Sequential Decision Making Lecture 2 : Stochastic bandits

Emilie Kaufmann

M2 Data Science, 2022/2023

Why bandits?

- Make money in a casino ? (one-armed bandit $=$ slot machine)

an agent facing arms in a Multi-Armed Bandit

Why bandits?

- Make money in a casino ? (one-armed bandit $=$ slot machine)

an agent facing arms in a Multi-Armed Bandit

Sequential resource allocation

Clinical trials

- K treatment for a given symptom (with unknown effect)

- What treatment should be allocated to the next patient based on responses observed on previous patients?

Online advertisement

- K adds that can be displayed

- Which add should be displayed for a user, based on the previous clicks of previous (similar) users?

Useful reference

Bandit Algorithms

TOR LATTIMORE CSABA SZEPESVÁRI

The Bandit Book
by [Lattimore and Szepesvari, 2019]

The Multi-Armed Bandit Setup

$$
K \text { arms } \leftrightarrow K \text { rewards streams }\left(X_{a, t}\right)_{t \in \mathbb{N}}
$$

At round t, an agent :

- chooses an arm A_{t}
- receives a reward $R_{t}=X_{A_{t}, t}$

Sequential sampling strategy (bandit algorithm) :

$$
A_{t+1}=F_{t}\left(A_{1}, R_{1}, \ldots, A_{t}, R_{t}\right) .
$$

Goal (for now !) : Maximize $\sum_{t=1}^{T} R_{t}$.

The Stochastic Multi-Armed Bandit Setup

$$
K \text { arms } \leftrightarrow K \text { probability distributions }: \nu_{a} \text { has mean } \mu_{a}
$$

At round t, an agent :

- chooses an arm A_{t}
$>$ receives a reward $R_{t}=X_{A_{t}, t} \sim \nu_{A_{t}}$
Sequential sampling strategy (bandit algorithm) :

$$
A_{t+1}=F_{t}\left(A_{1}, R_{1}, \ldots, A_{t}, R_{t}\right)
$$

Goal (for now !) : Maximize $\mathbb{E}\left[\sum_{t=1}^{T} R_{t}\right]$
\rightarrow a particular reinforcement learning problem

Clinical trials

Historical motivation [Thompson, 1933]

$\mathcal{B}\left(\mu_{1}\right)$

$\mathcal{B}\left(\mu_{2}\right)$

$\mathcal{B}\left(\mu_{3}\right)$

$\mathcal{B}\left(\mu_{4}\right) \quad \mathcal{B}\left(\mu_{5}\right)$

For the t-th patient in a clinical study,

- chooses a treatment A_{t}
- observes a response $R_{t} \in\{0,1\}: \mathbb{P}\left(R_{t}=1 \mid A_{t}=a\right)=\mu_{a}$

Goal : maximize the expected number of patients healed

Online content optimization

Modern motivation (\$\$) [Li et al., 2010] (recommender systems, online advertisement)

For the t-th visitor of a website,

- recommend a movie A_{t}
- observe a rating $R_{t} \sim \nu_{A_{t}}$ (e.g. $R_{t} \in\{1, \ldots, 5\}$)

Goal : maximize the sum of ratings

Outline

[1 Performance measure and first strategies
2. Best achievable regret

3 Mixing Exploration and Exploitation

- Upper Confidence Bound algorithms

4 Bayesian algorithms

- Thompson Sampling

Regret of a bandit algorithm

Bandit instance : $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{K}\right)$, mean of arm $a: \mu_{a}=\mathbb{E}_{X \sim \nu_{a}}[X]$.

$$
\mu_{\star}=\max _{a \in\{1, \ldots, K\}} \mu_{a} \quad a_{\star}=\underset{a \in\{1, \ldots, K\}}{\operatorname{argmax}} \mu_{a}
$$

Maximizing rewards \leftrightarrow selecting a_{\star} as much as possible $\leftrightarrow \quad$ minimizing the regret [Robbins, 1952]

$$
\mathcal{R}_{\nu}(\mathcal{A}, T):=\underbrace{T \mu_{\star}}_{\begin{array}{c}
\text { sum of rewards of } \\
\text { an oracle strategy } \\
\text { always selecting } a_{\star}
\end{array}}-\underbrace{\mathbb{E}\left[\sum_{t=1}^{T} R_{t}\right]}_{\begin{array}{c}
\text { sum of rewards of } \\
\text { the strategy } \mathcal{A}
\end{array}}
$$

What regret rate can we achieve?
\rightarrow consistency: $\frac{\mathcal{R}_{\nu}(\mathcal{A}, T)}{T} \rightarrow 0$
\rightarrow can we be more precise?

Regret decomposition

$N_{a}(t)$: number of selections of arm a in the first t rounds
$\Delta_{a}:=\mu_{\star}-\mu_{a}$: sub-optimality gap of arm a

Regret decomposition

$$
\mathcal{R}_{\nu}(\mathcal{A}, T)=\sum_{a=1}^{K} \Delta_{\mathrm{a}} \mathbb{E}\left[N_{\mathrm{a}}(T)\right] .
$$

Proof.

