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Presentation

About me :

I CNRS researcher in the CRIStAL computer science lab

I member of the Inria team Scool
(Sequential COntinual Online Learning)

I Contact : emilie.kaufmann@univ-lille.fr

Practical information :

I Evaluation : (two homeworks) or (one homework + project), TBC

I Webpage of the class : https://emiliekaufmann.github.io/SDM.html
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Sequential Decision Making

Sequential Decision Making vs. Supervised Learning

I sequential learning : the data needs to be processed sequentially
(= one by one) online learning

Learning

make predictions make decisions

I decisions can influence the data collection process

Ü collect data in a smart way in order to optimize some criterion
[e.g., in Reinforcement Learning maximize some cumulated reward]
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Outline of the SDM course

1 Online Learning, Adversarial Bandits

2 Stochastic Multi-Armed Bandits

3 Beyond Classical Bandits

4 Introduction to Markov Decision Processes (MDP)

5 Solving a known MDP : Dynamic Programming

6 Solving an unknown MDP : RL algorithms

7 Reinforcement Learning with Function Approximation

8 Bandit tools for Reinforcement Learning
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1 Recap : (batch) Supervised Learning

2 Online learning I : Online Convex Optimization

3 Online learning II : Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case
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Supervised Learning

We observe a database containing features (X ) and labels (Y )

Dn = {(Xi ,Yi )}i=1,...n ∈ X × Y
(“labeled examples”)

Typically X = Rd (features are represented by vectors) and

I Y = {0, 1} : binary classification

I 3 ≤ |Y| <∞ : multi-class classification

I Y = R : regression

The goal is to build a predictor ĝn : X → Y, which is a function that
depends on the data Dn, such that for a new observation (X ,Y )

ĝn(X ) ' Y .

Ü smart prediction by means of generalization from examples
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Examples

Image classification :

Features : pixel values
Label : type of image

(classification)

Personalized marketing :

Features : customer information
Label : yearly claim

(regression)
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Mathematical formalization

Modelling assumption : Dn = {(Xi ,Yi )}i=1,...n contains i.i.d samples
whose distribution is that of a random vector

(X ,Y ) ∼ P.

Goal
Given a loss function `, build a predictor with small risk

R(g) = E(X ,Y )∼P [`(g(X ),Y )]

A learning algorithm : Empirical risk minimization

Given a class G of possible predictors, one can compute/approximate

ĝERM
n ∈ argmin

g∈G

[
1

n

n∑
i=1

`(g(Xi ),Yi )

]
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Many supervised learning algorithms

Some of them can be related to an ERM :

Ü linear regression (Gauss, 1795)

Ü logistic regression (1950s)

Ü k-nearest neighbors (1960s)

Ü Decision Trees (CART, 1984)

Ü Support Vector Machines (1995)

Ü Boosting algorithms (Adaboost, 1997)

Ü Random Forest (2001)

Ü Neural Networks (1960s-80s, Deep Learning 2010s)

...
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Example : Linear Regression

X = Rd and Y = {−1, 1} (binary classification).

Linear regression

ĝn(x) = sgn
(
〈x |θ̂n〉

)
where

θ̂n ∈ argmin
θ∈Rd

n∑
i=1

(Yi − 〈Xi , θ〉)2

Links with the ERM with

I G = {linear functions}
I square loss : `(u, v) = (u − v)2
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Example : Logistic Regression

X = Rd and Y = {−1, 1} (binary classification).

Logistic regression

ĝn(x) = sgn
(
〈x |θ̂n〉

)
where

θ̂n ∈ argmin
θ∈Rd

n∑
i=1

ln
(

1 + e−Yi 〈Xi ,θ〉
)

Links with the ERM with

I G = {linear functions}
I logistic loss : `(u, v) = ln (1 + e−uv )
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Batch versus Online

Supervised Learning :
Based on a large database (batch), predict the label of new data
(e.g., a test set).

Online Learning :
Data is collected sequentially, and we have to predict their label
one-by-one (online), after which the true label is revealed.

Examples :

I predict the value of a stock

I predict electricity consumption for the next day

I predict the behavior of a customer

...
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Can existing methods be (efficiently) adapted
to the online setting ?

I Linear regression : not at first sight...

