each arm once and, for $t \geq K$, exploit the current knowledge :

$$
A_{t+1}=\underset{a \in[k]}{\operatorname{argmax}} \hat{\mu}_{a}(t)
$$

where

- $N_{a}(t)=\sum_{s=1}^{t} \mathbb{1}\left(A_{s}=a\right)$ is the number of selections of arm a
- $\hat{\mu}_{a}(t)=\frac{1}{N_{a}(t)} \sum_{s=1}^{t} X_{s} \mathbb{1}\left(A_{s}=a\right)$ is the empirical mean of the rewards collected from arm a

Properties:

B a simple (non-parametric) algorithm suffers linear regret
e.g. in a two armed Bernoulli bandit with means $\mu_{1}>\mu_{2}$

$$
\mathcal{R}_{\nu}(T) \geq\left(1-\mu_{1}\right) \mu_{2}\left(\mu_{1}-\mu_{2}\right) \times(T-1)
$$

Outline

1 The multi-armed bandit problem

2 Fixing the greedy strategy

3 Upper Confidence Bound (UCB) algorithms

4 Towards optimal algorithms

Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\hat{a}=\operatorname{argmax}_{a} \hat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Rightarrow EXPLORATION followed by EXPLOITATION

Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\hat{a}=\operatorname{argmax}_{a} \hat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Rightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.

$$
\begin{aligned}
\mathcal{R}_{\nu}(\mathrm{ETC}, T) & =\Delta \mathbb{E}\left[N_{2}(T)\right] \\
& =\Delta \mathbb{E}[m+(T-2 m) \mathbb{1}(\hat{a}=2)] \\
& \leq \Delta m+(\Delta T) \times \mathbb{P}\left(\hat{\mu}_{2, m} \geq \hat{\mu}_{1, m}\right)
\end{aligned}
$$

$\hat{\mu}_{a, m}$: empirical mean of the first m observations from arm a

Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\hat{a}=\operatorname{argmax}_{a} \hat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Rightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.

$$
\begin{aligned}
\mathcal{R}_{\nu}(\mathrm{ETC}, T) & =\Delta \mathbb{E}\left[N_{2}(T)\right] \\
& =\Delta \mathbb{E}[m+(T-2 m) \mathbb{1}(\hat{a}=2)] \\
& \leq \Delta m+(\Delta T) \times \mathbb{P}\left(\hat{\mu}_{2, m} \geq \hat{\mu}_{1, m}\right)
\end{aligned}
$$

$\hat{\mu}_{a, m}$: empirical mean of the first m observations from arm a \rightarrow requires a concentration inequality

Technical tool : Concentration Inequalities

Sub-Gaussian random variables : $Z-\mu$ is σ^{2}-subGaussian if

$$
\begin{equation*}
\mathbb{E}[Z]=\mu \quad \text { and } \quad \mathbb{E}\left[e^{\lambda(Z-\mu)}\right] \leq e^{\frac{\lambda^{2} \sigma^{2}}{2}} . \tag{1}
\end{equation*}
$$

- ν_{a} bounded in $[0,1]: 1 / 4$ sub-Gaussian
- $\nu_{a}=\mathcal{N}\left(\mu_{\mathrm{a}}, \sigma^{2}\right): \sigma^{2}$ sub-Gaussian

Hoeffding inequality

Z_{i} i.i.d. satisfying (1). For all $s \geq 1$

$$
\mathbb{P}\left(\frac{Z_{1}+\cdots+Z_{s}}{s} \geq \mu+x\right) \leq e^{-\frac{s x^{2}}{2 \sigma^{2}}}
$$

Technical tool : Concentration Inequalities

Sub-Gaussian random variables : $Z-\mu$ is σ^{2}-subGaussian if

$$
\begin{equation*}
\mathbb{E}[Z]=\mu \quad \text { and } \quad \mathbb{E}\left[e^{\lambda(Z-\mu)}\right] \leq e^{\frac{\lambda^{2} \sigma^{2}}{2}} . \tag{1}
\end{equation*}
$$

- ν_{a} bounded in $[0,1]: 1 / 4$ sub-Gaussian
- $\nu_{a}=\mathcal{N}\left(\mu_{\mathrm{a}}, \sigma^{2}\right): \sigma^{2}$ sub-Gaussian

