Sequential Decision Making
 Lecture 1 : From Batch to Sequential Learning

Emilie Kaufmann

LUniversité de Lille

M2 Data Science, 2022/2023

Presentation

About me:

- CNRS researcher in the CRIStAL computer science lab
- member of the Inria team Scool
(Sequential COntinual Online Learning)
- Contact : emilie.kaufmann@univ-lille.fr

Practical information :

- Evaluation : (two homeworks) or (one homework + project), TBC
- Webpage of the class : https://emiliekaufmann.github.io/SDM.html

Sequential Decision Making

Sequential Decision Making vs. Supervised Learning

- sequential learning : the data needs to be processed sequentially (= one by one) online learning

- decisions can influence the data collection process
\rightarrow collect data in a smart way in order to optimize some criterion [e.g., in Reinforcement Learning maximize some cumulated reward]

Outline of the SDM course

(1) Online Learning, Adversarial Bandits
(2) Stochastic Multi-Armed Bandits
(3) Beyond Classical Bandits

- Introduction to Markov Decision Processes (MDP)
(Solving a known MDP : Dynamic Programming
- Solving an unknown MDP : RL algorithms
(3) Reinforcement Learning with Function Approximation
(Bandit tools for Reinforcement Learning

Outline of the SDM course

(1) Online Learning, Adversarial bandits
(2) Stochastic Multi-Armed Bandits
(3) Beyond Classical Bandits
(1) Introduction to Markov Decision Processes (MDP)
© Solving a known MDP : Dynamic Programming
(Solving an unknown MDP : RL algorithms
(1) Reinforcement Learning with Function Approximation
(Bandit tools for Reinforcement Learning

11 Recap : (batch) Supervised Learning

2 Online learning I : Online Convex Optimization

3 Online learning II : Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case

Supervised Learning

We observe a database containing features (\boldsymbol{X}) and labels (\boldsymbol{Y})

$$
\begin{aligned}
\mathcal{D}_{n}=\{ & \left.\left(X_{i}, Y_{i}\right)\right\}_{i=1, \ldots n} \in \mathcal{X} \times \mathcal{Y} \\
& (\text { "labeled examples" })
\end{aligned}
$$

Typically $\mathcal{X}=\mathbb{R}^{d}$ (features are represented by vectors) and

- $\mathcal{Y}=\{0,1\}$: binary classification
- $3 \leq|\mathcal{Y}|<\infty$: multi-class classification
- $\mathcal{Y}=\mathbb{R}$: regression

The goal is to build a predictor $\hat{\mathrm{g}}_{n}: \mathcal{X} \rightarrow \mathcal{Y}$, which is a function that depends on the data \mathcal{D}_{n}, such that for a new observation $(\boldsymbol{X}, \boldsymbol{Y})$

$$
\hat{g}_{n}(\boldsymbol{X}) \simeq \boldsymbol{Y} .
$$

\rightarrow smart prediction by means of generalization from examples

Examples

Image classification :

Features : pixel values Label : type of image
(classification)

Personalized marketing :

Overiew Data Discussion Leaderboard Rules Team

Allstate.
Allstate Claims Severity
You're in good hands. How severe is an in surance claine

Overview Data Kernels Discussion Leaderbarard Rules Tearn

Features: customer information Label : yearly claim
(regression)

Mathematical formalization

Modelling assumption : $\mathcal{D}_{n}=\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1, \ldots n}$ contains i.i.d samples whose distribution is that of a random vector

$$
(\boldsymbol{X}, \boldsymbol{Y}) \sim \mathbb{P} .
$$

Goal

Given a loss function ℓ, build a predictor with small risk

$$
R(g)=\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{Y}) \sim \mathbb{P}}[\ell(g(\boldsymbol{X}), \boldsymbol{Y})]
$$

A learning algorithm : Empirical risk minimization

Given a class \mathcal{G} of possible predictors, one can compute/approximate

$$
\hat{\mathrm{g}}_{n}^{\mathrm{ERM}} \in \underset{g \in \mathcal{G}}{\operatorname{argmin}}\left[\frac{1}{n} \sum_{i=1}^{n} \ell\left(g\left(X_{i}\right), Y_{i}\right)\right]
$$