Regret decomposition

$N_{a}(t)$: number of selections of arm a in the first t rounds $\Delta_{a}:=\mu_{\star}-\mu_{a}$: sub-optimality gap of arm a

Regret decomposition

$$
\mathcal{R}_{\nu}(\mathcal{A}, T)=\sum_{a=1}^{K} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right] .
$$

A strategy with small regret should :

- select not too often arms for which $\Delta_{a}>0$
- ... which requires to try all arms to estimate the values of the Δ_{a} 's
\Rightarrow Exploration / Exploitation trade-off

Two naive strategies

- Idea 1 : Uniform Exploration

Draw each arm T / K times
\Rightarrow EXPLORATION $\mathcal{R}_{\nu}(\mathcal{A}, T)=\left(\frac{1}{K} \sum_{a: \mu_{a}>\mu_{*}} \Delta_{a}\right) T$

Two naive strategies

- Idea 1 : Uniform Exploration

Draw each arm T / K times
\Rightarrow EXPLORATION

$$
\mathcal{R}_{\nu}(\mathcal{A}, T)=\left(\frac{1}{K} \sum_{a: \mu_{a}>\mu_{\star}} \Delta_{a}\right) T
$$

- Idea 2 : Follow The Leader
where

$$
A_{t+1}=\underset{a \in\{1, \ldots, K\}}{\operatorname{argmax}} \hat{\mu}_{a}(t)
$$

$$
\hat{\mu}_{a}(t)=\frac{1}{N_{a}(t)} \sum_{s=1}^{t} X_{a, s} \mathbb{1}_{\left(A_{s}=a\right)}
$$

is an estimate of the unknown mean μ_{a}.
\Rightarrow EXPLOITATION $\mathcal{R}_{\nu}(\mathcal{A}, T) \geq\left(1-\mu_{1}\right) \times \mu_{2} \times\left(\mu_{1}-\mu_{2}\right) T$
(Bernoulli arms)

A better idea : Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\hat{a}=\operatorname{argmax}_{a} \hat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Rightarrow EXPLORATION followed by EXPLOITATION

A better idea : Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\hat{a}=\operatorname{argmax}_{a} \hat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Rightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.

$$
\begin{aligned}
\mathcal{R}_{\nu}(\mathrm{ETC}, T) & =\Delta \mathbb{E}\left[N_{2}(T)\right] \\
& =\Delta \mathbb{E}[m+(T-2 m) \mathbb{1}(\hat{a}=2)] \\
& \leq \Delta m+(\Delta T) \times \mathbb{P}\left(\hat{\mu}_{2, m} \geq \hat{\mu}_{1, m}\right)
\end{aligned}
$$

$\hat{\mu}_{a, m}$: empirical mean of the first m observations from arm a

A better idea : Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\hat{a}=\operatorname{argmax}_{a} \hat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Rightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.

$$
\begin{aligned}
\mathcal{R}_{\nu}(\mathrm{ETC}, T) & =\Delta \mathbb{E}\left[N_{2}(T)\right] \\
& =\Delta \mathbb{E}[m+(T-2 m) \mathbb{1}(\hat{a}=2)] \\
& \leq \Delta m+(\Delta T) \times \mathbb{P}\left(\hat{\mu}_{2, m} \geq \hat{\mu}_{1, m}\right)
\end{aligned}
$$

$\hat{\mu}_{a, m}$: empirical mean of the first m observations from arm a \rightarrow requires a concentration inequality

Intermezzo: Concentration Inequalities

Sub-Gaussian random variables : $Z-\mu$ is σ^{2}-subGaussian if

$$
\begin{equation*}
\mathbb{E}[Z]=\mu \quad \text { and } \quad \mathbb{E}\left[e^{\lambda(Z-\mu)}\right] \leq e^{\frac{\lambda^{2} \sigma^{2}}{2}} . \tag{1}
\end{equation*}
$$

Hoeffding inequality

Z_{i} i.i.d. satisfying (1). For all $s \geq 1$

$$
\mathbb{P}\left(\frac{Z_{1}+\cdots+Z_{s}}{s} \geq \mu+x\right) \leq e^{-\frac{s x^{2}}{2 \sigma^{2}}}
$$

Proof: Cramér-Chernoff method

- ν_{a} bounded in $[a, b]:(b-a)^{2} / 4$ sub-Gaussian (Hoeffding's lemma)
- $\nu_{a}=\mathcal{N}\left(\mu_{a}, \sigma^{2}\right): \sigma^{2}$ sub-Gaussian

Intermezzo: Concentration Inequalities

Sub-Gaussian random variables : $Z-\mu$ is σ^{2}-subGaussian if

$$
\begin{equation*}
\mathbb{E}[Z]=\mu \quad \text { and } \quad \mathbb{E}\left[e^{\lambda(Z-\mu)}\right] \leq e^{\frac{\lambda^{2} \sigma^{2}}{2}} . \tag{1}
\end{equation*}
$$

Hoeffding inequality

Z_{i} i.i.d. satisfying (1). For all $s \geq 1$

$$
\mathbb{P}\left(\frac{Z_{1}+\cdots+Z_{s}}{s} \leq \mu-x\right) \leq e^{-\frac{s x^{2}}{2 \sigma^{2}}}
$$

Proof: Cramér-Chernoff method

- ν_{a} bounded in $[a, b]:(b-a)^{2} / 4$ sub-Gaussian (Hoeffding's lemma)
- $\nu_{a}=\mathcal{N}\left(\mu_{a}, \sigma^{2}\right): \sigma^{2}$ sub-Gaussian

A better idea : Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\hat{a}=\operatorname{argmax}_{a} \hat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Rightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.
Assumption : ν_{1}, ν_{2} are bounded in $[0,1]$.

$$
\begin{aligned}
\mathcal{R}_{\nu}(T) & =\Delta \mathbb{E}\left[N_{2}(T)\right] \\
& =\Delta \mathbb{E}[m+(T-2 m) \mathbb{1}(\hat{a}=2)] \\
& \leq \Delta m+(\Delta T) \times \mathbb{P}\left(\hat{\mu}_{2, m} \geq \hat{\mu}_{1, m}\right)
\end{aligned}
$$