Hoeffding inequality

Z_{i} i.i.d. satisfying (1). For all $s \geq 1$

$$
\mathbb{P}\left(\frac{Z_{1}+\cdots+Z_{s}}{s} \leq \mu-x\right) \leq e^{-\frac{s x^{2}}{2 \sigma^{2}}}
$$

Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\hat{a}=\operatorname{argmax}_{a} \hat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Rightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.
Assumption : ν_{1}, ν_{2} are bounded in $[0,1]$.

$$
\begin{aligned}
\mathcal{R}_{\nu}(T) & =\Delta \mathbb{E}\left[N_{2}(T)\right] \\
& =\Delta \mathbb{E}[m+(T-2 m) \mathbb{1}(\hat{a}=2)] \\
& \leq \Delta m+(\Delta T) \times \mathbb{P}\left(\hat{\mu}_{2, m} \geq \hat{\mu}_{1, m}\right)
\end{aligned}
$$

$\hat{\mu}_{a, m}$: empirical mean of the first m observations from arm a \rightarrow Hoeffding's inequality

Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\hat{a}=\operatorname{argmax}_{a} \hat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Rightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.
Assumption : ν_{1}, ν_{2} are bounded in $[0,1]$.

$$
\begin{aligned}
\mathcal{R}_{\nu}(T) & =\Delta \mathbb{E}\left[N_{2}(T)\right] \\
& =\Delta \mathbb{E}[m+(T-2 m) \mathbb{1}(\hat{a}=2)] \\
& \leq \Delta m+(\Delta T) \times \exp \left(-m \Delta^{2} / 2\right)
\end{aligned}
$$

$\hat{\mu}_{a, m}$: empirical mean of the first m observations from arm a \rightarrow Hoeffding's inequality

Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\hat{a}=\operatorname{argmax}_{a} \hat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Rightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.
Assumption : ν_{1}, ν_{2} are bounded in $[0,1]$.
For $m=\frac{2}{\Delta^{2}} \log \left(\frac{T \Delta^{2}}{2}\right)$,

$$
\mathcal{R}_{\nu}(\mathrm{ETC}, T) \leq \frac{2}{\Delta}\left[\log \left(\frac{T \Delta^{2}}{2}\right)+1\right]
$$

Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\hat{a}=\operatorname{argmax}_{a} \hat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Rightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.
Assumption : ν_{1}, ν_{2} are bounded in $[0,1]$.
For $m=\frac{2}{\Delta^{2}} \log \left(\frac{T \Delta^{2}}{2}\right)$,

$$
\mathcal{R}_{\nu}(\operatorname{ETC}, T) \leq \frac{2}{\Delta}\left[\log \left(\frac{T \Delta^{2}}{2}\right)+1\right]
$$

+ logarithmic regret!
- requires the knowledge of T and Δ

Sequential Explore-Then-Commit

- explore uniformly until a random time of the form

$$
\tau=\inf \left\{t \in \mathbb{N}:\left|\hat{\mu}_{1}(t)-\hat{\mu}_{2}(t)\right|>\sqrt{\frac{c \log (T / t)}{t}}\right\}
$$

$>\hat{a}_{\tau}=\operatorname{argmax}_{a} \hat{\mu}_{a}(\tau)$ and $\left(A_{t+1}=\hat{a}_{\tau}\right)$ for $t \in\{\tau+1, \ldots, T\}$
\rightarrow [Garivier et al., 2016] for two Gaussian arms, for $c=8$, same regret as ETC, without the knowledge of Δ
$\rightarrow \ldots$ but larger regret as that of the best fully sequential strategy

Another possible fix : ϵ-greedy

The ϵ-greedy rule [Sutton and Barto, 1998] is a simple randomized way to alternate exploration and exploitation.

