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Recap from last class

Several important ideas to tackle the exploration/exploitation challenge
in a simple multi-armed bandit model with independent arms :

» Explore then Commit

> c-greedy

» Optimistic algorithms : Upper Confidence Bounds strategies
» Bayesian algorithms : Thompson Sampling

Some of these can be extended to more realistic structured models that
are suited for different applications.
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Outline

Contextual Bandits
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Contextual Bandits

Example : movie recommendation

What movie should Netflix recommend to a particular user, given the
ratings provided by previous users?

=» to make good recommendation, we should take into account the
characteristics of the movies / users

Contextual bandit problem : at time ¢t
» a context ¢; is observed
» an arm A; is chosen

» a reward R; that depends on ¢, A; is received.
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Mixing bandits and regression models

A contextual bandit model incorporates two components :

> a sequential interaction protocol :
pick an arm, receive a reward

> a regression model for the dependency between context and reward
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Mixing bandits and regression models

A (stochastic) contextual bandit model incorporates two components :

> a sequential interaction protocol :
pick an arm, receive a (random) reward

> a regression model for the dependency between context and reward
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Mixing bandits and regression models

A (stochastic) contextual bandit model incorporates two components :

> a sequential interaction protocol :
pick an arm, receive a (random) reward

> a regression model for the dependency between context and reward

General stochastic contextual bandit model

In each round t, the agent

> observes a context ¢; € C (user characteristics)
> selects an arm A; € Ay  (an item out of a possibly changing pool)
> the agent receives a reward

re = fa,(ct) + €;

where ¢, is an independent noise : E[e;] = 0.

f, : C — R maps a context ¢ to the average reward of arm a, f,(c)
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Examples

e user t : descriptor ¢; € RP

e item a : descriptor 6, € R”
rt = HXtCt + Et

Linear function f,(c) = 0] c

Observation : if A, = {1,..., K} is a fixed set of items
» the model is parameterized by 601,60,,...,0k € (RP)K
> it can also be rewritten r, = 0, (x;.4,) + &; with

01 0
0, =106, | eRPK xi.=|c | eRPXK
Ok 0

X5 @ feature vector for the user-item pair (t, a)
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Examples

Example 2

e user t : descriptor ¢; € R”

e item a : descriptor x, € R
=¥ build a user-item feature vector for (t,a) : x;, € ¢

(feature engineering)

.
re = 9* Xt,A; + &

Observation :
» the model is parameterized by 6, € R?
» in each round t, the user-item feature vectors belong to the set

Xt = {xt,a,a € At} C R

» picking an arm a <> picking a feature vector x; € X}
rr = G;I—Xt + Et
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Examples

Example 2

e user t : descriptor ¢, € R”

e item a : descriptor x,; € R
=¥ build a user-item feature vector for (t,a) : x;,, € ¢

(feature engineering)

T
rr = 9* Xt,At + Et

Observation :
» the model is parameterized by 6, € R?
» in each round t, the user-item feature vectors belong to the set

Xy ={xta,a€ A} C R

> picking an arm a <> picking a feature vector x; € X}
re = f*(Xt) + &
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Two formulations

Contextual MAB, version 1

In each round t, the agent
» observes a context ¢; € C
> selects an arm A; € A, (set of arm can vary in each round)

> the agent receives a reward r; = fa,(¢;) + &;

Unknown : regression functions (f;) for all possible arm a

Contextual MAB (more general)

In each round t, the agent
> is given a set of arms & (can be different in each round)
> selects an arm x; € X
> the agent receives a reward r; = f,(x;) + &¢

Unknown : regression function f;

Emilie Kaufmann | CRIStAL



Two formulations

Contextual MAB, version 1

In each round t, the agent
» observes a context ¢; € C
> selects an arm A; € A, (set of arm can vary in each round)

> the agent receives a reward r; = fa,(¢;) + &;

Unknown : regression functions (f;) for all possible arm a

Contextual MAB (more general)

In each round t, the agent
> is given a set of arms & (can be different in each round)
> selects an arm x; € X
> the agent receives a reward r; = f,(x;) + &¢

Unknown : regression function f;

=» Goal : learn the unknown function f,... while maximizing rewards !
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Outline

Solving Linear Bandits
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Contextual linear bandits

In each round t, the agent
> receives a (finite) set of arms X; C R?
» chooses an arm x; € X;
> gets a reward r; = HIX;_» + &4
where
e 0, € RY is an unknown regression vector

e &, is a centered noise, independent from past data

Assumption : 0%~ sub-Gaussian noise
VAER, E[eM] <e 7

e.g., Gaussian noise, bounded noise.
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Contextual linear bandits

In each round t, the agent
> receives a (finite) set of arms &, C R9
» chooses an arm x; € X}
> getsareward r; = 0] x; +¢e;
where
e 0, € R? is an unknown regression vector
e ¢; is a centered noise, independent from past data

(Pseudo)-regret for contextual bandit

maximizing expected total reward <> minimizing the expectation of
T

Rr(A) =" (316.? 0] x — 9Ixt>

t=1

=¥ in each round, comparison to a possibly different optimal action !
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Tools

Algorithms will rely on estimates / confidence regions / posterior
distributions for 0, € RY.