$\hat{\mu}_{a, m}$: empirical mean of the first m observations from arm a \rightarrow Hoeffding's inequality

A better idea : Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\hat{a}=\operatorname{argmax}_{a} \hat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Rightarrow EXPLORATION followed by EXPLOITATION
Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.
Assumption : ν_{1}, ν_{2} are bounded in $[0,1]$.

$$
\begin{aligned}
\mathcal{R}_{\nu}(T) & =\Delta \mathbb{E}\left[N_{2}(T)\right] \\
& =\Delta \mathbb{E}[m+(T-2 m) \mathbb{1}(\hat{a}=2)] \\
& \leq \Delta m+(\Delta T) \times \exp \left(-m \Delta^{2} / 2\right)
\end{aligned}
$$

$\hat{\mu}_{a, m}$: empirical mean of the first m observations from arm a \rightarrow Hoeffding's inequality

A better idea : Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\hat{a}=\operatorname{argmax}_{a} \hat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Rightarrow EXPLORATION followed by EXPLOITATION
Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.
Assumption : ν_{1}, ν_{2} are bounded in $[0,1]$.
For $m=\frac{2}{\Delta^{2}} \log \left(\frac{T \Delta^{2}}{2}\right)$,

$$
\mathcal{R}_{\nu}(\mathrm{ETC}, T) \leq \frac{2}{\Delta}\left[\log \left(\frac{T \Delta^{2}}{2}\right)+1\right]
$$

A better idea : Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\hat{a}=\operatorname{argmax}_{a} \hat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Rightarrow EXPLORATION followed by EXPLOITATION
Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.
Assumption : ν_{1}, ν_{2} are bounded in $[0,1]$.
For $m=\frac{2}{\Delta^{2}} \log \left(\frac{T \Delta^{2}}{2}\right)$,

$$
\mathcal{R}_{\nu}(\mathrm{ETC}, T) \leq \frac{2}{\Delta}\left[\log \left(\frac{T \Delta^{2}}{2}\right)+1\right]
$$

+ logarithmic regret!
- requires the knowledge of T and Δ

Sequential Explore-Then-Commit

- explore uniformly until a random time of the form

$$
\tau=\inf \left\{t \in \mathbb{N}:\left|\hat{\mu}_{1}(t)-\hat{\mu}_{2}(t)\right|>\sqrt{\frac{c \log (T / t)}{t}}\right\}
$$

- $\hat{a}_{\tau}=\operatorname{argmax}_{a} \hat{\mu}_{a}(\tau)$ and $\left(A_{t+1}=\hat{a}_{\tau}\right)$ for $t \in\{\tau+1, \ldots, T\}$
\rightarrow [Garivier et al., 2016] for two Gaussian arms, for $c=8$, same regret as ETC, without the knowledge of Δ

Numerical illustration

$$
\nu_{1}=\mathcal{N}(1,1) \quad \nu_{2}=\mathcal{N}(1.5,1)
$$

Expected regret estimated over $N=500$ runs for Sequential-ETC versus two naive baselines.
(dashed lines : empirical 0.05% and 0.95% quantiles of the regret)

Outline

1 Performance measure and first strategies

[2 Best achievable regret

4 Bayesian algorithms

- Thompson Sampling

Examples of regret rates

For two-armed bandits with bounded rewards, $\Delta=\left|\mu_{1}-\mu_{2}\right|$

$$
\mathcal{R}_{\nu}(\mathrm{ETC}, T) \lesssim \frac{2}{\Delta} \log \left(T \Delta^{2}\right)
$$

\rightarrow problem-dependent logarithmic regret bound
Remark: blows up when Δ tends to zero...

$$
\begin{aligned}
\mathcal{R}_{\nu}(\mathrm{ETC}, T) & \lesssim \min \left[\frac{2}{\Delta} \log \left(T \Delta^{2}\right), \Delta T\right] \\
& \leq \sqrt{T} \max _{u>0}\left(\min \left[\frac{2}{u} \log \left(u^{2}\right) ; u\right]\right) \\
& \leq C \sqrt{T}
\end{aligned}
$$

\rightarrow problem-independent square-root regret bound

The Lai and Robbins lower bound

Context : a parametric bandit model where each arm is parameterized by its mean $\nu=\left(\nu_{\mu_{1}}, \ldots, \nu_{\mu_{K}}\right), \mu_{a} \in \mathcal{I}$.

$$
\nu \leftrightarrow \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{K}\right)
$$

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

$$
\operatorname{kl}\left(\mu, \mu^{\prime}\right):=\mathrm{KL}\left(\nu_{\mu}, \nu_{\mu^{\prime}}\right)=\mathbb{E}_{X \sim \nu_{\mu}}\left[\log \frac{d \nu_{\mu}}{d \nu_{\mu^{\prime}}}(X)\right]
$$

Theorem

For uniformly good algorithm,

$$
\mu_{a}<\mu_{\star} \Rightarrow \liminf _{T \rightarrow \infty} \frac{\mathbb{E}_{\mu}\left[N_{a}(T)\right]}{\log T} \geq \frac{1}{\mathrm{kl}\left(\mu_{a}, \mu_{\star}\right)}
$$

[Lai and Robbins, 1985]

The Lai and Robbins lower bound

Context : a parametric bandit model where each arm is parameterized by its mean $\nu=\left(\nu_{\mu_{1}}, \ldots, \nu_{\mu_{K}}\right), \mu_{a} \in \mathcal{I}$.