є-greedy strategy

At round t,

- with probability ϵ

$$
A_{t} \sim \mathcal{U}(\{1, \ldots, K\})
$$

- with probability $1-\epsilon$

$$
A_{t}=\underset{a=1, \ldots, K}{\operatorname{argmax}} \hat{\mu}_{a}(t) .
$$

\rightarrow Linear regret $: \mathcal{R}_{\nu}(\epsilon$-greedy, $T) \geq \epsilon \frac{K-1}{K} \Delta_{\text {min }} T$.

$$
\Delta_{\text {min }}=\min _{a: \mu_{a}<\mu_{\star}} \Delta_{a}
$$

Another possible fix : ϵ-greedy

ϵ_{t}-greedy strategy

At round t,

- with probability $\epsilon_{t}:=\min \left(1, \frac{K}{d^{2} t}\right)$

$$
A_{t} \sim \mathcal{U}(\{1, \ldots, K\})
$$

- with probability $1-\epsilon_{t}$

$$
A_{t}=\underset{a=1, \ldots, K}{\operatorname{argmax}} \hat{\mu}_{a}(t-1) .
$$

Theorem

If $0<d \leq \Delta_{\text {min }}, \mathcal{R}_{\nu}\left(\epsilon_{t}\right.$-greedy, $\left.T\right)=O\left(\frac{K \log (T)}{d^{2}}\right)$.
\rightarrow requires the knowledge of a lower bound on $\Delta_{\text {min }} \ldots$

Outline

1 The multi-armed bandit problem

2 Fixing the greedy strategy

3 Upper Confidence Bound (UCB) algorithms

4 Towards optimal algorithms

The optimism principle

Step 1 : construct a set of statistically plausible models

- For each arm a, build a confidence interval on the mean μ_{a} :

$$
\begin{gathered}
\mathcal{I}_{a}(t)=\left[\mathrm{LCB}_{\mathrm{a}}(t), \mathrm{UCB}_{\mathrm{a}}(t)\right] \\
\mathrm{LCB}=\text { Lower Confidence Bound } \\
\mathrm{UCB}=\text { Upper Confidence Bound }
\end{gathered}
$$

Figure - Confidence intervals on the means after t rounds

The optimism principle

Step 2 : act as if the best possible model were the true model (optimism in face of uncertainty)

Figure - Confidence intervals on the means after t rounds

- That is, select

$$
A_{t+1}=\underset{a=1, \ldots, K}{\operatorname{argmax}} \mathrm{UCB}_{a}(t) .
$$

How to build confidence intervals?

We need $\mathrm{UCB}_{a}(t)$ such that

$$
\mathbb{P}\left(\mu_{\mathrm{a}} \leq \mathrm{UCB}_{\mathrm{a}}(t)\right) \gtrsim 1-t^{-1} .
$$

\rightarrow tool : concentration inequalities
Example : rewards are σ^{2} sub-Gaussian

Hoeffding inequality, reloaded

Z_{i} i.i.d. satisfying (1). For all $s \geq 1$

$$
\mathbb{P}\left(\frac{Z_{1}+\cdots+Z_{s}}{s}<\mu-x\right) \leq e^{-\frac{s x^{2}}{2 \sigma^{2}}}
$$

How to build confidence intervals?

We need $\mathrm{UCB}_{a}(t)$ such that

$$
\mathbb{P}\left(\mu_{\mathrm{a}} \leq \mathrm{UCB}_{a}(t)\right) \gtrsim 1-t^{-1} .
$$

\rightarrow tool : concentration inequalities
Example : rewards are σ^{2} sub-Gaussian

Hoeffding inequality, reloaded

Z_{i} i.i.d. satisfying (1). For all $s \geq 1$

$$
\mathbb{P}\left(\frac{Z_{1}+\cdots+Z_{s}}{s}<\mu-x\right) \leq e^{-\frac{s x^{2}}{2 \sigma^{2}}}
$$

\triangle Cannot be used directly in a bandit model as the number of observations from each arm is random!

How to build confidence intervals?

- $N_{a}(t)=\sum_{s=1}^{t} \mathbb{1}_{\left(A_{s}=a\right)}$ number of selections of a after t rounds
- $\hat{\mu}_{\mathrm{a}, \mathrm{s}}=\frac{1}{s} \sum_{k=1}^{s} Y_{a, k}$ average of the first s observations from arm a
- $\hat{\mu}_{a}(t)=\hat{\mu}_{\mathrm{a}, N_{a}(t)}$ empirical estimate of μ_{a} after t rounds

Hoeffding inequality + union bound

$$
\mathbb{P}\left(\mu_{a} \leq \hat{\mu}_{a}(t)+\sqrt{\frac{6 \sigma^{2} \log (t)}{N_{a}(t)}}\right) \geq 1-\frac{1}{t^{2}}
$$

How to build confidence intervals?