Closed-form expression for the least-square estimate :

θ̂n =
(
X>(n)X(n)

)−1

X>(n)Y(n)

where

X(n) =


X>1
X>2
·

X>n

 ∈ Rn×d and Y(n) =


Y1

Y2

·
Yn

 ∈ Rn

design matrix vector of labels

Ü need to invert a d × d matrix depending on Dn in each round n + 1

Ü need to store a growing matrix and vector
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Can existing methods be (efficiently) adapted
to the online setting ?

I Linear regression : ... but yes thanks to online least-squares

Another way to write the least-square estimate

θ̂n =

(
n∑

t=1

XtX
>
t

)−1( n∑
t=1

YtXt

)
Hence

θ̂n+1 =

(
n∑

t=1

XtX
>
t + Xn+1X

>
n+1

)−1( n∑
t=1

YtXt + Yn+1Xn+1

)

Ü easy online update thanks to the Sherman-Morisson formula :(
A + uv>

)−1
= A−1 − A−1uv>A−1

1 + v>A−1u

Ü only requires to store a d × d matrix and a vector in Rd
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Can existing methods be (efficiently) adapted
to the online setting ?

I Logistic regression : not so clear...

The optimization problem

θ̂n = argmin
θ∈Rd

n∑
i=1

ln
(

1 + e−Yi 〈Xi ,θ〉
)

has no closed-form solution...

Ü no hope for an explicit only update

Ü online version of the optimization algorithms used ?
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Online Learning : general framework

Online Learning

At every time step t = 1, . . . ,T ,

1 observe (features) xt ∈ X
2 predict (label) ŷt ∈ Y
3 yt is revealed and we suffer a loss `(yt , ŷt).

Goal : Minimize the cumulated loss

T∑
t=1

`(yt , ŷt)

We can compare our performance to :

Ü that of the best predictor in a family G
Ü that of (“black-box”) experts that propose predictions
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1 Recap : (batch) Supervised Learning

2 Online learning I : Online Convex Optimization

3 Online learning II : Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case
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Learning the Best Predictor Online

Let G be a class of predictors.

A particular Online Learning problem

A each time step t = 1, . . . ,T ,

1 choose a predictor gt ∈ G
2 observe xt ∈ X and predict ŷt = gt(xt)

3 observe yt and suffer a loss `(yt ; ŷt).

I Goal : minimize regret

Regret of a prediction strategy (gt)t∈N
The regret is the difference between the cumulative loss of the strategy
and the cumulative loss of the best predictor in G :

RT =
T∑
t=1

`(yt ; ŷt)−min
g∈G

T∑
t=1

`(yt ; g(xt)).
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Learning the Best Predictor Online

Let G be a class of predictors.

A particular Online Learning problem

A each time step t = 1, . . . ,T ,

1 choose a predictor gt ∈ G (based on previous observation)

2 observe xt ∈ X and predict ŷt = gt(xt)

3 observe yt and suffer a loss `(yt ; ŷt).

I Goal : minimize regret

Regret of a prediction strategy (gt)t∈N
The regret is the difference between the cumulative loss of the strategy
and the cumulative loss of the best predictor in G :

RT =
T∑
t=1

`(yt ; ŷt)−min
g∈G

T∑
t=1

`(yt ; g(xt)).
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Example : Online Logistic Regression

Let G be a class of predictors.

A particular Online Learning problem

A each time step t = 1, . . . ,T ,

1 choose a predictor gt ∈ G
2 observe xt ∈ X and predict ŷt = gt(xt)

3 observe yt and suffer a loss `(yt ; ŷt).

Example : X = Rd , Y = R (can be converted to prediction in {−1, 1}).

I G is the set of linear functions : G =
{
g(x) = 〈x , θ〉, θ ∈ Rd

}
Ü there exists θt ∈ Rd such that gt(x) = 〈θt , x〉
I ` is the logistic loss : ` (yt ; ŷt) = ln

(
1 + e−yt〈θt ,xt〉

)
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Example : Online Logistic Regression

Let G be a class of predictors.

A particular Online Learning problem

A each time step t = 1, . . . ,T ,

1 choose a predictor gt ∈ G
2 observe xt ∈ X and predict ŷt = gt(xt)

3 observe yt and suffer a loss `(yt ; ŷt).