$$
\nu \leftrightarrow \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{K}\right)
$$

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

$$
\mathrm{kl}\left(\mu, \mu^{\prime}\right):=\frac{\left(\mu-\mu^{\prime}\right)^{2}}{2 \sigma^{2}} \quad \text { (Gaussian bandits) }
$$

Theorem

For uniformly good algorithm,

$$
\mu_{a}<\mu_{\star} \Rightarrow \liminf _{T \rightarrow \infty} \frac{\mathbb{E}_{\mu}\left[N_{a}(T)\right]}{\log T} \geq \frac{1}{\operatorname{kl}\left(\mu_{a}, \mu_{\star}\right)}
$$

[Lai and Robbins, 1985]

The Lai and Robbins lower bound

Context : a parametric bandit model where each arm is parameterized by its mean $\nu=\left(\nu_{\mu_{1}}, \ldots, \nu_{\mu_{K}}\right), \mu_{a} \in \mathcal{I}$.

$$
\nu \quad \leftrightarrow \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{K}\right)
$$

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

$$
\begin{equation*}
\mathrm{kl}\left(\mu, \mu^{\prime}\right):=\mu \log \left(\frac{\mu}{\mu^{\prime}}\right)+(1-\mu) \log \left(\frac{1-\mu}{1-\mu^{\prime}}\right) \tag{Bernoullibandits}
\end{equation*}
$$

Theorem

For uniformly good algorithm,

$$
\mu_{a}<\mu_{\star} \Rightarrow \liminf _{T \rightarrow \infty} \frac{\mathbb{E}_{\mu}\left[N_{a}(T)\right]}{\log T} \geq \frac{1}{\operatorname{kl}\left(\mu_{a}, \mu_{\star}\right)}
$$

[Lai and Robbins, 1985]

Some room for better algorithms!

A particular case of parameteric and bounded distributions :

$$
\nu_{1}=\mathcal{B}\left(\mu_{1}\right) \quad \nu_{2}=\mathcal{B}\left(\mu_{2}\right)
$$

- Regret of ETC : $\mathcal{R}_{\nu}(\mathrm{ETC}, T) \lesssim \frac{2}{\Delta} \log \left(T \Delta^{2}\right)$
- Lower bound : $\quad \mathcal{R}_{\nu}(\mathcal{A}, T) \gtrsim \frac{\Delta}{\mathrm{kl}\left(\mu_{2}, \mu_{1}\right)} \log \left(T \Delta^{2}\right)$

Pinsker's inequality: $\mathrm{kl}\left(\mu_{2}, \mu_{1}\right) \geq 2\left(\mu_{1}-\mu_{2}\right)^{2}$.
\rightarrow Explore-Then-Commit does not match the lower bound...

Outline

1 Performance measure and first strategies

2 Best achievable regret

3 Mixing Exploration and Exploitation
■ Upper Confidence Bound algorithms

4 Bayesian algorithms

- Thompson Sampling

A simple strategy : ϵ-greedy

The ϵ-greedy rule [Sutton and Barto, 1998] is the simplest way to alternate exploration and exploitation.

t-greedy strategy

At round t,

- with probability ϵ

$$
A_{t} \sim \mathcal{U}(\{1, \ldots, K\})
$$

- with probability $1-\epsilon$

$$
A_{t}=\underset{a=1, \ldots, K}{\operatorname{argmax}} \hat{\mu}_{a}(t) .
$$

\rightarrow Linear regret : $\mathcal{R}_{\nu}(\epsilon$-greedy,$T) \geq \epsilon \frac{K-1}{K} \Delta_{\text {min }} T$.

$$
\Delta_{\text {min }}=\min _{a: \mu_{a}<\mu_{\star}} \Delta_{a}
$$

A simple strategy : ϵ-greedy

A simple fix :

ϵ_{t}-greedy strategy

At round t,

- with probability $\epsilon_{t}:=\min \left(1, \frac{K}{d^{2} t}\right)$

$$
A_{t} \sim \mathcal{U}(\{1, \ldots, K\})
$$

- with probability $1-\epsilon_{t}$

$$
A_{t}=\underset{a=1, \ldots, K}{\operatorname{argmax}} \hat{\mu}_{a}(t-1) .
$$

Theorem

$$
\text { If } 0<d \leq \Delta_{\text {min }}, \mathcal{R}_{\nu}\left(\epsilon_{t} \text {-greedy, } T\right)=O\left(\frac{K \log (T)}{d^{2}}\right) .
$$

\rightarrow requires the knowledge of a lower bound on $\Delta_{\text {min }} \ldots$

Outline

1 Performance measure and first strategies

2 Best achievable regret

3 Mixing Exploration and Exploitation
■ Upper Confidence Bound algorithms

4 Bayesian algorithms
■ Thompson Sampling

The optimism principle

Step 1 : construct a set of statistically plausible models

- For each arm a, build a confidence interval on the mean μ_{a} :

$$
\begin{gathered}
\mathcal{I}_{a}(t)=\left[\mathrm{LCB}_{\mathrm{a}}(t), \mathrm{UCB}_{\mathrm{a}}(t)\right] \\
\mathrm{LCB}=\text { Lower Confidence Bound } \\
\mathrm{UCB}=\text { Upper Confidence Bound }
\end{gathered}
$$

Figure - Confidence intervals on the means after t rounds

The optimism principle

Step 2 : act as if the best possible model were the true model (optimism in face of uncertainty)

Figure - Confidence intervals on the means after t rounds

$$
\text { Optimistic bandit model }=\underset{\mu \in \mathcal{C}(t)}{\operatorname{argmax}} \max _{a=1, \ldots, K} \mu_{a}
$$

- That is, select

$$
A_{t+1}=\underset{a=1, \ldots, K}{\operatorname{argmax}} \mathrm{UCB}_{a}(t) .
$$

How to build confidence intervals?