- $N_{a}(t)=\sum_{s=1}^{t} \mathbb{1}_{\left(A_{s}=a\right)}$ number of selections of a after t rounds
$>\hat{\mu}_{a, s}=\frac{1}{s} \sum_{k=1}^{s} Y_{a, k}$ average of the first s observations from arm a
$>\hat{\mu}_{a}(t)=\hat{\mu}_{a, N_{a}(t)}$ empirical estimate of μ_{a} after t rounds

Hoeffding inequality + union bound

$$
\mathbb{P}\left(\mu_{a} \leq \hat{\mu}_{a}(t)+\sqrt{\frac{6 \sigma^{2} \log (t)}{N_{a}(t)}}\right) \geq 1-\frac{1}{t^{2}}
$$

Proof.

$$
\begin{aligned}
& \mathbb{P}\left(\mu_{a}>\hat{\mu}_{a}(t)+\sqrt{\frac{6 \sigma^{2} \log (t)}{N_{a}(t)}}\right) \leq \mathbb{P}\left(\exists s \leq t: \mu_{a}>\hat{\mu}_{a, s}+\sqrt{\frac{6 \sigma^{2} \log (t)}{s}}\right) \\
& \leq \sum_{s=1}^{t} \mathbb{P}\left(\hat{\mu}_{a, s}<\mu_{a}-\sqrt{\frac{6 \sigma^{2} \log (t)}{s}}\right) \leq \sum_{s=1}^{t} \frac{1}{t^{3}}=\frac{1}{t^{2}} .
\end{aligned}
$$

A first UCB algorithm

$\mathrm{UCB}(\alpha)$ selects $A_{t+1}=\operatorname{argmax}_{a} \mathrm{UCB}_{a}(t)$ where

$$
\mathrm{UCB}_{a}(t)=\underbrace{\hat{\mu}_{a}(t)}_{\text {exploitation term }}+\underbrace{\sqrt{\frac{\alpha \log (t)}{N_{a}(t)}}}_{\text {exploration bonus }} .
$$

- popularized by [Auer et al., 2002] for bounded rewards : UCB1, for $\alpha=2$
- the analysis of $\operatorname{UCB}(\alpha)$ was further refined to hold for $\alpha>1 / 2$ in that case [Bubeck, 2010, Cappé et al., 2013]

A UCB algorithm in action

Regret of UCB (α)

Theorem

For σ^{2}-subGaussian rewards, the UCB algorithm with parameter $\alpha=6 \sigma^{2}$ satisfies, for any sub-optimal arm a,

$$
\mathbb{E}_{\mu}\left[N_{a}(T)\right] \leq \frac{24 \sigma^{2}}{\Delta_{a}^{2}} \log (T)+1+\frac{\pi^{2}}{3}
$$

where $\Delta_{a}=\mu_{\star}-\mu_{a}$.

Proof :

A worse-case regret bound

Corollary

$$
\mathcal{R}_{\nu}\left(\mathrm{UCB}\left(6 \sigma^{2}\right), T\right) \leq 10 \sqrt{K T \log (T)}+\left(1+\frac{\pi^{2}}{3}\right)\left(\sum_{a=1}^{K} \Delta_{a}\right)
$$

Proof. For any algorithm satisfying $\mathbb{E}\left[N_{a}(T)\right] \leq C \frac{\log (T)}{\Delta_{a}}+D$ for all sub-optimal arm a, for any $\Delta>0$,

$$
\begin{aligned}
\mathcal{R}_{\nu}(T) & =\sum_{a: \Delta_{a} \leq \Delta} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right]+\sum_{a: \Delta_{a} \geq \Delta} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right] \\
& \leq \Delta T+\sum_{a: \Delta_{a} \geq \Delta}\left(C \frac{\log (T)}{\Delta_{a}}+D \Delta_{a}\right) \\
& \leq \Delta T+\frac{C K \log (T)}{\Delta}+D\left(\sum_{a=1}^{K} \Delta_{a}\right) \\
& =2 \sqrt{C K T \log (T)}+D\left(\sum_{a=1}^{K} \Delta_{a}\right) \text { for } \Delta=\sqrt{\frac{C K \log (T)}{T}}
\end{aligned}
$$

