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Recap from last class

Several important ideas to tackle the exploration/exploitation challenge
in a simple multi-armed bandit model with independent arms :

I Explore then Commit

I ε-greedy

I Optimistic algorithms : Upper Confidence Bounds strategies

I Bayesian algorithms : Thompson Sampling

Some of these can be extended to more realistic structured models that
are suited for different applications.
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Contextual Bandits

Example : movie recommendation

What movie should Netflix recommend to a particular user, given the
ratings provided by previous users ?

Ü to make good recommendation, we should take into account the
characteristics of the movies / users

Contextual bandit problem : at time t

I a context ct is observed

I an arm At is chosen

I a reward Rt that depends on ct ,At is received.
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Mixing bandits and regression models

A contextual bandit model incorporates two components :

I a sequential interaction protocol :
pick an arm, receive a reward

I a regression model for the dependency between context and reward

General stochastic contextual bandit model
In each round t, the agent

I observes a context ct ∈ C (user characteristics)

I selects an arm At ∈ At (an item out of a possibly changing pool)

I the agent receives a reward

rt = fAt (ct) + εt

where εt is an independent noise : E[εt ] = 0.

fa : C → R maps a context c to the average reward of arm a, fa(c)
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Mixing bandits and regression models
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I a regression model for the dependency between context and reward
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Examples

Example 1

• user t : descriptor ct ∈ Rp

• item a : descriptor θa ∈ Rp

rt = θ>At
ct + εt

Linear function fa(c) = θ>a c

Observation : if At = {1, . . . ,K} is a fixed set of items

I the model is parameterized by θ1, θ2, . . . , θK ∈ (Rp)K

I it can also be rewritten rt = θ>? (xt,At ) + εt with

θ? =


θ1

. . .
θa
. . .
θK

 ∈ Rp×K , xt,a =


0
. . .
ct
. . .
0

 ∈ Rp×K

xt,a : feature vector for the user-item pair (t, a)
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Examples

Example 2

• user t : descriptor ct ∈ Rp

• item a : descriptor xa ∈ Rp′

Ü build a user-item feature vector for (t, a) : xt,a ∈ Rd

(feature engineering)

rt = θ>? xt,At + εt

Observation :

I the model is parameterized by θ? ∈ Rd

I in each round t, the user-item feature vectors belong to the set

Xt = {xt,a, a ∈ At} ⊆ Rd

I picking an arm a ↔ picking a feature vector xt ∈ Xt

rt = θ>? xt + εt
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Two formulations

Contextual MAB, version 1
In each round t, the agent

I observes a context ct ∈ C
I selects an arm At ∈ At (set of arm can vary in each round)

I the agent receives a reward rt = fAt (ct) + εt

Unknown : regression functions (fa) for all possible arm a

Contextual MAB (more general)

In each round t, the agent

I is given a set of arms Xt (can be different in each round)

I selects an arm xt ∈ Xt

I the agent receives a reward rt = f?(xt) + εt

Unknown : regression function f?

Ü Goal : learn the unknown function f?... while maximizing rewards !
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Contextual linear bandits

In each round t, the agent

I receives a (finite) set of arms Xt ⊆ Rd

I chooses an arm xt ∈ Xt

I gets a reward rt = θ>? xt + εt

where

• θ? ∈ Rd is an unknown regression vector

• εt is a centered noise, independent from past data

Assumption : σ2- sub-Gaussian noise

∀λ ∈ R, E
[
eλX

]
≤ e

λ2σ2

2

e.g., Gaussian noise, bounded noise.
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Contextual linear bandits

In each round t, the agent

I receives a (finite) set of arms Xt ⊆ Rd

I chooses an arm xt ∈ Xt

I gets a reward rt = θ>? xt + εt

where

• θ? ∈ Rd is an unknown regression vector

• εt is a centered noise, independent from past data

(Pseudo)-regret for contextual bandit

maximizing expected total reward ↔ minimizing the expectation of

RT (A) =
T∑
t=1

(
max
x∈Xt

θ>? x − θ>? xt
)

Ü in each round, comparison to a possibly different optimal action !
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Tools

Algorithms will rely on estimates / confidence regions / posterior
distributions for θ? ∈ Rd .

I design matrix (with regularization parameter λ > 0)

Bλt = λId +
t∑

s=1

xsx
>
s

I regularized least-square estimate

θ̂λt =
(
Bλt
)−1

(
t∑

s=1

rtxt

)

Recap from lecture 1 : easy online update !