Many supervised learning algorithms

Some of them can be related to an ERM :
\rightarrow linear regression (Gauss, 1795)
\rightarrow logistic regression (1950s)
$\rightarrow k$-nearest neighbors (1960s)
\rightarrow Decision Trees (CART, 1984)
\rightarrow Support Vector Machines (1995)
\rightarrow Boosting algorithms (Adaboost, 1997)
\rightarrow Random Forest (2001)
\rightarrow Neural Networks (1960s-80s, Deep Learning 2010s)

Example : Linear Regression

$\mathcal{X}=\mathbb{R}^{d}$ and $\mathcal{Y}=\{-1,1\}$ (binary classification).
Linear regression
$\hat{g}_{n}(x)=\operatorname{sgn}\left(\left\langle x \mid \hat{\theta}_{n}\right\rangle\right)$ where

$$
\hat{\theta}_{n} \in \underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-\left\langle X_{i}, \theta\right\rangle\right)^{2}
$$

Links with the ERM with

- $\mathcal{G}=\{$ linear functions $\}$
- square loss: $\ell(u, v)=(u-v)^{2}$

Example : Logistic Regression

$$
\mathcal{X}=\mathbb{R}^{d} \text { and } \mathcal{Y}=\{-1,1\} \text { (binary classification). }
$$

Logistic regression
$\hat{g}_{n}(x)=\operatorname{sgn}\left(\left\langle x \mid \hat{\theta}_{n}\right\rangle\right)$ where

$$
\hat{\theta}_{n} \in \underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{i=1}^{n} \ln \left(1+e^{-Y_{i}\left\langle X_{i}, \theta\right\rangle}\right)
$$

Links with the ERM with

- $\mathcal{G}=\{$ linear functions $\}$
- logistic loss : $\ell(u, v)=\ln \left(1+e^{-u v}\right)$

Batch versus Online

Supervised Learning :

Based on a large database (batch), predict the label of new data (e.g., a test set).

Online Learning :

Data is collected sequentially, and we have to predict their label one-by-one (online), after which the true label is revealed.

Examples:

- predict the value of a stock
- predict electricity consumption for the next day
- predict the behavior of a customer

Can existing methods be (efficiently) adapted to the online setting?

- Linear regression : not at first sight...

Closed-form expression for the least-square estimate :

$$
\hat{\theta}_{n}=\left(X_{(n)}^{\top} X_{(n)}\right)^{-1} X_{(n)}^{\top} Y_{(n)}
$$

where

$$
\begin{gathered}
X_{(n)}=\left(\begin{array}{c}
X_{1}^{\top} \\
X_{2}^{\top} \\
\cdot \\
X_{n}^{\top}
\end{array}\right) \in \mathbb{R}^{n \times d} \quad \text { and } \quad Y_{(n)}=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\dot{Y_{n}}
\end{array}\right) \in \mathbb{R}^{n} \\
\text { design matrix } \\
\text { vector of labels }
\end{gathered}
$$

\rightarrow need to invert a $d \times d$ matrix depending on \mathcal{D}_{n} in each round $n+1$
\rightarrow need to store a growing matrix and vector

Can existing methods be (efficiently) adapted to the online setting?

- Linear regression : ... but yes thanks to online least-squares

Another way to write the least-square estimate

$$
\hat{\theta}_{n}=\left(\sum_{t=1}^{n} X_{t} X_{t}^{\top}\right)^{-1}\left(\sum_{t=1}^{n} Y_{t} X_{t}\right)
$$

Hence

$$
\hat{\theta}_{n+1}=\left(\sum_{t=1}^{n} X_{t} X_{t}^{\top}+X_{n+1} X_{n+1}^{\top}\right)^{-1}\left(\sum_{t=1}^{n} Y_{t} X_{t}+Y_{n+1} X_{n+1}\right)
$$

\rightarrow easy online update thanks to the Sherman-Morisson formula :

$$
\left(A+u v^{\top}\right)^{-1}=A^{-1}-\frac{A^{-1} u v^{\top} A^{-1}}{1+v^{\top} A^{-1} u}
$$

\rightarrow only requires to store a $d \times d$ matrix and a vector in \mathbb{R}^{d}

Can existing methods be (efficiently) adapted to the online setting?