An improved problem-dependent result

Context : σ^{2} sub-Gaussian rewards

$$
\begin{aligned}
& \mathrm{UCB}_{a}(t)=\hat{\mu}_{\mathrm{a}}(t)+\sqrt{\frac{2 \sigma^{2}(\log (t)+c \log \log (t))}{N_{a}(t)}} \\
& \left(c=0 \text { corresponds to } \mathrm{UCB}(\alpha) \text { with } \alpha=2 \sigma^{2}\right)
\end{aligned}
$$

Theorem

For $c \geq 3$, the UCB algorithm associated to the above index satisfy

$$
\mathbb{E}\left[N_{a}(T)\right] \leq \frac{2 \sigma^{2}}{\Delta_{a}^{2}} \log (T)+C_{\mu} \sqrt{\log (T)}
$$

Summary

For $\operatorname{UCB}(\alpha)$ applied to σ^{2}-subGaussian reward, setting $\alpha=2 \sigma^{2}$ yields

- a problem-dependent regret bound of

$$
\left(\sum_{a=1}^{K} \frac{2 \sigma^{2}}{\Delta_{a}}\right) \log (T)+o(\log (T))
$$

- a worse-case regret of order

$$
O(\sqrt{K T \log (T)})
$$

\rightarrow how good are these regret rates?

Outline

1 The multi-armed bandit problem

2 Fixing the greedy strategy

3 Upper Confidence Bound (UCB) algorithms

4 Towards optimal algorithms

The Lai and Robbins lower bound

Context : a parametric bandit model where each arm is parameterized by its mean $\nu=\left(\nu_{\mu_{1}}, \ldots, \nu_{\mu_{K}}\right), \mu_{a} \in \mathcal{I}$.

$$
\nu \leftrightarrow \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{K}\right)
$$

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

$$
\operatorname{kl}\left(\mu, \mu^{\prime}\right):=\mathrm{KL}\left(\nu_{\mu}, \nu_{\mu^{\prime}}\right)=\mathbb{E}_{X \sim \nu_{\mu}}\left[\log \frac{d \nu_{\mu}}{d \nu_{\mu^{\prime}}}(X)\right]
$$

Theorem

For uniformly good algorithm,

$$
\mu_{a}<\mu_{\star} \Rightarrow \liminf _{T \rightarrow \infty} \frac{\mathbb{E}_{\mu}\left[N_{a}(T)\right]}{\log T} \geq \frac{1}{\mathrm{kl}\left(\mu_{a}, \mu_{\star}\right)}
$$

[Lai and Robbins, 1985]

The Lai and Robbins lower bound

Context : a parametric bandit model where each arm is parameterized by its mean $\nu=\left(\nu_{\mu_{1}}, \ldots, \nu_{\mu_{K}}\right), \mu_{a} \in \mathcal{I}$.

$$
\nu \leftrightarrow \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{K}\right)
$$

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

$$
\mathrm{kl}\left(\mu, \mu^{\prime}\right):=\frac{\left(\mu-\mu^{\prime}\right)^{2}}{2 \sigma^{2}} \quad \text { (Gaussian bandits) }
$$

Theorem

For uniformly good algorithm,

$$
\mu_{a}<\mu_{\star} \Rightarrow \liminf _{T \rightarrow \infty} \frac{\mathbb{E}_{\mu}\left[N_{a}(T)\right]}{\log T} \geq \frac{1}{\operatorname{kl}\left(\mu_{a}, \mu_{\star}\right)}
$$

[Lai and Robbins, 1985]

The Lai and Robbins lower bound

Context : a parametric bandit model where each arm is parameterized by its mean $\nu=\left(\nu_{\mu_{1}}, \ldots, \nu_{\mu_{K}}\right), \mu_{a} \in \mathcal{I}$.

$$
\nu \quad \leftrightarrow \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{K}\right)
$$

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

$$
\begin{equation*}
\mathrm{kl}\left(\mu, \mu^{\prime}\right):=\mu \log \left(\frac{\mu}{\mu^{\prime}}\right)+(1-\mu) \log \left(\frac{1-\mu}{1-\mu^{\prime}}\right) \tag{Bernoullibandits}
\end{equation*}
$$