I estimate of the expected reward of an arm x ∈ Rd : x>θ̂λt
Ü sufficient for Follow the Leader, but not for smarter algorithms !
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How to build (tight) confidence interval on
the mean rewards ?

Idea : rely on a confidence ellispoid around θ̂λt

θ? ∈
{
θ ∈ Rd : ‖θ − θ̂λt ‖A ≤ βt

}
Why ? For all invertible matrix positive semi-definite matrix A,

∀x ∈ Rd ,
∣∣∣x>θ? − x>θ̂λt

∣∣∣ ≤ ‖x‖A−1

∥∥∥θ? − θ̂λt ∥∥∥
A

‖x‖A =
√
x>Ax
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How to build (tight) confidence interval on
the mean rewards ?

Wanted : θ? ∈
{
θ ∈ Rd : ‖θ − θ̂λt ‖A ≤ βt

}
Example of threshold [Abbasi-Yadkori et al., 2011]

Assuming that the noise εt is σ2-sub-Gaussian, and that for all t and
x ∈ Xt , ‖x‖ ≤ L, we have

P
(
∃t ∈ N? : ‖θ? − θ̂λt ‖Bλt > β(t, δ)

)
≤ δ

with β(t, δ) = σ
√

2 log (1/δ) + d log
(
1 + t L

dλ

)
+
√
λ‖θ?‖.

Ü Letting

Ct(δ) =
{
θ ∈ Rd : ‖θ − θ̂λt ‖Bλt ≤ β(t, δ)

}
,

one has P (∀t ∈ N, θ? ∈ Ct(δ)) ≥ 1− δ.
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A Lin-UCB algorithm

Consequence :

P
(
∀t ∈ N∗,∀x ∈ Xt+1, x>θ?︸ ︷︷ ︸

unknown mean
of arm x

≤ x>θ̂λt + ‖x‖(Bλt )−1β(t, δ)︸ ︷︷ ︸
Upper Confidence Bound

)
≥ 1− δ.

One can assign to each arm x ∈ Xt+1

UCBx(t) = x>θ̂λt︸ ︷︷ ︸
empirical mean

(exploitation term)

+ ‖x‖(Bλt )−1β(t, δ)︸ ︷︷ ︸
exploration bonus

Lin-UCB
In each round t + 1, the algorithm selects

xt+1 = argmax
x∈Xt+1

[
x>θ̂λt + ‖x‖(Bλt )−1β(t, δ)

]
(many algorithms of this style, with different choices of β(t, δ))
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Theoretical guarantees

We want to bound the pseudo-regret

RT (Lin-UCB) =
T∑
t=1

(
max
x∈Xt

θ>? x − θ>? xt
)

or its expectation, the regret RT (Lin-UCB) = E[RT (Lin-UCB)].

Lemma
One can prove that, with probability larger than 1− δ,

∀T ∈ N∗,RT (Lin-UCB) ≤ Cβ(T , δ)
√
dT log(T )

I with the choice of β(t, δ) presented before, with high probability

RT (Lin-UCB) = O(d
√
T log(T ) +

√
dT log(T ) log(1/δ))

I choosing δ = 1/T , RT (Lin-UCB) = O(d
√
T log(T ))
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A Bayesian view on Linear Regression

Bayesian model :

I likelihood : rt = θ>? xt + εt

I prior : θ? ∼ N (0, κ2Id)

Assuming further that the noise is Gaussian : εt ∼ N (0, σ2), the
posterior distribution of θ? has a closed form :

θ?|x1, r1, . . . , xt , rt ∼ N
(
θ̂λt , σ

2
(
Bλt
)−1
)

with

• Bλt = λId +
∑t

s=1 xsx
>
s

• θ̂λt =
(
Bλt
)−1 (∑t

s=1 rsxs
)

is the regularized least square estimate

with a regularization parameter λ = σ2

κ2 .
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Thompson Sampling for Linear Bandits

Recall the Thompson Sampling principle :

“draw a possible model from the posterior distribution and act
optimally in this sampled model”

Thompson Sampling in linear bandits

In each round t + 1,

θ̃t ∼ N
(
θ̂λt , σ

2
(
Bλt
)−1
)

xt+1 = argmax
x∈Xt+1

x>θ̃t

Numerical complexity : one need to draw a sample from a multivariate
Gaussian distribution, e.g.