- Logistic regression : not so clear...

The optimization problem

$$
\hat{\theta}_{n}=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{i=1}^{n} \ln \left(1+e^{-Y_{i}\left\langle X_{i}, \theta\right\rangle}\right)
$$

has no closed-form solution...
\rightarrow no hope for an explicit only update
\rightarrow online version of the optimization algorithms used?

Online Learning : general framework

Online Learning

At every time step $t=1, \ldots, T$,
(1) observe (features) $x_{t} \in \mathcal{X}$
(2) predict (label) $\hat{y}_{t} \in \mathcal{Y}$
(3) y_{t} is revealed and we suffer a loss $\ell\left(y_{t}, \hat{y}_{t}\right)$.

Goal : Minimize the cumulated loss

$$
\sum_{t=1}^{T} \ell\left(y_{t}, \hat{y}_{t}\right)
$$

We can compare our performance to :
\rightarrow that of the best predictor in a family \mathcal{G}
\rightarrow that of ("black-box") experts that propose predictions

1 Recap : (batch) Supervised Learning

■ Online learning I : Online Convex Optimization

3 Online learning II: Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case

Learning the Best Predictor Online

Let \mathcal{G} be a class of predictors.

A particular Online Learning problem

A each time step $t=1, \ldots, T$,
(1) choose a predictor $g_{t} \in \mathcal{G}$
(2) observe $x_{t} \in \mathcal{X}$ and predict $\hat{y}_{t}=g_{t}\left(x_{t}\right)$
(3) observe y_{t} and suffer a loss $\ell\left(y_{t} ; \hat{y}_{t}\right)$.

- Goal : minimize regret

Regret of a prediction strategy $\left(g_{t}\right)_{t \in \mathbb{N}}$

The regret is the difference between the cumulative loss of the strategy and the cumulative loss of the best predictor in \mathcal{G} :

$$
R_{T}=\sum_{t=1}^{T} \ell\left(y_{t} ; \hat{y}_{t}\right)-\min _{g \in \mathcal{G}} \sum_{t=1}^{T} \ell\left(y_{t} ; g\left(x_{t}\right)\right) .
$$

Learning the Best Predictor Online

Let \mathcal{G} be a class of predictors.

A particular Online Learning problem

A each time step $t=1, \ldots, T$,
(1) choose a predictor $g_{t} \in \mathcal{G}$ (based on previous observation)
(2) observe $x_{t} \in \mathcal{X}$ and predict $\hat{y}_{t}=g_{t}\left(x_{t}\right)$
(3) observe y_{t} and suffer a loss $\ell\left(y_{t} ; \hat{y}_{t}\right)$.

- Goal : minimize regret

Regret of a prediction strategy $\left(g_{t}\right)_{t \in \mathbb{N}}$

The regret is the difference between the cumulative loss of the strategy and the cumulative loss of the best predictor in \mathcal{G} :

$$
R_{T}=\sum_{t=1}^{T} \ell\left(y_{t} ; \hat{y}_{t}\right)-\min _{g \in \mathcal{G}} \sum_{t=1}^{T} \ell\left(y_{t} ; g\left(x_{t}\right)\right) .
$$

Example : Online Logistic Regression

Let \mathcal{G} be a class of predictors.

A particular Online Learning problem

A each time step $t=1, \ldots, T$,
(1) choose a predictor $g_{t} \in \mathcal{G}$
(2) observe $x_{t} \in \mathcal{X}$ and predict $\hat{y}_{t}=g_{t}\left(x_{t}\right)$
(3) observe y_{t} and suffer a loss $\ell\left(y_{t} ; \hat{y}_{t}\right)$.

Example : $\mathcal{X}=\mathbb{R}^{d}, \mathcal{Y}=\mathbb{R}$ (can be converted to prediction in $\{-1,1\}$).