Theorem

For uniformly good algorithm,

$$
\mu_{a}<\mu_{\star} \Rightarrow \liminf _{T \rightarrow \infty} \frac{\mathbb{E}_{\mu}\left[N_{a}(T)\right]}{\log T} \geq \frac{1}{\operatorname{kl}\left(\mu_{a}, \mu_{\star}\right)}
$$

[Lai and Robbins, 1985]

UCB compared to the lower bound

Gaussian distributions with variance σ^{2}

- Lower bound : $\mathbb{E}\left[N_{a}(T)\right] \gtrsim \frac{2 \sigma^{2}}{\left(\mu_{*}-\mu_{a}\right)^{2}} \log (T)$
- Upper bound : for $\operatorname{UCB}(\alpha)$ with $\alpha=2 \sigma^{2}$

$$
\mathbb{E}\left[N_{a}(T)\right] \lesssim \frac{2 \sigma^{2}}{\left(\mu_{\star}-\mu_{a}\right)^{2}} \log (T)
$$

\rightarrow UCB is asymptotically optimal for Gaussian rewards!

UCB compared to the lower bound

Gaussian distributions with variance σ^{2}

- Lower bound : $\mathbb{E}\left[N_{a}(T)\right] \gtrsim \frac{2 \sigma^{2}}{\left(\mu_{\star}-\mu_{a}\right)^{2}} \log (T)$
- Upper bound : for $\operatorname{UCB}(\alpha)$ with $\alpha=2 \sigma^{2}$

$$
\mathbb{E}\left[N_{\mathrm{a}}(T)\right] \lesssim \frac{2 \sigma^{2}}{\left(\mu_{\star}-\mu_{\mathrm{a}}\right)^{2}} \log (T)
$$

\rightarrow UCB is asymptotically optimal for Gaussian rewards!

Bernoulli distributions (bounded, $\sigma^{2}=1 / 4$)

- Lower bound : $\mathbb{E}\left[N_{a}(T)\right] \gtrsim \frac{1}{\mathrm{kl}\left(\mu_{a}, \mu_{*}\right)} \log (T)$
- Upper bound : for $\operatorname{UCB}(\alpha)$ with $\alpha=1 / 2$

$$
\mathbb{E}\left[N_{\mathrm{a}}(T)\right] \lesssim \frac{1}{2\left(\mu_{\star}-\mu_{\mathrm{a}}\right)^{2}} \log (T)
$$

Pinsker's inequality: $\operatorname{kl}\left(\mu_{a}, \mu_{\star}\right)>2\left(\mu_{*}-\mu_{a}\right)^{2}$
\rightarrow UCB is not asymptotically optimal for Bernoulli rewards...

The kl-UCB algorithm

Exploits the KL-divergence in the lower bound!

$$
\mathrm{UCB}_{a}(t)=\max \left\{q \in[0,1]: \mathrm{kl}\left(\hat{\mu}_{a}(t), q\right) \leq \frac{\log (t)}{N_{a}(t)}\right\} .
$$

A tighter concentration inequality

For Bernoulli rewards,

$$
\mathbb{P}\left(\mathrm{UCB}_{a}(t)>\mu_{\mathrm{a}}\right) \gtrsim 1-\frac{1}{t \log (t)} .
$$

An asymptotically optimal algorithm

$\mathrm{kl}-\mathrm{UCB}$ selects $A_{t+1}=\operatorname{argmax}_{\mathrm{a}} \mathrm{UCB}_{\mathrm{a}}(t)$ with

$$
\mathrm{UCB}_{a}(t)=\max \left\{q \in[0,1]: \mathrm{kl}\left(\hat{\mu}_{a}(t), q\right) \leq \frac{\log (t)+c \log \log (t)}{N_{a}(t)}\right\} .
$$

Theorem

If $c \geq 3$, for every arm such that $\mu_{a}<\mu_{\star}$,

$$
\mathbb{E}_{\mu}\left[N_{\mathrm{a}}(T)\right] \leq \frac{1}{\mathrm{kl}\left(\mu_{\mathrm{a}}, \mu_{\star}\right)} \log (T)+C_{\mu} \sqrt{\log (T)}
$$

- asymptotically optimal for Bernoulli rewards

$$
\mathcal{R}_{\mu}(\mathrm{kl}-\mathrm{UCB}, T) \simeq\left(\sum_{a: \mu_{a}<\mu_{*}} \frac{\Delta_{a}}{\mathrm{kl}\left(\mu_{a}, \mu_{*}\right)}\right) \log (T) .
$$

