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Monte-Carlo Tree Search

MCTS is a family of methods that adaptively explore the tree of possible
next states in a given state s1, in order to find the best action in s1.

Figure – A generic MCTS algorithm for a game
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The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MAX node s (= root player move), select an action

argmax
a∈C(s)

S(s, a)

N(s, a)
+ c

√
ln (

∑
b N(s, b))

N(s, a)

N(s, a) : number of visits of (s, a)

S(s, a) : number of visits of (s, a) ending with the root player winning

8/11

2/6 2/3 4/2

N=19 visits

n3=6 visits
UCB3 = 4/6 + c√log(N)/n3
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The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MIN node s (= adversary move), select an action

argmin
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The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MAX node s (= root player move), select an action

argmax
a∈C(s)

S(s, a)

N(s, a)
+ c

√
ln (

∑
b N(s, b))

N(s, a)

N(s, a) : number of visits of (s, a)

S(s, a) : number of visits of (s, a) ending with the root player winning

When a leaf (or some maximal depth) is reached :

I a playout is performed (play the game until the end with a simple heuristic,

or produce a random evaluation of the leaf position)

I the outcome of the playout (typically 1/0) is stored in all the nodes
visited in the previous trajectory
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The UCT algorithm

I first good AIs for Go where based on variants on UCT

I it remains a heuristic (no sample complexity guarantees, parameter c
fined-tuned for each application)

I many variants have been proposed

[Browne et al., 2012]
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Selection step : in some state s, choose the next action to be

argmax
a∈C(s)

[
S(s, a)

N(s, a)
+ c × P(s, a)

√
N(s)

1 + N(s, a)

]
for some (fine-tuned) constant c .
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Expansion step : once a leaf sL is reached, compute (p, v) = fθ(sL).

I Set v to be the value of the leaf

I For all possible next actions b :

Ü initialize the count N(sL, b) = 0
Ü initialize the prior probability P(sL, b) = pb (possibly add some noise)
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Back-up step : for all ancestor st , at in the trajectory that end in leaf sL,

N(st , at) ← N(st , at) + 1

S(st , at) ← S(st , at) + v
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Output of the planning algorithm ? select an action a at random
according to

π(a) =
N(s0, a)1/τ∑
b N(s0, b)1/τ

for some (fine-tuned) temperature τ .
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Training the neural network

I In AlphaGo, fθ was trained on a database of games played by human

I In AlphaZero, the network is trained using only self-play

[Silver et al., 2016, Silver et al., 2017]

Let θ be the current parameter of the network (p, v) = fθ(sL).

1 generate N games where each player uses MCTS(θ) to select the
next action at (and output a probability over actions πt)

D =

Nb games⋃
i=1

{
(st , πt ,±rTi )

}Ti

i=1

Ti : length of game i , rTi ∈ {−1, 0, 1} outcome of game i for one player

2 Based on a sub-sample of D, train the neural network using
stochastic gradient descent on the loss function

L(s,π, z ; p, v) = (z − v)2 − π> ln(p) + c‖θ‖2
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A nice actor-critic architecture

AlphaZero alternates between

I The actor : MCTS(θ)
generates trajectories guided by the network fθ but still exploring

Ü act as a policy improvement
(N = 25000 games played, each call to MCTS uses 1600 simulations)

I The critic : neural network fθ
updates θ based on trajectories followed by the critic

Ü evaluate the actor’s policy
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