» design matrix (with regularization parameter A > 0)
t
BY = Mg+ > xex,
s=1

> regularized least-square estimate

=8 (Z )

s=1

Recap from lecture 1 : easy online update !

> estimate of the expected reward of an arm x € R? : XTGA?
=» sufficient for Follow the Leader, but not for smarter algorithms !
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Solving Linear Bandits
m Lin-UCB
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How to build (tight) confidence interval on
the mean rewards ?

Idea : rely on a confidence ellispoid around &7

boe{0er!:[0-0Ma< 5}

Why ? For all invertible matrix positive semi-definite matrix A,

Vx € RY, ‘XTQ* —xT0M < ||x]| o

[[x|la = VxT Ax
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How to build (tight) confidence interval on
the mean rewards ?

Wanted : 0, € {0 eRY: |0 —G)Ma < 5t}

Example of threshold

Assuming that the noise ¢; is o2-sub-Gaussian, and that for all t and
x € X, |Ix|| < L, we have

P (Elt € N*: 6, — Bllg> > ﬁ(t,é)) <5

with 3(.0) = U\/Qlog(1/5) +dlog (14 tL) + VA6, ].

= Letting
C.(0) = {9 ERY: 00l < B(t,é)} ,

one has P (Vt € N, 6, € G(d)) > 1-6.
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A Lin-UCB algorithm

Consequence :

P(Vt EN"Vx € Xewr, x'0, < xT0) + xllar) At 5)) >1-4.

unknown mean
of arm x

Upper Confidence Bound

One can assign to each arm x € X;

UCBy(t) = x'0}  +|xllgr)-1B(t,9)
— —
empirical mean exploration bonus

(exploitation term)

In each round t + 1, the algorithm selects

Xer1 = argmax |x ' 6} + Ixl(g2y-18(t, 0)
XE X1

(many algorithms of this style, with different choices of (t, d))
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Theoretical guarantees

We want to bound the pseudo-regret

T
R7(Lin-UCB) = Z (me‘?( 0] x — HIxt>

t=1

or its expectation, the regret Ry (Lin-UCB) = E[R7(Lin-UCB)].

One can prove that, with probability larger than 1 — 6,

VT € N*, Rr(Lin-UCB) < CA(T,8)\/dT log(T)

» with the choice of (¢, 0) presented before, with high probability

R7(Lin-UCB) = O(d\/T log(T) + +/dT log(T) log(1/4))
» choosing § = 1/ T, Rr(Lin-UCB) = O(d\/T log(T))
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Outline

Solving Linear Bandits

m Linear Thompson Sampling
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A Bayesian view on Linear Regression

Bayesian model :
> likelihood : r; = 0] x; + &;
» prior : 0, ~ N(0,k%ly)

Assuming further that the noise is Gaussian : ; ~ N(0,0?), the
posterior distribution of 6, has a closed form :

0*|X13r1a"'axt7rt ~ N(é\g\’oj (Bé\)_1>
with
o B) = Mg+ 3 xex)

A -1 . . .
o 0 = (B) " (32i_; rsxs) is the regularized least square estimate

with a regularization parameter \ = =

2
R*
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Thompson Sampling for Linear Bandits

Recall the Thompson Sampling principle :

“"draw a possible model from the posterior distribution and act
optimally in this sampled model”

Thompson Sampling in linear bandits

In each round t + 1,
b ~ N(B02(BY)7)

Xep1 = argmax x ' 0
XEXit1

Numerical complexity : one need to draw a sample from a multivariate
Gaussian distribution, e.g.

b= 0>+ (B X

where X is a vector with d independent A/(0, 1) entries.
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Theoretical guarantees

[Agrawal and Goyal, 2013] analyze a variant of Thompson Sampling
using some “posterior inflation”

b ~ N(012(8)7)

Xp41 = argmax x 10,
XE X1

where v = 0/9d In(T/9).