Goal : the regret that we should minimize rewrites

RT =
T∑
t=1

ln
(

1 + e−yt〈θt ,xt〉
)

︸ ︷︷ ︸
loss obtained by updating

our predictor in an online fashion

− min
θ∈Rd

T∑
t=1

ln
(

1 + e−yt〈θ,xt〉
)

︸ ︷︷ ︸
loss obtained by the

logistic regression predictor
trained with the whole dataset
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Example : Online Logistic Regression

G is a parametric class of predictors : G = {gθ, θ ∈ Rd}

A particular Online Learning problem

A each time step t = 1, . . . ,T ,

1 choose a vector θt ∈ Rd

2 a loss function is observed : `t(θ) = ln
(
1 + e−yt〈θ,xt〉

)
3 we suffer a loss `t(θt).

Goal : the regret that we should minimize rewrites

RT =
T∑
t=1

ln
(

1 + e−yt〈θt ,xt〉
)

︸ ︷︷ ︸
loss obtained by updating

our predictor in an online fashion

− min
θ∈Rd

T∑
t=1

ln
(

1 + e−yt〈θ,xt〉
)

︸ ︷︷ ︸
loss obtained by the

logistic regression predictor
trained with the whole dataset

Ü fits the framework of Online Convex Optimization
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Example : Online Logistic Regression

G is a parametric class of predictors : G = {gθ, θ ∈ Rd}

A particular Online Learning problem

A each time step t = 1, . . . ,T ,

1 choose a vector θt ∈ Rd

2 a loss function is observed : `t(θ) = ln
(
1 + e−yt〈θ,xt〉

)
3 we suffer a loss `t(θt).

Goal : the regret that we should minimize rewrites

RT =
T∑
t=1

`t(θt)︸ ︷︷ ︸
loss obtained by updating

our predictor in an online fashion

− min
θ∈Rd

T∑
t=1

`t(θ)︸ ︷︷ ︸
loss obtained by the

logistic regression classifier
trained with the whole dataset

Ü fits the framework of Online Convex Optimization
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Online Convex Optimization

Online Convex Optimization

A each time step t = 1, . . . ,T ,

1 choose θt ∈ K, a convex set

2 a convex loss function `t(θ) is observed

3 we suffer a loss `t(θt).

Goal : minimize the regret

RT =
T∑
t=1

`t(θt)︸ ︷︷ ︸
loss obtained by updating
θ in an online fashion

− min
θ∈Rd

T∑
t=1

`t(θ)︸ ︷︷ ︸
loss obtained by the

best static choice of θ

Emilie Kaufmann |CRIStAL - 21



Online Gradient Descent

Online (Projected) Gradient Descent{
θ1 ∈ K
θt+1 = ΠK (θt − η∇`t(θt))

where ΠK(x) = argminu∈K||x − u|| is the projection on K.

Theorem [e.g., Theorem 3.2 in Bubeck 2015]

Assume ||∇`t(θ)|| ≤ L and K ⊆ B(θ1,R). Then

RT = max
θ∈K

T∑
t=1

(`t(θt)− `t(θ)) ≤ R2

2η
+
ηL2T

2

Proof :
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Online Gradient Descent

Online (Projected) Gradient Descent{
θ1 ∈ K
θt+1 = ΠK (θt − η∇`t(θt))

where ΠK(x) = argminu∈K||x − u|| is the projection on K.

Theorem [e.g., Theorem 3.2 in Bubeck 2015]

Assume ||∇`t(θ)|| ≤ L and K ⊆ B(θ1,R). Then

RT = max
θ∈K

T∑
t=1

(`t(θt)− `t(θ)) ≤ R2

2η
+
ηL2T

2

Corollary : for the choice ηT = R
L
√
T

, we obtain RT ≤ RL
√
T
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... and beyond

I smaller regret for more regular functions (smooth, strongly convex)

I second order methods (e.g. online version of Newton’s algorithm)

References :

[The OCO book]
[Introduction to Online

Optimization]
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1 Recap : (batch) Supervised Learning

2 Online learning I : Online Convex Optimization

3 Online learning II : Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case
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Prediction with expert advice

I we want to sequentially predict some phenomenon
(market, weather, energy cunsumption...)