θ̃t = θ̂λt + σ
(
Bλt
)−1/2

X

where X is a vector with d independent N (0, 1) entries.
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Theoretical guarantees

[Agrawal and Goyal, 2013] analyze a variant of Thompson Sampling
using some “posterior inflation” :

θ̃t ∼ N
(
θ̂1
t , v

2
(
B1
t

)−1
)

xt+1 = argmax
x∈Xt+1

x>θ̃t

where v = σ
√

9d ln(T/δ).

Theorem

If the noise is σ2-sub-Gaussian, the above algorithm satisfies

P
(
RT (TS) = O

(
d3/2
√
T
[
ln(T ) +

√
ln(T ) ln(1/δ)

]))
≥ 1− δ.

I slightly worse than Lin-UCB... how about in practice ?

I do we need the posterior inflation ?
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Beyond linear bandits

Depending on the application, other parameteric models may be better
suited than the simple linear model, for example the logistic model.

P (rt = 1|xt) =
1

1 + e−θ
>
? xt

P (rt = 0|xt) =
e−θ

>
? xt

1 + e−θ
>
? xt

e.g., clic / no-clic on an add depending on a user/add feature xt ∈ Rd

I [Filippi et al., 2010] : first UCB style algorithm for Generalized
Linear Bandit models

I Thompson Sampling for logistic bandits [Dumitrascu et al., 2018]

I going further : UCB/TS for neural bandits !
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Many possible structures

X -armed bandits : Xt = X arbitrary metric space

rt = f?(xt) + εt

with non-parametric assumption on f?.

Examples :

I f? is a Lipschitz function :

|f?(x)− f?(y)| ≤ Ld(x , y)

where d is a metric on X .
[Bubeck et al., 2011b]

I f? is a unimodal function

I f? is drawn from a Gaussian process prior
[Srinivas et al., 2010]

I . . .
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Beyond one arm : Combinatorial bandits

classical bandit : one arm is selected in each round
combinatorial bandit : possibility to select a group of arms (action)

e.g.,[Chen et al., 2013]

Example :

I arms : edges in a graph

I actions : paths from A to B

I reward : some function of the edges’s rewards in the chosen path
(e.g. - (total travelling distance))
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Beyond one arm : Combinatorial bandits

classical bandit : one arm is selected in each round
combinatorial bandit : possibility to select a group of arms (action)

e.g.,[Chen et al., 2013]

Combinatorial bandit : Actions ⊆ P({1, . . . ,K}).
In round t, the agent

I selects an action Actt ∈ Actions

I a reward ra,t is generated for every arm a ∈ Actt

I the agent receives as a reward
∑

a∈Actt
ra,t (or some other function)
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Beyond one state : Reinforcement Learning

In most bandit models, the agent repeatedly faces the same set of actions
(or at least the set of available actions in round does not depend on the
past decisions).

Ü no longer true in reinforcement learning, in which an action also
triggers a transition to a new state

more on this in the next lectures
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Bandits without rewards ?

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

For the t-th patient in a clinical study,

I chooses a treatment At

I observes a response Xt ∈ {0, 1} : P(Xt = 1) = µAt

Maximize rewards ↔ cure as many patients as possible

Alternative goal : identify as quickly as possible the best treatment
(without trying to cure patients during the study)
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Bandits without rewards ?

Probability that some version of a website generates a conversion :

. . .

µ1 µ2 µK

Best version : a? = argmax
a=1,...,K

µa

Sequential protocol : for the t-th visitor :

I display version At

I observe conversion indicator Xt ∼ B(µAt ).

Maximize rewards ↔ maximize the number of conversions

Alternative goal : identify the best version
(without trying to maximize conversions during the test)
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A Pure Exploration Problem

Goal : identify an arm with mean close to µ? as quickly and accurately
as possible ' identify

a? = argmax
a=1,...,K

µa.

Algorithm : made of three components :

Ü sampling rule : At (arm to explore)

Ü recommendation rule : Bt (current guess for the best arm)

Ü stopping rule τ (when do we stop exploring ?)

Probability of error

The probability of error after n rounds is

pν(T ) = Pν (BT 6= a?) .

bla
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A Pure Exploration Problem

Goal : identify an arm with mean close to µ? as quickly and accurately
as possible ' identify

a? = argmax
a=1,...,K

µa.

Algorithm : made of three components :

Ü sampling rule : At (arm to explore)

Ü recommendation rule : Bt (current guess for the best arm)

Ü stopping rule τ (when do we stop exploring ?)

Simple regret [Bubeck et al., 2011a]

The simple regret after n rounds is

rν(n) = µ? − µBn .