If the noise is o2-sub-Gaussian, the above algorithm satisfies

]P’(RT(TS) :o(dwf [m T)+\/WD) >1-6

» slightly worse than Lin-UCB... how about in practice ?

» do we need the posterior inflation ?
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Beyond linear bandits

Depending on the application, other parameteric models may be better
suited than the simple linear model, for example the logistic model.

1
P(rr=1lx) = 14 e 00
B _ _ efejxt
(rt - 0|Xt) - 1 + efert

e.g., clic / no-clic on an add depending on a user/add feature x; € R?

» [Filippi et al., 2010] : first UCB style algorithm for Generalized
Linear Bandit models

» Thompson Sampling for logistic bandits [Dumitrascu et al., 2018]

» going further : UCB/TS for neural bandits!
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Outline

Other variants of the classical MAB
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Many possible structures

X-armed bandits : Xy = X arbitrary metric space
re = fi(xe) + &t
with non-parametric assumption on f;.

Examples :
» f, is a Lipschitz function :

f(x) — f(y)| < Ld(x,y)
where d is a metric on X.
[Bubeck et al., 2011b]
» f,is a unimodal function

» f. is drawn from a Gaussian process prior
[Srinivas et al., 2010]

> ...
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Beyond one arm : Combinatorial bandits

classical bandit : one arm is selected in each round
combinatorial bandit : possibility to select a group of arms (action)

e.g.,[Chen et al., 2013]

Example :
> arms : edges in a graph
» actions : paths from A to B

» reward : some function of the edges's rewards in the chosen path
(e.g. - (total travelling distance))
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Beyond one arm : Combinatorial bandits

classical bandit : one arm is selected in each round
combinatorial bandit : possibility to select a group of arms (action)

e.g.,[Chen et al., 2013]

A

Combinatorial bandit : Actions C P({1,...,K}).
In round t, the agent

» selects an action Act; € Actions
> a reward r, ¢ is generated for every arm a € Act,

> the agent receives as a reward ), fa: (or some other function)
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Beyond one state : Reinforcement Learning

In most bandit models, the agent repeatedly faces the same set of actions
(or at least the set of available actions in round does not depend on the

past decisions).

=?» no longer true in reinforcement learning, in which an action also
triggers a transition to a new state

action
ar

>

Environment

Reward
Rt

Ll
Agent | g

State
Se+l

more on this in the next lectures
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A Beyond maximizing rewards
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Bandits without rewards ?

® w -~ i &

B(,Ul) B(Mz) B(Ma) B(MA) B(M5)

For the t-th patient in a clinical study,

» chooses a treatment A;

> observes a response X; € {0,1} : P(X; = 1) = pa,
Maximize rewards <> cure as many patients as possible

Alternative goal : identify as quickly as possible the best treatment
(without trying to cure patients during the study)
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Bandits without rewards ?

Probability that some version of a website generates a conversion :

L1 s ==
N [] [
L [ O

M1 H2 KK

Best version : a, = argmax i,
a=1,...,K

Sequential protocol : for the t-th visitor :
» display version A;

> observe conversion indicator X; ~ (14, ).

Maximize rewards <+ maximize the number of conversions

Alternative goal : identify the best version
(without trying to maximize conversions during the test)
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A Pure Exploration Problem

Goal : identify an arm with mean close to i, as quickly and accurately
as possible ~ identify

a, = argmax [i,.
a=1,....K

Algorithm : made of three components :
=» sampling rule : Ay (arm to explore)
=» recommendation rule : By (current guess for the best arm)

=» stopping rule T (when do we stop exploring ?)

Probability of error

The probability of error after n rounds is
po(T) =P, (BT # a).
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A Pure Exploration Problem

Goal : identify an arm with mean close to p, as quickly and accurately
as possible ~ identify

a, = argmax [i,.
a=1,...,K

Algorithm : made of three components :
=» sampling rule : A; (arm to explore)
=» recommendation rule : By (current guess for the best arm)

=» stopping rule 7 (when do we stop exploring ?)

Simple regret

The simple regret after n rounds is

ru(n) = p — 18,
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A Pure Exploration Problem

Goal : identify an arm with mean close to i, as quickly and accurately
as possible ~ identify

a, = argmax [,.
a=1,...,K

Algorithm : made of three components :
=» sampling rule : A; (arm to explore)
=» recommendation rule : B; (current guess for the best arm)
=» stopping rule 7 (when do we stop exploring ?)