- \mathcal{G} is the set of linear functions : $\mathcal{G}=\left\{g(x)=\langle x, \theta\rangle, \theta \in \mathbb{R}^{d}\right\}$
\rightarrow there exists $\theta_{t} \in \mathbb{R}^{d}$ such that $g_{t}(x)=\left\langle\theta_{t}, x\right\rangle$
$\downarrow \ell$ is the logistic loss: $\ell\left(y_{t} ; \hat{y}_{t}\right)=\ln \left(1+e^{-y_{t}\left\langle\theta_{t}, x_{t}\right\rangle}\right)$

Example : Online Logistic Regression

Let \mathcal{G} be a class of predictors.

A particular Online Learning problem

A each time step $t=1, \ldots, T$,
(1) choose a predictor $g_{t} \in \mathcal{G}$
(2) observe $x_{t} \in \mathcal{X}$ and predict $\hat{y}_{t}=g_{t}\left(x_{t}\right)$
(3) observe y_{t} and suffer a loss $\ell\left(y_{t} ; \hat{y}_{t}\right)$.

Goal : the regret that we should minimize rewrites

$$
R_{T}=\underbrace{\sum_{t=1}^{T} \ln \left(1+e^{-y_{t}\left\langle\theta_{t}, x_{t}\right\rangle}\right)}_{\begin{array}{c}
\text { loss obtained by updating } \\
\text { our predictor in an online fashion }
\end{array}}-\underbrace{\min _{\theta \in \mathcal{R}^{d}} \sum_{t=1}^{T} \ln \left(1+e^{-y_{t}\left\langle\theta, x_{t}\right\rangle}\right)}_{\begin{array}{c}
\text { loss obtained by the } \\
\text { logistic regression predictor } \\
\text { trained with the whole dataset }
\end{array}}
$$

Example : Online Logistic Regression

\mathcal{G} is a parametric class of predictors : $\mathcal{G}=\left\{g_{\theta}, \theta \in \mathbb{R}^{d}\right\}$

A particular Online Learning problem

A each time step $t=1, \ldots, T$,
(1) choose a vector $\theta_{t} \in \mathbb{R}^{d}$
(2) a loss function is observed: $\ell_{t}(\theta)=\ln \left(1+e^{-y_{t}\left\langle\theta, x_{t}\right\rangle}\right)$
(3) we suffer a loss $\ell_{t}\left(\theta_{t}\right)$.

Goal : the regret that we should minimize rewrites

$$
R_{T}=\underbrace{\sum_{t=1}^{T} \ln \left(1+e^{-y_{t}\left\langle\theta_{t}, x_{t}\right\rangle}\right)}_{\begin{array}{c}
\text { loss obtained by updating } \\
\text { our predictor in an online fashion }
\end{array}}-\underbrace{\min _{\theta \in \mathcal{R}^{d}} \sum_{t=1}^{T} \ln \left(1+e^{-y_{t}\left\langle\theta, x_{t}\right\rangle}\right)}_{\begin{array}{c}
\text { loss obtained by the } \\
\text { logistic regression predictor } \\
\text { trained with the whole dataset }
\end{array}}
$$

Example : Online Logistic Regression

\mathcal{G} is a parametric class of predictors : $\mathcal{G}=\left\{g_{\theta}, \theta \in \mathbb{R}^{d}\right\}$

A particular Online Learning problem

A each time step $t=1, \ldots, T$,
(1) choose a vector $\theta_{t} \in \mathbb{R}^{d}$
(2) a loss function is observed: $\ell_{t}(\theta)=\ln \left(1+e^{-y_{t}\left\langle\theta, x_{t}\right\rangle}\right)$
(3) we suffer a loss $\ell_{t}\left(\theta_{t}\right)$.

Goal : the regret that we should minimize rewrites

$$
R_{T}=\underbrace{\sum_{t=1}^{T} \ell_{t}\left(\theta_{t}\right)}_{\begin{array}{c}
\text { loss obtained by updating } \\
\text { our predictor in an online fashion }
\end{array}}-\underbrace{\min _{\theta \in \mathcal{R}^{d}} \sum_{t=1}^{T} \ell_{t}(\theta)}_{\begin{array}{c}
\text { loss obtained by the } \\
\text { logistic regression classifier } \\
\text { trained with the whole dataset }
\end{array}}
$$

\rightarrow fits the framework of Online Convex Optimization

Online Convex Optimization

Online Convex Optimization

A each time step $t=1, \ldots, T$,
(1) choose $\theta_{t} \in \mathcal{K}$, a convex set
(2) a convex loss function $\ell_{t}(\theta)$ is observed
(3) we suffer a loss $\ell_{t}\left(\theta_{t}\right)$.