I no probabilistic hypothesis is made about this phenomenon

I we rely on experts (black boxes) ± good

I we want to be at least as good as the best expert
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A prediction game

K experts. Prediction space Y. Loss function ` : Y × Y → R+.

Prediction with Expert Advice

At each time step t = 1, . . . ,T ,

1 each expert k makes a prediction zk,t ∈ Y (that we observe)

2 we predict ŷt ∈ Y
3 yt is revealed and we suffer a loss `(ŷt , yt).

Expert k suffers a loss `(zk,t , yt).

Remark : experts may exploit some underlying feature vector xt ∈ X

Goal : minimize regret

The regret of a prediction strategy is

RT =
T∑
t=1

`(ŷt , yt)︸ ︷︷ ︸
cumulative loss

of our prediction strategy

−min
k∈K

[
T∑
t=1

`(zk,t , yt)

]
︸ ︷︷ ︸

cumulative loss
of the best expert
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A prediction game

K experts. Prediction space Y. Loss function ` : Y × Y → R+.

Prediction with Expert Advice

At each time step t = 1, . . . ,T ,

1 each expert k makes a prediction zk,t ∈ Y (that we observe)

2 we predict ŷt ∈ Y (using past observation + current predictions)

3 yt is revealed and we suffer a loss `(ŷt , yt).
Expert k suffers a loss `(zk,t , yt).

Remark : experts may exploit some underlying feature vector xt ∈ X

Goal : minimize regret

The regret of a prediction strategy is

RT =
T∑
t=1

`(ŷt , yt)︸ ︷︷ ︸
cumulative loss

of our prediction strategy

−min
k∈K

[
T∑
t=1

`(zk,t , yt)

]
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cumulative loss
of the best expert
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Weighted (Average) Prediction

Idea
Assign a weight wk,t for expert k at round t and predict a “weighted
average” of the experts’ predictions.

I First idea :

ŷt =

∑K
k=1 wk,tzk,t∑K

k=1 wk,t

=
K∑

k=1

(
wk,t∑K
i=1 wi,t

)
zk,t .

Ü the prediction of experts with large weights matter more

Ü we should assign larger weights to “good” experts

" ŷt might not be in Y if Y is not convex...
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Weighted (Average) Prediction

Idea
Assign a weight wk,t for expert k at round t and predict a “weighted
average” of the experts’ predictions.

I Second idea :

Ü compute the probability vector pt = (p1,t , . . . , pK ,t) where

pk,t :=
wk,t∑K
i=1 wi,t

,

Ü select an expert kt ∼ pt , i.e. P(kt = k) = pk,t

Ü predict ŷt = zkt ,t ∈ Y
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How to choose the weights ?

The weights should depend on the quality of the expert in the past.

I cumulative loss of expert k at time t : Lk,t =
∑t

s=1 `(zk,s , ys)

I “good expert” at time t = expert with a small loss

A natural weight selection

wk,t = F (Lk,t−1) for some decreasing function F.

Typical choice : F (x) = exp(−ηx).

Ü leads to an easy multiplicative update
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Exponentially Weighted Forecaster

Parameter : η > 0.
Initialization : for all k ∈ {1, . . . ,K},wk,1 = 1

K .
For t = 1, . . . ,T

1 Observe the experts’ predictions : (zk,t)1≤k≤K
2 Compute the probability vector pt = (p1,t , . . . , pK ,t) where

pk,t =
wk,t∑K
i=1 wi,t

(normalize the weights)

3 Select an expert kt ∼ pt , i.e., P (kt = k) = pk,t
4 Predict ŷt = zkt ,t and observe the losses

`k,t = `(zk,t , yt) for all k ∈ {1, . . . ,K}

5 Update the weights : ∀k ∈ {1, . . . ,K}, wk,t+1 = wk,t exp (−η`k,t).

EWF(η) algorithm (or Hedge)
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Analysis of EWF

As the algorithm is randomized, we consider the expected regret

E[RT ] = E

[
T∑
t=1

`kt ,t − min
k∈{1,...,K}

T∑
t=1

`k,t

]
.