A worse case lower bound

Theorem

Fix $T \in \mathbb{N}$. For every bandit algorithm \mathcal{A}, there exists a stochastic bandit model ν with rewards supported in $[0,1]$ such that

$$
\mathcal{R}_{\nu}(\mathcal{A}, T) \geq \frac{1}{20} \sqrt{K T}
$$

- worse-case model :

$$
\left\{\begin{array}{l}
\nu_{a}=\mathcal{B}(1 / 2) \text { for all } a \neq i \\
\nu_{i}=\mathcal{B}(1 / 2+\Delta)
\end{array}\right.
$$

with $\Delta \simeq \sqrt{K / T}$.
Remark. (kl)-UCB only achieves $O(\sqrt{K T \log (T)})$

Going further

We saw different type of frequentist algorithms :

- either based on comparing (MLE) estimates of the mean rewards (ETC, ε-greedy)
- or using confidence intervals (UCB, kl-UCB)

Next lecture: Bayesian bandits

Going further

Perspectives:

- algorithms which are asymptotically optimal and minimax optimal [Garivier et al., 2018]
- algorithms which are asymptotically optimal for different families of distributions (e.g. one algorithm for Gaussian and Bernoulli bandits) [Baudry et al., 2020]
- algorithms which are robust to adversarial rewards (Best Of Both worlds) [Zimmert and Seldin, 2021]
- algorithms which are robust to non-stationary rewards [Garivier and Moulines, 2011, Suk and Kpotufe, 2022]

References

Bandit Algorithms

TOR LATTIMORE CSABA SZEPESVÁRI

The Bandit Book

by [Lattimore and Szepesvari, 2019]

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002).
Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2) :235-256.

Baudry, D., Kaufmann, E., and Maillard, O.-A. (2020).
Sub-sampling for Efficient Non-Parametric Bandit Exploration.
In Advances in Neural Information Processing Systems (NeurIPS).

Bubeck, S. (2010).
Jeux de bandits et fondation du clustering.
PhD thesis, Université de Lille 1.

Cappé, O., Garivier, A., Maillard, O.-A., Munos, R., and Stoltz, G. (2013). Kullback-Leibler upper confidence bounds for optimal sequential allocation. Annals of Statistics, 41(3) :1516-1541.

Cesa-Bianchi, N. and Lugosi, G. (2006).
Prediction, Learning and Games.
Cambridge University Press.

Garivier, A. and Cappé, O. (2011).
The KL-UCB algorithm for bounded stochastic bandits and beyond.
In Proceedings of the 24th Conference on Learning Theory.
官
Garivier, A., Hadiji, H., Ménard, P., and Stoltz, G. (2018).
KI-ucb-switch : optimal regret bounds for stochastic bandits from both a distribution-dependent and a distribution-free viewpoints.
arXiv :1805.05071.

Garivier, A., Kaufmann, E., and Lattimore, T. (2016).
On explore-then-commit strategies.
In Advances in Neural Information Processing Systems (NeurIPS).

Garivier, A. and Moulines, E. (2011).
On Upper-Confidence Bound Policies For Switching Bandit Problems.
In Algorithmic Learning Theory (ALT), pages 174-188. PMLR.
Lai, T. and Robbins, H. (1985).
Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6(1) :4-22.
Lattimore, T. and Szepesvari, C. (2019).
Bandit Algorithms.
Cambridge University Press.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010).
A contextual-bandit approach to personalized news article recommendation.
In WWW.

Robbins, H. (1952).
Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 58(5) :527-535.

Suk, J. and Kpotufe, S. (2022).
Tracking most significant arm switches in bandits.

In Conference On Learning Theory COLT.
Sutton, R. and Barto, A. (1998).
Reinforcement Learning : an Introduction.
MIT press.
國
Thompson, W. (1933).
On the likelihood that one unknown probability exceeds another in view of the evidence of two samples.
Biometrika, 25 :285-294.
Zimmert, J. and Seldin, Y. (2021).
Tsallis-inf: An optimal algorithm for stochastic and adversarial bandits.
J. Mach. Learn. Res., $22: 28: 1-28: 49$.

