Lecture 9 : Monte Carlo Tree Search
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Monte-Carlo Tree Search
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Monte-Carlo Tree Search

MCTS is a family of methods that adaptively explore the tree of possible
next states in a given state s, in order to find the best action in s;.
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FIGURE — A generic MCTS algorithm for a game
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UCB for Trees : UCT
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The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvari, 2006]
UCT in a Game Tree

In a MAX node s (= root player move), select an action
| N(s, b
argmax 5(57 a) +c n(Zb (57 ))
aeC(s) N(57 a) N(S, a)

N(s, a) : number of visits of (s, a)
S(s,a) : number of visits of (s, a) ending with the root player winning

N=19 visits

n3=6 visits
UCB; = 4/6 + cVIog(N)/n,
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The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvari, 2006]
UCT in a Game Tree

In a MIN node s (= adversary move), select an action

S(s, a) In(>>, N(s, b))

argmin c
st N(s,a) N(s.2)

N(s, a) : number of visits of (s, a)
S(s,a) : number of visits of (s, a) ending with the root player winning

N=19 visits

n3=6 visits
UCB; = 4/6 + cVIog(N)/n,
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The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvari, 2006]
UCT in a Game Tree

In a MAX node s (= root player move), select an action

Aremma S(s, a) c In (>, N(s, b))
aEC(s) N(Sva) - N(S’ a)

N(s, a) : number of visits of (s, a)
S(s, a) : number of visits of (s, a) ending with the root player winning

When a leaf (or some maximal depth) is reached :

» a playout is performed (play the game until the end with a simple heuristic,
or produce a random evaluation of the leaf position)

> the outcome of the playout (typically 1/0) is stored in all the nodes

visited in the previous trajectory
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The UCT algorithm

» first good Als for Go where based on variants on UCT

> it remains a heuristic (no sample complexity guarantees, parameter ¢
fined-tuned for each application)

» many variants have been proposed

[Browne et al., 2012]
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From UCT to Alpha Zero
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
# pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = fy(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s,a), P(s,a)}
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
# pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = fy(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s,a), P(s,a)}

Selection step : in some state s, choose the next action to be

argmax
aeC(s) N (5 ) a)

for some (fine-tuned) constant c.
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
# pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = fy(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s,a),S(s,a), P(s,a)}

Expansion step : once a leaf s, is reached, compute (p, v) = fo(sL).
» Set v to be the value of the leaf
» For all possible next actions b :
=» initialize the count N(s., b) =0
=» initialize the prior probability P(s;, b) = p, (possibly add some noise)
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network

# pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = fy(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s,a), P(s,a)}
Back-up step : for all ancestor s;, a; in the trajectory that end in leaf s,

N(st,at) — N(St,at) +1
S(St7 at) < .S(St7 at) + v
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network

# pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = fy(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s,a), P(s,a)}

Output of the planning algorithm ? select an action a at random
according to
N(so, a)"/"

26 N(so, b)1/7

for some (fine-tuned) temperature 7.

m(a) =
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Training the neural network

» In AlphaGo, fy was trained on a database of games played by human
» In AlphaZero, the network is trained using only self-play J

[Silver et al., 2016, Silver et al., 2017]

Let 6 be the current parameter of the network (p, v) = fy(s.).

@ generate N games where each player uses MCTS(6) to select the

next action a; (and output a probability over actions ;)
Nb games T

p= |J {(stmr-,ifﬂ) }

i=1
i=1
T; : length of game i, rr; € {—1,0,1} outcome of game i for one player

@ Based on a sub-sample of D, train the neural network using
stochastic gradient descent on the loss function

L(s,7,z;p,v) = (z—v)> =7 " In(p) + c|||?
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A nice actor-critic architecture

AlphaZero alternates between

» The actor : MCTS(6)
generates trajectories guided by the network fy but still exploring

=¥ act as a policy improvement
(N = 25000 games played, each call to MCTS uses 1600 simulations)

» The critic : neural network fy

updates 6 based on trajectories followed by the critic

=¥ evaluate the actor’s policy
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