Goal : minimize the regret

$$
R_{T}=\underbrace{\sum_{t=1}^{T} \ell_{t}\left(\theta_{t}\right)}_{\substack{\text { loss obtained by updating } \\
\theta \text { in an online fashion }}}-\underbrace{\min _{\theta \in \mathcal{R}^{d}} \sum_{t=1}^{T} \ell_{t}(\theta)}_{\begin{array}{c}
\text { loss obtained by the } \\
\text { best static choice of } \theta
\end{array}}
$$

Online Gradient Descent

Online (Projected) Gradient Descent

$$
\left\{\begin{aligned}
\theta_{1} & \in \mathcal{K} \\
\theta_{t+1} & =\Pi_{\mathcal{K}}\left(\theta_{t}-\eta \nabla \ell_{\boldsymbol{t}}\left(\theta_{t}\right)\right)
\end{aligned}\right.
$$

where $\Pi_{\mathcal{K}}(x)=\operatorname{argmin}_{u \in \mathcal{K}}\|x-u\|$ is the projection on \mathcal{K}.

Theorem

Assume $\left\|\nabla \ell_{t}(\theta)\right\| \leq L$ and $\mathcal{K} \subseteq B\left(\theta_{1}, R\right)$. Then

$$
R_{T}=\max _{\theta \in \mathcal{K}} \sum_{t=1}^{T}\left(\ell_{t}\left(\theta_{t}\right)-\ell_{t}(\theta)\right) \leq \frac{R^{2}}{2 \eta}+\frac{\eta L^{2} T}{2}
$$

Proof :

Online Gradient Descent

Online (Projected) Gradient Descent

$$
\left\{\begin{aligned}
\theta_{1} & \in \mathcal{K} \\
\theta_{t+1} & =\Pi_{\mathcal{K}}\left(\theta_{t}-\eta \nabla \ell_{\boldsymbol{t}}\left(\theta_{t}\right)\right)
\end{aligned}\right.
$$

where $\Pi_{\mathcal{K}}(x)=\operatorname{argmin}_{u \in \mathcal{K}}\|x-u\|$ is the projection on \mathcal{K}.

Theorem

Assume $\left\|\nabla \ell_{t}(\theta)\right\| \leq L$ and $\mathcal{K} \subseteq B\left(\theta_{1}, R\right)$. Then

$$
R_{T}=\max _{\theta \in \mathcal{K}} \sum_{t=1}^{T}\left(\ell_{t}\left(\theta_{t}\right)-\ell_{t}(\theta)\right) \leq \frac{R^{2}}{2 \eta}+\frac{\eta L^{2} T}{2}
$$

Corollary : for the choice $\eta_{T}=\frac{R}{L \sqrt{T}}$, we obtain $R_{T} \leq R L \sqrt{T}$

... and beyond

- smaller regret for more regular functions (smooth, strongly convex)
- second order methods (e.g. online version of Newton's algorithm)

References:

[The OCO book]

Foundations and Trends' in Modine Leorning
$8.3-4$ 8.3.4

Convex Optimization Algorithms and Complexity

Sébastien Bubeck
now
[Introduction to Online Optimization]

1 Recap : (batch) Supervised Learning

2 Online learning I: Online Convex Optimization

3 Online learning II: Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case

Prediction with expert advice

- we want to sequentially predict some phenomenon (market, weather, energy cunsumption...)
- no probabilistic hypothesis is made about this phenomenon
- we rely on experts (black boxes) \pm good
- we want to be at least as good as the best expert

A prediction game

K experts. Prediction space \mathcal{Y}. Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$.

Prediction with Expert Advice

At each time step $t=1, \ldots, T$,
(1) each expert k makes a prediction $z_{k, t} \in \mathcal{Y}$ (that we observe)
(2) we predict $\hat{y}_{t} \in \mathcal{Y}$
(3) y_{t} is revealed and we suffer a loss $\ell\left(\hat{y}_{t}, y_{t}\right)$.