Simple regret

The simple regret after n rounds is

r(n) = px — g,

Aminpu(T) S ]EV[rV(T)] S Amaxpl/(T)
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Several objectives

Algorithm : made of three components :

=» sampling rule : A; (arm to explore)

=» recommendation rule : By (current guess for the best arm)

=» stopping rule 7 (when do we stop exploring ?)

» Objectives studied in the literature :

Fixed-budget setting

Fixed-confidence setting

input : budget T

input : risk parameter §
(tolerance parameter €)

T=T
minimize P(BT1 # a,)
or E[rr(v)]

minimize E[7]
P(BT # 3*) )
or P(r,(1) >¢€)<$§

[Bubeck et al., 2011a]
[Audibert et al., 2010]

[Even-Dar et al., 2006]
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Can we use UCB?

Context : bounded rewards (v, supported in [0, 1])

We know good algorithms to maximize rewards, for example UCB(«)

» How good is it for best arm identification 7
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Can we use UCB?

Context : bounded rewards (v, supported in [0, 1])

We know good algorithms to maximize rewards, for example UCB(«)

» How good is it for best arm identification 7

Possible recommendation rules :

Empirical Best Arm B; = argmax, [i,(t)
(EBA)
Most Played Arm B: = argmax, N,(t)
(MPA)
Empirical Distribution of Plays B; ~ pt, where
(EDP) po= (M, Mel0)

[Bubeck et al., 2011a]
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Can we use UCB?

Context : bounded rewards (v, supported in [0, 1])
We know good algorithms to maximize rewards, for example UCB(«)

A — argmax [,(t) +
e = aremax fa(f) 4T

» How good is it for best arm identification 7

Possible recommendation rules :

Empirical Best Arm B: = argmax, fl.(t)
(EBA)
Most Played Arm B, = argmax, N,(t)
(MPA)
Empirical Distribution of Plays B; ~ pt, where
(EDP) po= (M, M)

[Bubeck et al., 2011a]
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Can we use UCB?

» UCB + Empirical Distribution of Plays

E[rn(T)]

K
E[p — pg;] = E lZ(m - :“b)]l(BT=b)]
b=1

=» a conversion from cumulative regret to simple regret !
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Can we use UCB?

» UCB + Empirical Distribution of Plays

E[r, (UcB(a), T)] < x{UCB(@). T)

C(v)In(T)

<
i =

T
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Can we use UCB?

» UCB + Empirical Distribution of Plays

R, (UCB(x), T)

E[r, (UCB(a), T)] < T <
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Can we use UCB?

» UCB + Empirical Distribution of Plays
R.(UCB(«), T) <c Klin(T)

E[r, (UCB(a), T)] < - T

» vs. Uniform Sampling

The simple regret or the uniform strategy decays exponentially :

EV [ry (Unif, T)] < (K - ]-)Amax exp <_;KAr2mn>

=» UCB does not provably outperform uniform sampling...

Emilie Kaufmann | CRIStAL



Fixed Budget : Sequential Halving

Input : total number of plays T

Idea : split the budget in log,(K) phases of equal length, eliminate the
worst half of the remaining arms after each phase.

Initialisation : S = {1,...,K};
For r =0 to [Iny(K)] —1, do
sample each arm a € S, t, = {WJ times;
let i}, be the empirical mean of arm a;
let S,41 be the set of [|S,|/2] arms with largest /i,
Output : By the unique arm in Spiog, (k)]

Letting Ho(v) = maxaza, aA[_a]z, for any bounded bandit instance,

P, (Bt # a.) < 3log,(K) exp <_WT)/'/2(V)> .

Emilie Kaufmann | CRIStAL

-34



Fixed Budget : LUCB

Z,(t) = [LCB,(t), UCB,(t)].

» At round t, draw

T ] B: = argmax f[ip(t)
b
¢ C: = argmax UCB.(t)
I % c#B;
» Stop at round t if
. ® - LCBg,(t) > UCBg,(t) — ¢

For well-chosen confidence intervals, P, (g, > px —¢) > 1— 4 and

=0 (| b+ X g (3))
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(k1)-LUCB in action

UCB,(t) = max{q€[0,1]: N,(t)kl(fa(t), q) < log(Ct*/5)}
LCB,(t) min {q € [0,1] : N,(t)kl(2a(t), q) < log(Ct?/0)}

R

Q Q .
22 g 5

¢

Emilie Kaufmann | CRIStAL



A comparison with UCB

Regret minimizing algorithms and Best Arm Identification algorithms
behave quite differently J

}! IIW’ll

6 31 17 9 459 200 45 48 23

Number of selections and confidence intervals for KL-UCB (left)
and KL-LUCB (right)
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