We need $\mathrm{UCB}_{a}(t)$ such that

$$
\mathbb{P}\left(\mu_{\mathrm{a}} \leq \mathrm{UCB}_{\mathrm{a}}(t)\right) \gtrsim 1-t^{-1} .
$$

\rightarrow tool : concentration inequalities
Example : rewards are σ^{2} sub-Gaussian

Hoeffding inequality, reloaded

Z_{i} i.i.d. satisfying (1). For all $s \geq 1$

$$
\mathbb{P}\left(\frac{Z_{1}+\cdots+Z_{s}}{s}<\mu-x\right) \leq e^{-\frac{s x^{2}}{2 \sigma^{2}}}
$$

How to build confidence intervals?

We need $\mathrm{UCB}_{a}(t)$ such that

$$
\mathbb{P}\left(\mu_{\mathrm{a}} \leq \mathrm{UCB}_{a}(t)\right) \gtrsim 1-t^{-1} .
$$

\rightarrow tool : concentration inequalities
Example : rewards are σ^{2} sub-Gaussian

Hoeffding inequality, reloaded

Z_{i} i.i.d. satisfying (1). For all $s \geq 1$

$$
\mathbb{P}\left(\frac{Z_{1}+\cdots+Z_{s}}{s}<\mu-x\right) \leq e^{-\frac{s x^{2}}{2 \sigma^{2}}}
$$

\triangle Cannot be used directly in a bandit model as the number of observations from each arm is random!

How to build confidence intervals?

- $N_{a}(t)=\sum_{s=1}^{t} \mathbb{1}_{\left(A_{s}=a\right)}$ number of selections of a after t rounds
- $\hat{\mu}_{\mathrm{a}, \mathrm{s}}=\frac{1}{s} \sum_{k=1}^{s} Y_{a, k}$ average of the first s observations from arm a
- $\hat{\mu}_{\mathrm{a}}(t)=\hat{\mu}_{\mathrm{a}, N_{\mathrm{a}}(t)}$ empirical estimate of μ_{a} after t rounds

Hoeffding inequality + union bound

$$
\mathbb{P}\left(\mu_{a} \leq \hat{\mu}_{a}(t)+\sigma \sqrt{\frac{\beta \log (t)}{N_{a}(t)}}\right) \geq 1-\frac{1}{t^{\frac{\beta}{2}-1}}
$$

How to build confidence intervals?

- $N_{a}(t)=\sum_{s=1}^{t} \mathbb{1}_{\left(A_{s}=a\right)}$ number of selections of a after t rounds
$>\hat{\mu}_{a, s}=\frac{1}{s} \sum_{k=1}^{s} Y_{a, k}$ average of the first s observations from arm a
$>\hat{\mu}_{a}(t)=\hat{\mu}_{a, N_{a}(t)}$ empirical estimate of μ_{a} after t rounds

Hoeffding inequality + union bound

$$
\mathbb{P}\left(\mu_{a} \leq \hat{\mu}_{a}(t)+\sigma \sqrt{\frac{\beta \log (t)}{N_{a}(t)}}\right) \geq 1-\frac{1}{t^{\frac{\beta}{2}-1}}
$$

Proof.

$$
\begin{aligned}
& \mathbb{P}\left(\mu_{a}>\hat{\mu}_{a}(t)+\sigma \sqrt{\frac{\beta \log (t)}{N_{a}(t)}}\right) \leq \mathbb{P}\left(\exists s \leq t: \mu_{a}>\hat{\mu}_{a, s}+\sigma \sqrt{\frac{\beta \log (t)}{s}}\right) \\
& \leq \sum_{s=1}^{t} \mathbb{P}\left(\hat{\mu}_{a, s}<\mu_{a}-\sigma \sqrt{\frac{\beta \log (t)}{s}}\right) \leq \sum_{s=1}^{t} \frac{1}{t^{\beta / 2}}=\frac{1}{t^{\beta / 2-1}} .
\end{aligned}
$$

A first UCB algorithm

$\mathrm{UCB}(\alpha)$ selects $A_{t+1}=\operatorname{argmax}_{a} \mathrm{UCB}_{a}(t)$ where

$$
\mathrm{UCB}_{a}(t)=\underbrace{\hat{\mu}_{a}(t)}_{\text {exploitation term }}+\underbrace{\sqrt{\frac{\alpha \log (t)}{N_{a}(t)}}}_{\text {exploration bonus }} .
$$

- popularized by [Auer et al., 2002] for bounded rewards : UCB1, for $\alpha=2$
- the analysis of $\operatorname{UCB}(\alpha)$ was further refined to hold for $\alpha>1 / 2$ in that case [Bubeck, 2010, Cappé et al., 2013]

A UCB algorithm in action

Regret of $\mathbf{U C B}(\alpha)$ for bounded rewards

Theorem

For every $\alpha>1$ and every sub-optimal arm a, there exists a constant $C_{\alpha}>0$ such that

$$
\mathbb{E}_{\mu}\left[N_{\mathrm{a}}(T)\right] \leq \frac{4 \alpha}{\left(\mu_{\star}-\mu_{\mathrm{a}}\right)^{2}} \log (T)+C_{\alpha} .
$$