Expert k suffers a loss $\ell\left(z_{k, t}, y_{t}\right)$.
Remark : experts may exploit some underlying feature vector $x_{t} \in \mathcal{X}$

Goal : minimize regret

The regret of a prediction strategy is

$$
R_{T}=\underbrace{\sum_{t=1}^{T} \ell\left(\hat{y}_{t}, y_{t}\right)}_{\begin{array}{c}
\text { cumulative loss } \\
\text { of our prediction strategy }
\end{array}}-\underbrace{\min _{k \in K}\left[\sum_{t=1}^{T} \ell\left(z_{k, t}, y_{t}\right)\right]}_{\begin{array}{c}
\text { cumulative loss } \\
\text { of the best expert }
\end{array}}
$$

A prediction game

K experts. Prediction space \mathcal{Y}. Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$.

Prediction with Expert Advice

At each time step $t=1, \ldots, T$,
(1) each expert k makes a prediction $z_{k, t} \in \mathcal{Y}$ (that we observe)
(2) we predict $\hat{y}_{t} \in \mathcal{Y}$ (using past observation + current predictions)
(3) y_{t} is revealed and we suffer a loss $\ell\left(\hat{y}_{t}, y_{t}\right)$.

Expert k suffers a loss $\ell\left(z_{k, t}, y_{t}\right)$.
Remark : experts may exploit some underlying feature vector $x_{t} \in \mathcal{X}$

Goal : minimize regret

The regret of a prediction strategy is

$$
R_{T}=\underbrace{\sum_{t=1}^{T} \ell\left(\hat{y}_{t}, y_{t}\right)}_{\begin{array}{c}
\text { cumulative loss } \\
\text { of our prediction strategy }
\end{array}}-\underbrace{\min _{k \in K}\left[\sum_{t=1}^{T} \ell\left(z_{k, t}, y_{t}\right)\right]}_{\begin{array}{c}
\text { cumulative loss } \\
\text { of the best expert }
\end{array}}
$$

Weighted (Average) Prediction

Idea

Assign a weight $w_{k, t}$ for expert k at round t and predict a "weighted average" of the experts' predictions.

- First idea :

$$
\hat{y}_{t}=\frac{\sum_{k=1}^{K} w_{k, t} z_{k, t}}{\sum_{k=1}^{K} w_{k, t}}=\sum_{k=1}^{K}\left(\frac{w_{k, t}}{\sum_{i=1}^{K} w_{i, t}}\right) z_{k, t}
$$

\rightarrow the prediction of experts with large weights matter more
\rightarrow we should assign larger weights to "good" experts

Weighted (Average) Prediction

Idea

Assign a weight $w_{k, t}$ for expert k at round t and predict a "weighted average" of the experts' predictions.

- First idea :

$$
\hat{y}_{t}=\frac{\sum_{k=1}^{K} w_{k, t} z_{k, t}}{\sum_{k=1}^{K} w_{k, t}}=\sum_{k=1}^{K}\left(\frac{w_{k, t}}{\sum_{i=1}^{K} w_{i, t}}\right) z_{k, t}
$$

\rightarrow the prediction of experts with large weights matter more
\rightarrow we should assign larger weights to "good" experts
$\triangle \hat{y}_{t}$ might not be in \mathcal{Y} if \mathcal{Y} is not convex...

Weighted (Average) Prediction

Idea

Assign a weight $w_{k, t}$ for expert k at round t and predict a "weighted average" of the experts' predictions.

- Second idea :
\rightarrow compute the probability vector $p_{t}=\left(p_{1, t}, \ldots, p_{K, t}\right)$ where

$$
p_{k, t}:=\frac{w_{k, t}}{\sum_{i=1}^{K} w_{i, t}}
$$

\rightarrow select an expert $k_{t} \sim p_{t}$, i.e. $\mathbb{P}\left(k_{t}=k\right)=p_{k, t}$
\rightarrow predict $\hat{y}_{t}=z_{k_{t}, t} \in \mathcal{Y}$

How to choose the weights?

The weights should depend on the quality of the expert in the past.

