
Sequential Decision Making
Lecture 9 : Monte Carlo Tree Search

Emilie Kaufmann

M2 Data Science, 2022/2023

Emilie Kaufmann |CRIStAL - 1



Outline

1 Monte-Carlo Tree Search

2 UCB for Trees : UCT

3 From UCT to Alpha Zero

Emilie Kaufmann |CRIStAL - 2



Monte-Carlo Tree Search

MCTS is a family of methods that adaptively explore the tree of possible
next states in a given state s1, in order to find the best action in s1.

Figure – A generic MCTS algorithm for a game

Emilie Kaufmann |CRIStAL - 3



Outline

1 Monte-Carlo Tree Search

2 UCB for Trees : UCT

3 From UCT to Alpha Zero

Emilie Kaufmann |CRIStAL - 4



The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MAX node s (= root player move), select an action

argmax
a∈C(s)

S(s, a)

N(s, a)
+ c

√
ln (

∑
b N(s, b))

N(s, a)

N(s, a) : number of visits of (s, a)

S(s, a) : number of visits of (s, a) ending with the root player winning

8/11

2/6 2/3 4/2

N=19 visits

n3=6 visits
UCB3 = 4/6 + c√log(N)/n3

Emilie Kaufmann |CRIStAL - 5



The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MIN node s (= adversary move), select an action

argmin
a∈C(s)

S(s, a)

N(s, a)
− c

√
ln (

∑
b N(s, b))

N(s, a)

N(s, a) : number of visits of (s, a)

S(s, a) : number of visits of (s, a) ending with the root player winning

8/11

2/6 2/3 4/2

N=19 visits

n3=6 visits
UCB3 = 4/6 + c√log(N)/n3

Emilie Kaufmann |CRIStAL - 5



The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MAX node s (= root player move), select an action

argmax
a∈C(s)

S(s, a)

N(s, a)
+ c

√
ln (

∑
b N(s, b))

N(s, a)

N(s, a) : number of visits of (s, a)

S(s, a) : number of visits of (s, a) ending with the root player winning

When a leaf (or some maximal depth) is reached :

I a playout is performed (play the game until the end with a simple heuristic,

or produce a random evaluation of the leaf position)

I the outcome of the playout (typically 1/0) is stored in all the nodes
visited in the previous trajectory

Emilie Kaufmann |CRIStAL - 5



The UCT algorithm

I first good AIs for Go where based on variants on UCT

I it remains a heuristic (no sample complexity guarantees, parameter c
fined-tuned for each application)

I many variants have been proposed

[Browne et al., 2012]

Emilie Kaufmann |CRIStAL - 6



Outline

1 Monte-Carlo Tree Search

2 UCB for Trees : UCT

3 From UCT to Alpha Zero

Emilie Kaufmann |CRIStAL - 7



Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Selection step : in some state s, choose the next action to be

argmax
a∈C(s)

[
S(s, a)

N(s, a)
+ c × P(s, a)

√
N(s)

1 + N(s, a)

]
for some (fine-tuned) constant c .

Emilie Kaufmann |CRIStAL - 8



Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Selection step : in some state s, choose the next action to be

argmax
a∈C(s)

[
S(s, a)

N(s, a)
+ c × P(s, a)

√
N(s)

1 + N(s, a)

]
for some (fine-tuned) constant c .

Emilie Kaufmann |CRIStAL - 8



Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Expansion step : once a leaf sL is reached, compute (p, v) = fθ(sL).

I Set v to be the value of the leaf

I For all possible next actions b :

Ü initialize the count N(sL, b) = 0
Ü initialize the prior probability P(sL, b) = pb (possibly add some noise)

Emilie Kaufmann |CRIStAL - 8



Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Back-up step : for all ancestor st , at in the trajectory that end in leaf sL,

N(st , at) ← N(st , at) + 1

S(st , at) ← S(st , at) + v

Emilie Kaufmann |CRIStAL - 8



Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
6= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Output of the planning algorithm ? select an action a at random
according to

π(a) =
N(s0, a)1/τ∑
b N(s0, b)1/τ

for some (fine-tuned) temperature τ .

Emilie Kaufmann |CRIStAL - 8



Training the neural network

I In AlphaGo, fθ was trained on a database of games played by human

I In AlphaZero, the network is trained using only self-play

[Silver et al., 2016, Silver et al., 2017]

Let θ be the current parameter of the network (p, v) = fθ(sL).

1 generate N games where each player uses MCTS(θ) to select the
next action at (and output a probability over actions πt)

D =

Nb games⋃
i=1

{
(st , πt ,±rTi )

}Ti

i=1

Ti : length of game i , rTi ∈ {−1, 0, 1} outcome of game i for one player

2 Based on a sub-sample of D, train the neural network using
stochastic gradient descent on the loss function

L(s,π, z ; p, v) = (z − v)2 − π> ln(p) + c‖θ‖2

Emilie Kaufmann |CRIStAL - 9



A nice actor-critic architecture

AlphaZero alternates between

I The actor : MCTS(θ)
generates trajectories guided by the network fθ but still exploring

Ü act as a policy improvement
(N = 25000 games played, each call to MCTS uses 1600 simulations)

I The critic : neural network fθ
updates θ based on trajectories followed by the critic

Ü evaluate the actor’s policy

Emilie Kaufmann |CRIStAL - 10



Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012).

A survey of monte carlo tree search methods.

IEEE Transactions on Computational Intelligence and AI in games,, 4(1) :1–49.

Kocsis, L. and Szepesvári, C. (2006).

Bandit based monte-carlo planning.

In Proceedings of the 17th European Conference on Machine Learning,
ECML’06, pages 282–293, Berlin, Heidelberg. Springer-Verlag.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016).

Mastering the game of go with deep neural networks and tree search.

Nature, 529 :484–489.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre,
L., van den Driessche, G., Graepel, T., and Hassabis, D. (2017).

Mastering the game of go without human knowledge.

Nature, 550 :354–.


	Monte-Carlo Tree Search
	UCB for Trees: UCT
	From UCT to Alpha Zero