Proof :

An improved result

Context : σ^{2} sub-Gaussian rewards

$$
\mathrm{UCB}_{a}(t)=\hat{\mu}_{a}(t)+\sqrt{\frac{2 \sigma^{2}(\log (t)+c \log \log (t))}{N_{a}(t)}}
$$

Theorem

For $c \geq 3$, the UCB algorithm associated to the above index satisfy

$$
\mathbb{E}\left[N_{a}(T)\right] \leq \frac{2 \sigma^{2}}{\left(\mu_{\star}-\mu_{a}\right)^{2}} \log (T)+C_{\mu} \sqrt{\log (T)}
$$

An improved result

Context : σ^{2} sub-Gaussian rewards

$$
\mathrm{UCB}_{a}(t)=\hat{\mu}_{a}(t)+\sqrt{\frac{2 \sigma^{2}(\log (t)+c \log \log (t))}{N_{a}(t)}}
$$

Theorem

For $c \geq 3$, the UCB algorithm associated to the above index satisfy

$$
\mathbb{E}\left[N_{a}(T)\right] \leq \frac{2 \sigma^{2}}{\left(\mu_{\star}-\mu_{\mathrm{a}}\right)^{2}} \log (T)+C_{\mu} \sqrt{\log (T)}
$$

- Gaussian rewards :

$$
\mathcal{R}_{\nu}(\mathrm{UCB}, T) \lesssim\left(\sum_{a: \mu_{a}<\mu_{*}} \frac{2 \sigma^{2}}{\Delta_{a}}\right) \log (T) .
$$

\rightarrow matching the Lai and Robbins lower bound! asymptotically optimal

An improved result

Context : σ^{2} sub-Gaussian rewards

$$
\mathrm{UCB}_{a}(t)=\hat{\mu}_{a}(t)+\sqrt{\frac{2 \sigma^{2}(\log (t)+c \log \log (t))}{N_{a}(t)}}
$$

Theorem

For $c \geq 3$, the UCB algorithm associated to the above index satisfy

$$
\mathbb{E}\left[N_{\mathrm{a}}(T)\right] \leq \frac{2 \sigma^{2}}{\left(\mu_{\star}-\mu_{\mathrm{a}}\right)^{2}} \log (T)+C_{\mu} \sqrt{\log (T)}
$$

- Bernoulli rewards :

$$
\mathcal{R}_{\nu}(\mathrm{UCB}, T) \lesssim\left(\sum_{a: \mu_{a}<\mu_{*}} \frac{1}{2 \Delta_{a}}\right) \log (T)
$$

\rightarrow optimal?

An improved result

Context : σ^{2} sub-Gaussian rewards

$$
\mathrm{UCB}_{\mathrm{a}}(t)=\hat{\mu}_{\mathrm{a}}(t)+\sqrt{\frac{2 \sigma^{2}(\log (t)+c \log \log (t))}{N_{a}(t)}}
$$

Theorem

For $c \geq 3$, the UCB algorithm associated to the above index satisfy

$$
\mathbb{E}\left[N_{a}(T)\right] \leq \frac{2 \sigma^{2}}{\left(\mu_{\star}-\mu_{\mathrm{a}}\right)^{2}} \log (T)+C_{\mu} \sqrt{\log (T)}
$$

- Bernoulli rewards:

$$
\mathcal{R}_{\nu}(\mathrm{UCB}, T) \neq\left(\sum_{a ; \mu_{a}<\mu_{\star}} \frac{\Delta_{a}}{\mathrm{kl}\left(\mu_{a}, \mu_{\star}\right)}\right) \log (T)
$$

\rightarrow not matching the Lai and Robbins lower bound

The kl-UCB algorithm

Exploits the KL-divergence in the lower bound!

$$
\mathrm{UCB}_{a}(t)=\max \left\{q \in[0,1]: \mathrm{kl}\left(\hat{\mu}_{a}(t), q\right) \leq \frac{\log (t)}{N_{a}(t)}\right\} .
$$

A tighter concentration inequality

For rewards that belong to a 1-d exponential family (e.g. Bernoulli)

$$
\mathbb{P}\left(\mathrm{UCB}_{a}(t)>\mu_{\mathrm{a}}\right) \gtrsim 1-\frac{1}{t \log (t)}
$$

An asymptotically optimal algorithm

$\mathrm{kl}-\mathrm{UCB}$ selects $A_{t+1}=\operatorname{argmax}_{\mathrm{a}} \mathrm{UCB}_{\mathrm{a}}(t)$ with

$$
\mathrm{UCB}_{a}(t)=\max \left\{q \in[0,1]: \mathrm{kl}\left(\hat{\mu}_{a}(t), q\right) \leq \frac{\log (t)+c \log \log (t)}{N_{a}(t)}\right\} .
$$

Theorem

If $c \geq 3$, for every arm such that $\mu_{a}<\mu_{\star}$,

$$
\mathbb{E}_{\mu}\left[N_{\mathrm{a}}(T)\right] \leq \frac{1}{\mathrm{kl}\left(\mu_{\mathrm{a}}, \mu_{\star}\right)} \log (T)+C_{\mu} \sqrt{\log (T)}
$$

- asymptotically optimal for rewards in a 1-d exponential family :

$$
\mathcal{R}_{\mu}(\mathrm{kl}-\mathrm{UCB}, T) \simeq\left(\sum_{a: \mu_{a}<\mu_{*}} \frac{\Delta_{a}}{\mathrm{kl}\left(\mu_{a}, \mu_{*}\right)}\right) \log (T) .
$$