- cumulative loss of expert k at time $t: L_{k, t}=\sum_{s=1}^{t} \ell\left(z_{k, s}, y_{s}\right)$
- "good expert" at time $t=$ expert with a small loss

A natural weight selection

$w_{k, t}=F\left(L_{k, t-1}\right)$ for some decreasing function F .

Typical choice : $F(x)=\exp (-\eta x)$.
\rightarrow leads to an easy multiplicative update

Exponentially Weighted Forecaster

Parameter: $\eta>0$.
Initialization : for all $k \in\{1, \ldots, K\}, w_{k, 1}=\frac{1}{K}$.
For $t=1, \ldots, T$
(1) Observe the experts' predictions: $\left(z_{k, t}\right)_{1 \leq k \leq K}$
(2) Compute the probability vector $p_{t}=\left(p_{1, t}, \ldots, p_{K, t}\right)$ where

$$
p_{k, t}=\frac{w_{k, t}}{\sum_{i=1}^{K} w_{i, t}} \text { (normalize the weights) }
$$

(3) Select an expert $k_{t} \sim p_{t}$, i.e., $\mathbb{P}\left(k_{t}=k\right)=p_{k, t}$
(1) Predict $\hat{y}_{t}=z_{k_{t}, t}$ and observe the losses

$$
\ell_{k, t}=\ell\left(z_{k, t}, y_{t}\right) \quad \text { for all } k \in\{1, \ldots, K\}
$$

(9) Update the weights: $\forall k \in\{1, \ldots, K\}, w_{k, t+1}=w_{k, t} \exp \left(-\eta \ell_{k, t}\right)$.
$\operatorname{EWF}(\eta)$ algorithm (or Hedge)

Analysis of EWF

As the algorithm is randomized, we consider the expected regret

$$
\mathbb{E}\left[R_{T}\right]=\mathbb{E}\left[\sum_{t=1}^{T} \ell_{k_{t}, t}-\min _{k \in\{1, \ldots, K\}} \sum_{t=1}^{T} \ell_{k, t}\right] .
$$

Theorem

Assume that

- the losses $\ell_{k, t}=\ell\left(z_{k, t}, y_{t}\right)$ are fixed in advance (oblivious case)
- for all $k, t, 0 \leq \ell_{k, t} \leq 1$

Then for all $\eta>0$ and $T \geq 0, \operatorname{EWF}(\eta)$ satisfies

$$
\mathbb{E}\left[R_{T}\right] \leq \frac{\ln (K)}{\eta}+\frac{\eta T}{8} .
$$

A useful lemma

Hoeffding's lemma

Let Z be a random variable supported in $[a, b]$. Then

$$
\forall s \in \mathbb{R}, \quad \ln \mathbb{E}\left[e^{s Z}\right] \leq s \mathbb{E}[Z]+\frac{s^{2}(b-a)^{2}}{8}
$$

Analysis of EWF

Theorem

Choosing $\eta_{T}=\sqrt{\frac{8 \ln (K)}{T}}, \operatorname{EWF}\left(\eta_{T}\right)$ satisfies

$$
\mathbb{E}\left[R_{T}\right] \leq \sqrt{\frac{T \ln (K)}{2}}
$$

Remarks :

- η can also be chosen without the knowledge of the "horizon" T with similar regret guarantees (up to a constant factor) :

$$
\eta_{t}=\sqrt{\frac{8 \ln (K)}{t}}
$$

- if \mathcal{Y} is convex, one can replace randomization by actual average, with the same regret guarantees
\rightarrow Exponentially Weighted Average (EWA)

Exponentially Weighted Average

Parameter: $\eta>0$. Initialization : for all $k \in\{1, \ldots, K\}, w_{k, 1}=\frac{1}{K}$.
For $t=1, \ldots, T$
(1) Observe the experts' predictions: $\left(z_{k, t}\right)_{1 \leq k \leq K}$
(2) Compute the probability vector $p_{t}=\left(p_{1, t}, \ldots, p_{K, t}\right)$ where

$$
p_{k, t}=\frac{w_{k, t}}{\sum_{i=1}^{K} w_{i, t}} \text { (normalize the weights) }
$$

(3) Predict $\hat{y}_{t}=\sum_{k=1}^{K} p_{k, t} z_{k_{t}, t}$ and observe the losses

$$
\ell_{k, t}=\ell\left(z_{k, t}, y_{t}\right) \quad \text { for all } k \in\{1, \ldots, K\}
$$

(9) Update the weights: $\forall k \in\{1, \ldots, K\}, w_{k, t+1}=w_{k, t} \exp \left(-\eta \ell_{k, t}\right)$.