Theorem (e.g., Cesa-Bianchi and Lugosi 06)

Assume that

I the losses `k,t = `(zk,t , yt) are fixed in advance (oblivious case)

I for all k, t, 0 ≤ `k,t ≤ 1

Then for all η > 0 and T ≥ 0, EWF(η) satisfies

E[RT ] ≤ ln(K )

η
+
ηT

8
.

Proof :
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A useful lemma

Hoeffding’s lemma

Let Z be a random variable supported in [a, b]. Then

∀s ∈ R, lnE
[
esZ
]
≤ sE[Z ] +

s2(b − a)2

8
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Analysis of EWF

Theorem

Choosing ηT =
√

8 ln(K)
T , EWF(ηT ) satisfies

E[RT ] ≤
√

T ln(K )

2

Remarks :

I η can also be chosen without the knowledge of the “horizon” T with
similar regret guarantees (up to a constant factor) :

ηt =

√
8 ln(K )

t

I if Y is convex, one can replace randomization by actual average,
with the same regret guarantees

Ü Exponentially Weighted Average (EWA)
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Exponentially Weighted Average

Parameter : η > 0.
Initialization : for all k ∈ {1, . . . ,K},wk,1 = 1

K .
For t = 1, . . . ,T

1 Observe the experts’ predictions : (zk,t)1≤k≤K
2 Compute the probability vector pt = (p1,t , . . . , pK ,t) where

pk,t =
wk,t∑K
i=1 wi,t

(normalize the weights)

3 Predict ŷt =
∑K

k=1 pk,tzkt ,t and observe the losses

`k,t = `(zk,t , yt) for all k ∈ {1, . . . ,K}

4 Update the weights : ∀k ∈ {1, . . . ,K}, wk,t+1 = wk,t exp (−η`k,t).

EWA(η) algorithm
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1 Recap : (batch) Supervised Learning

2 Online learning I : Online Convex Optimization

3 Online learning II : Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case
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From full information to partial information

Prediction with Expert Advice

At each time step t = 1, . . . ,T ,

1 each expert k makes a prediction zk,t ∈ Y (that we observe)

2 we predict ŷt ∈ Y
3 yt is revealed and we suffer a loss `k,t := `(ŷt , yt).

I A full information game :
we assumed to observe the losses of all experts

I Partial information game : we only observe a subset of the (`k,t)k

I Bandit information : we predict ŷt = zkt ,t and only observe the loss
of the chosen expert, `kt ,t

Bandit information : Our prediction strategy has consequences on the
loss received but also on the information gathered.
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Can we use EWF ?

The Bandit game

At each time step t = 1, . . . ,T ,

1 nature picks a loss vector `t = (`1,t , . . . , `K ,t) [unobserved ]

2 the learner selects an action kt ∈ {1, . . . ,K}
3 the learner receives (and observes) the loss of the chosen action `kt ,t

I EWF update :

∀k ∈ {1, . . . ,K}, wk,t+1 = wk,t exp (−η`k,t)

Ü not possible for k 6= kt ...
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EWF becomes EXP3

Parameter : η > 0.
Initialization : for all k ∈ {1, . . . ,K},wk,1 = 1

K .
For t = 1, . . . ,T

1 Observe the experts’ predictions : (zk,t)1≤k≤K
2 Compute the probability vector pt = (p1,t , . . . , pK ,t) where

pk,t =
wk,t∑K
i=1 wi,t

(normalize the weights)

3 Select an expert kt ∼ pt , i.e., P (kt = k) = pk,t
4 Predict ŷt = zkt ,t and observe `kt ,t

5 Compute estimates of the unobserved losses : ˜̀
k,t =

`k,t
pk,t

1(kt=k)

6 Update the weights : ∀k , wk,t+1 = wk,t exp
(
−η ˜̀

k,t

)
.

EXP3 (Explore, Exploit and Exponential Weights)
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Theoretical guarantees for EXP3

Why does it work ?

˜̀
k,t =

`k,t
pk,t

1(kt=k) is an unbiaised estimate of `k,t

Theorem [Auer et al., 02]

For the choice

ηT =

√
log(K )

KT

EXP3(ηT ) satisfies

E[RT ] ≤
√

2 ln(K )
√
KT

Ü regret in
√
T for both EWF and EXP3

Ü worse dependency in the number of “arms” K for EXP3
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