Outline

11 Performance measure and first strategies
[2 Best achievable regret

3 Mixing Exploration and Exploitation

- Upper Confidence Bound algorithms

4 Bayesian algorithms

[^0]
Frequentist versus Bayesian bandit

$$
\nu_{\mu}=\left(\nu^{\mu_{1}}, \ldots, \nu^{\mu_{K}}\right) \in(\mathcal{P})^{K}
$$

- Two probabilistic models

Frequentist model	Bayesian model
μ_{1}, \ldots, μ_{K}	μ_{1}, \ldots, μ_{K} drawn from a
unknown parameters	prior distribution $: \mu_{a} \sim \pi_{a}$
arm $a:\left(Y_{a, s}\right)_{s} \stackrel{\text { i.i.d. }}{\sim} \nu^{\mu_{a}}$	$\operatorname{arm} a:\left(Y_{a, s}\right)_{s} \mid \boldsymbol{\mu} \stackrel{\text { i.i.d. }}{\sim} \nu^{\mu_{a}}$

- The regret can be computed in each case

Frequentist regret (regret)

Bayesian regret (Bayes risk)

$$
\mathcal{R}_{\boldsymbol{\mu}}(\mathcal{A}, T)=\mathbb{E}_{\boldsymbol{\mu}}\left[\sum_{t=1}^{T}\left(\mu_{\star}-\mu_{A_{t}}\right)\right] \left\lvert\, \begin{aligned}
\mathrm{R}^{\pi}(\mathcal{A}, T) & =\mathbb{E}_{\boldsymbol{\mu} \sim \pi}\left[\sum_{t=1}^{T}\left(\mu_{\star}-\mu_{A_{t}}\right)\right] \\
& =\int \mathcal{R}_{\boldsymbol{\mu}}(\mathcal{A}, T) d \pi(\boldsymbol{\mu})
\end{aligned}\right.
$$

Frequentist and Bayesian algorithms

- Two types of tools to build bandit algorithms :

Frequentist tools	Bayesian tools
MLE estimators of the means	Posterior distributions
Confidence Intervals	$\pi_{a}^{t}=\mathcal{L}\left(\mu_{a} \mid Y_{a, 1}, \ldots, Y_{a, N_{a}(t)}\right)$

Example : Bernoulli bandits

Bernoulli bandit model $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{K}\right)$

- Bayesian view : μ_{1}, \ldots, μ_{K} are random variables prior distribution: $\quad \mu_{a} \sim \mathcal{U}([0,1])$
\rightarrow posterior distribution :

$$
\begin{aligned}
\pi_{a}(t) & =\mathcal{L}\left(\mu_{a} \mid R_{1}, \ldots, R_{t}\right) \\
& =\operatorname{Beta}(\underbrace{S_{a}(t)}_{\text {\#ones }}+1, \underbrace{N_{a}(t)-S_{a}(t)}_{\text {\#zeros }}+1)
\end{aligned}
$$

$S_{a}(t)=\sum_{s=1}^{t} R_{s} \mathbb{1}_{\left(A_{s}=a\right)}$ sum of the rewards.

Bayesian algorithm

A Bayesian bandit algorithm exploits the posterior distributions of the means to decide which arm to select.

First example : Bayes-UCB

- $\Pi_{0}=\left(\pi_{1}(0), \ldots, \pi_{K}(0)\right)$ be a prior distribution over $\left(\mu_{1}, \ldots, \mu_{K}\right)$
- $\Pi_{t}=\left(\pi_{1}(t), \ldots, \pi_{K}(t)\right)$ be the posterior distribution over the means (μ_{1}, \ldots, μ_{K}) after t observations

Bayes-UCB selects at time $t+1$

$$
A_{t+1}=\underset{a=1, \ldots, K}{\operatorname{argmax}} Q\left(1-\frac{1}{t(\log t)^{c}}, \pi_{a}(t)\right)
$$

where $Q(\alpha, \pi)$ is the quantile of order α of the distribution π.

First example : Bayes-UCB

- $\Pi_{0}=\left(\pi_{1}(0), \ldots, \pi_{K}(0)\right)$ be a prior distribution over $\left(\mu_{1}, \ldots, \mu_{K}\right)$
- $\Pi_{t}=\left(\pi_{1}(t), \ldots, \pi_{K}(t)\right)$ be the posterior distribution over the means $\left(\mu_{1}, \ldots, \mu_{K}\right)$ after t observations

Bayes-UCB selects at time $t+1$

$$
A_{t+1}=\underset{a=1, \ldots, K}{\operatorname{argmax}} Q\left(1-\frac{1}{t(\log t)^{c}}, \pi_{a}(t)\right)
$$

where $Q(\alpha, \pi)$ is the quantile of order α of the distribution π.

Bernoulli reward with uniform prior :

- $\pi_{a}(0) \stackrel{i . i . d}{\sim} \mathcal{U}([0,1])=\operatorname{Beta}(1,1)$
- $\pi_{a}(t)=\operatorname{Beta}\left(S_{a}(t)+1, N_{a}(t)-S_{a}(t)+1\right)$

First example : Bayes-UCB

- $\Pi_{0}=\left(\pi_{1}(0), \ldots, \pi_{K}(0)\right)$ be a prior distribution over $\left(\mu_{1}, \ldots, \mu_{K}\right)$
- $\Pi_{t}=\left(\pi_{1}(t), \ldots, \pi_{K}(t)\right)$ be the posterior distribution over the means (μ_{1}, \ldots, μ_{K}) after t observations

Bayes-UCB selects at time $t+1$

$$
A_{t+1}=\underset{a=1, \ldots, K}{\operatorname{argmax}} Q\left(1-\frac{1}{t(\log t)^{c}}, \pi_{a}(t)\right)
$$

where $Q(\alpha, \pi)$ is the quantile of order α of the distribution π.