∆minpν(T ) ≤ Eν [rν(T )] ≤ ∆maxpν(T )
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Several objectives

Algorithm : made of three components :

Ü sampling rule : At (arm to explore)

Ü recommendation rule : Bt (current guess for the best arm)

Ü stopping rule τ (when do we stop exploring ?)

I Objectives studied in the literature :

Fixed-budget setting Fixed-confidence setting
input : budget T input : risk parameter δ

(tolerance parameter ε)
τ = T minimize E[τ ]

minimize P(BT 6= a?) P(Bτ 6= a?) ≤ δ
or E[rT (ν)] or P(rν(τ) > ε) ≤ δ

[Bubeck et al., 2011a] [Even-Dar et al., 2006]
[Audibert et al., 2010]
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Can we use UCB ?

Context : bounded rewards (νa supported in [0, 1])

We know good algorithms to maximize rewards, for example UCB(α)

At+1 = argmax
a=1,...,K

µ̂a(t) +

√
α ln(t)

Na(t)

I How good is it for best arm identification ?

Possible recommendation rules :

Empirical Best Arm Bt = argmaxa µ̂a(t)
(EBA)

Most Played Arm Bt = argmaxa Na(t)
(MPA)

Empirical Distribution of Plays Bt ∼ pt , where

(EDP) pt =
(

N1(t)
t , . . . , NK (t)

t

)
[Bubeck et al., 2011a]
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Can we use UCB ?

I UCB + Empirical Distribution of Plays

E [rν(T )] = E [µ? − µBT
] = E

[
K∑

b=1

(µ? − µb)1(BT =b)

]

= E

[
K∑

b=1

(µ? − µb)P(BT = b|FT )

]

= E

[
K∑

b=1

(µ? − µb)
Nb(T )

T

]

=
1

T

K∑
b=1

(µ? − µb)E[Nb(T )]

=
Rν(T )

T
.

Ü a conversion from cumulative regret to simple regret !
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Can we use UCB ?

I UCB + Empirical Distribution of Plays

E [rν (UCB(α),T )] ≤ Rν(UCB(α),T )

T
≤ C (ν) ln(T )

T

I vs. Uniform Sampling

The simple regret or the uniform strategy decays exponentially :

Eν [rν (Unif,T )] ≤ (K − 1)∆max exp

(
−1

2

T

K
∆2

min

)

Ü UCB does not provably outperform uniform sampling...
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Fixed Budget : Sequential Halving

Input : total number of plays T

Idea : split the budget in log2(K ) phases of equal length, eliminate the
worst half of the remaining arms after each phase.

Initialisation : S0 = {1, . . . ,K} ;
For r = 0 to dln2(K )e − 1, do

sample each arm a ∈ Sr tr =
⌊

T
|Sr |dlog2(K)e

⌋
times ;

let µ̂r
a be the empirical mean of arm a ;

let Sr+1 be the set of d|Sr |/2e arms with largest µ̂r
a

Output : BT the unique arm in Sdlog2(K)e

Theorem [Karnin et al., 2013]

Letting H2(ν) = maxa 6=a? a∆−2
[a] , for any bounded bandit instance,

Pν (BT 6= a?) ≤ 3 log2(K ) exp

(
− T

8 log2(K )H2(ν)

)
.
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Fixed Budget : LUCB

Ia(t) = [LCBa(t),UCBa(t)].

0

1

771 459 200 45 48 23

I At round t, draw

Bt = argmax
b

µ̂b(t)

Ct = argmax
c 6=Bt

UCBc(t)

I Stop at round t if

LCBBt (t) > UCBCt (t)− ε

Theorem [Kalyanakrishnan et al., 2012]

For well-chosen confidence intervals, Pν(µBτ > µ? − ε) ≥ 1− δ and

E [τδ] = O

([
1

∆2
2 ∨ ε2

+
K∑

a=2

1

∆2
a ∨ ε2

]
ln

(
1

δ

))
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(kl)-LUCB in action

UCBa(t) = max
{
q ∈ [0, 1] : Na(t)kl(µ̂a(t), q) ≤ log(Ct2/δ)

}
LCBa(t) = min

{
q ∈ [0, 1] : Na(t)kl(µ̂a(t), q) ≤ log(Ct2/δ)

}
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A comparison with UCB

Regret minimizing algorithms and Best Arm Identification algorithms
behave quite differently

0

1

6 31 436 17 9

0

1

771 459 200 45 48 23

Number of selections and confidence intervals for KL-UCB (left)
and KL-LUCB (right)
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