EWA (η) algorithm

1 Recap : (batch) Supervised Learning

2 Online learning I: Online Convex Optimization

3 Online learning II: Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case

From full information to partial information

Prediction with Expert Advice

At each time step $t=1, \ldots, T$,
(1) each expert k makes a prediction $z_{k, t} \in \mathcal{Y}$ (that we observe)
(2) we predict $\hat{y}_{t} \in \mathcal{Y}$
(3) y_{t} is revealed and we suffer a loss $\ell_{k, t}:=\ell\left(\hat{y}_{t}, y_{t}\right)$.

- A full information game : we assumed to observe the losses of all experts
- Partial information game : we only observe a subset of the $\left(\ell_{k, t}\right)_{k}$
- Bandit information: we predict $\hat{y}_{t}=z_{k_{t}, t}$ and only observe the loss of the chosen expert, $\ell_{k_{t}, t}$

Bandit information : Our prediction strategy has consequences on the loss received but also on the information gathered.

Can we use EWF?

The Bandit game

At each time step $t=1, \ldots, T$,
(1) nature picks a loss vector $\ell_{t}=\left(\ell_{1, t}, \ldots, \ell_{K, t}\right)$ [unobserved]
(2) the learner selects an action $k_{t} \in\{1, \ldots, K\}$
(3) the learner receives (and observes) the loss of the chosen action $\ell_{k_{t}, t}$

- EWF update :

$$
\forall k \in\{1, \ldots, K\}, w_{k, t+1}=w_{k, t} \exp \left(-\eta \ell_{k, t}\right)
$$

\rightarrow not possible for $k \neq k_{t} \ldots$

EWF becomes EXP3

Parameter : $\eta>0$.
Initialization : for all $k \in\{1, \ldots, K\}, w_{k, 1}=\frac{1}{k}$.
For $t=1, \ldots, T$
(1) Observe the experts' predictions : $\left(z_{k, t}\right)_{1 \leq k \leq K}$
(2) Compute the probability vector $p_{t}=\left(p_{1, t}, \ldots, p_{K, t}\right)$ where

$$
p_{k, t}=\frac{w_{k, t}}{\sum_{i=1}^{K} w_{i, t}} \text { (normalize the weights) }
$$

(3) Select an expert $k_{t} \sim p_{t}$, i.e., $\mathbb{P}\left(k_{t}=k\right)=p_{k, t}$
(1) Predict $\hat{y}_{t}=z_{k_{t}, t}$ and observe $\ell_{k_{t}, t}$
(1) Compute estimates of the unobserved losses : $\tilde{\ell}_{k, t}=\frac{e_{k, t}}{p_{k, t}} \mathbb{1}_{\left(k_{t}=k\right)}$
(1 Update the weights: $\forall k, \quad w_{k, t+1}=w_{k, t} \exp \left(-\eta \tilde{\ell}_{k, t}\right)$.
EXP3 (Explore, Exploit and Exponential Weights)

Theoretical guarantees for EXP3

Why does it work?

$$
\tilde{\ell}_{k, t}=\frac{\ell_{k, t}}{p_{k, t}} \mathbb{1}_{\left(k_{t}=k\right)} \quad \text { is an unbiaised estimate of } \quad \ell_{k, t}
$$

Theorem

For the choice

$$
\eta_{T}=\sqrt{\frac{\log (K)}{K T}}
$$

$\operatorname{EXP} 3\left(\eta_{T}\right)$ satisfies

$$
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq \sqrt{2 \ln (K)} \sqrt{K T}
$$

\rightarrow regret in \sqrt{T} for both EWF and EXP3
\rightarrow worse dependency in the number of "arms" K for EXP3

Reference