Gaussian rewards with Gaussian prior :

- $\pi_{a}(0) \stackrel{i . i . d}{\sim} \mathcal{N}\left(0, \kappa^{2}\right)$
- $\pi_{a}(t)=\mathcal{N}\left(\frac{S_{a}(t)}{N_{a}(t)+\sigma^{2} / \kappa^{2}}, \frac{\sigma^{2}}{N_{a}(t)+\sigma^{2} / \kappa^{2}}\right)$

Bayes UCB in action

- Bayes-UCB is also asymptotically optimal for Bernoulli distribution

Outline

11 Performance measure and first strategies
[2 Best achievable regret

3 Mixing Exploration and Exploitation

- Upper Confidence Bound algorithms

4 Bayesian algorithms

- Thompson Sampling

Thompson Sampling

A very old idea : [Thompson, 1933].

Two equivalent interpretations :

- "select an arm at random according to its probability of being the best"
- "draw a possible bandit model from the posterior distribution and act optimally in this sampled model"

Thompson Sampling : a randomized Bayesian algorithm

$$
\left\{\begin{array}{l}
\forall a \in\{1 . . K\}, \quad \theta_{a}(t) \sim \pi_{a}(t) \\
A_{t+1}=\underset{a=1 \ldots K}{\operatorname{argmax}} \theta_{a}(t)
\end{array}\right.
$$

Thompson Sampling is asymptotically optimal

Problem-dependent regret

$$
\forall \epsilon>0, \quad \mathbb{E}_{\mu}\left[N_{a}(T)\right] \leq(1+\epsilon) \frac{1}{\mathrm{kl}\left(\mu_{a}, \mu_{\star}\right)} \log (T)+o_{\mu, \epsilon}(\log (T)) .
$$

This results holds :

- for Bernoulli bandits, with a uniform prior
[Kaufmann et al., 2012, Agrawal and Goyal, 2013]
- for Gaussian bandits, with Gaussian prior [Agrawal and Goyal, 2017]
- for exponential family bandits, with Jeffrey's prior
[Korda et al., 2013]

Problem-independent regret

For Bernoulli and Gaussian bandits, Thompson Sampling satisfies

$$
\mathcal{R}_{\mu}(\mathrm{TS}, T)=O(\sqrt{K T \log (T)})
$$

Bayesian versus Frequentist algorithms

- Regret up to $T=2000$ (average over $N=200$ runs) as a function of $T($ resp. $\log (T))$

$$
\boldsymbol{\mu}=\left[\begin{array}{lll}
0.1 & 0.15 & 0.2 \\
0.25
\end{array}\right]
$$

Summary

Several ways to solve the exploration/exploitation trade-off, mostly

- the optimism-in-face-of-uncertainty principle (UCB)
- posterior sampling (Thompson Sampling)

What do they need?

- UCB : the hability to build a confidence region for the unknown model parameters and compute the best possible model
- Thompson Sampling : the ability to define a prior distribution and sample from the corresponding posterior distribution
\rightarrow these principles can be extended to more challenging bandit problems (and to reinforcement learning!)

Agrawal, S. and Goyal, N. (2013).
Further Optimal Regret Bounds for Thompson Sampling.
In Proceedings of the 16th Conference on Artificial Intelligence and Statistics.
Agrawal, S. and Goyal, N. (2017).
Near-optimal regret bounds for thompson sampling.
J. ACM, 64(5):30:1-30:24.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002).
Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2) :235-256.

Bubeck, S. (2010).
Jeux de bandits et fondation du clustering.
PhD thesis, Université de Lille 1.
Cappé, O., Garivier, A., Maillard, O.-A., Munos, R., and Stoltz, G. (2013). Kullback-Leibler upper confidence bounds for optimal sequential allocation. Annals of Statistics, 41(3) :1516-1541.

Garivier, A. and Cappé, O. (2011).
The KL-UCB algorithm for bounded stochastic bandits and beyond.
In Proceedings of the 24th Conference on Learning Theory.

Garivier, A., Kaufmann, E., and Lattimore, T. (2016).
On explore-then-commit strategies.
In Advances in Neural Information Processing Systems (NeurIPS).

Kaufmann, E., Korda, N., and Munos, R. (2012).
Thompson Sampling : an Asymptotically Optimal Finite-Time Analysis.
In Proceedings of the 23rd conference on Algorithmic Learning Theory.

Korda, N., Kaufmann, E., and Munos, R. (2013).
Thompson Sampling for 1-dimensional Exponential family bandits.
In Advances in Neural Information Processing Systems.

Lai, T. and Robbins, H. (1985).
Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6(1) :4-22.

Lattimore, T. and Szepesvari, C. (2019).
Bandit Algorithms.
Cambridge University Press.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010).
A contextual-bandit approach to personalized news article recommendation.
In WWW.

Robbins, H. (1952).
Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 58(5) :527-535.

Sutton, R. and Barto, A. (1998).
Reinforcement Learning : an Introduction.
MIT press.

Thompson, W. (1933).
On the likelihood that one unknown probability exceeds another in view of the evidence of two samples.
Biometrika, 25 :285-294.

[^0]: - Thompson Sampling

