Sequential Decision Making Lecture 1 : From Batch to Sequential Learning

Emilie Kaufmann

M2 Data Science, 2022/2023

Emilie Kaufmann CRIStAL

Presentation

About me :

- CNRS researcher in the CRIStAL computer science lab
- member of the Inria team Scool (Sequential COntinual Online Learning)
- Contact : emilie.kaufmann@univ-lille.fr

Practical information :

- ▶ Evaluation : (two homeworks) or (one homework + project), TBC
- ▶ Webpage of the class : https://emiliekaufmann.github.io/SDM.html

Sequential Decision Making

Sequential Decision Making vs. Supervised Learning

 sequential learning : the data needs to be processed sequentially (= one by one) online learning

- decisions can influence the data collection process
- collect data in a smart way in order to optimize some criterion
 [e.g., in Reinforcement Learning maximize some cumulated reward]

Outline of the SDM course

- Online Learning, Adversarial Bandits
- Stochastic Multi-Armed Bandits
- Beyond Classical Bandits
- Introduction to Markov Decision Processes (MDP)
- Solving a known MDP : Dynamic Programming
- Solving an unknown MDP : RL algorithms
- Reinforcement Learning with Function Approximation
- Bandit tools for Reinforcement Learning

Outline of the SDM course

Online Learning, Adversarial bandits

- Stochastic Multi-Armed Bandits
- Beyond Classical Bandits
- Introduction to Markov Decision Processes (MDP)
- Solving a known MDP : Dynamic Programming
- Solving an unknown MDP : RL algorithms
- Reinforcement Learning with Function Approximation
- Bandit tools for Reinforcement Learning

1 Recap : (batch) Supervised Learning

2 Online learning I : Online Convex Optimization

3 Online learning II : Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case

Supervised Learning

We observe a database containing features (\mathbf{X}) and labels (\mathbf{Y})

 $\mathcal{D}_n = \{ (X_i, Y_i) \}_{i=1,...n} \in \mathcal{X} \times \mathcal{Y}$ ("labeled examples")

Typically $\mathcal{X} = \mathbb{R}^d$ (features are represented by vectors) and

- ▶ $\mathcal{Y} = \{0, 1\}$: binary classification
- ▶ $3 \le |\mathcal{Y}| < \infty$: multi-class classification
- ▶ $\mathcal{Y} = \mathbb{R}$: regression

The goal is to build a **predictor** $\hat{g}_n : \mathcal{X} \to \mathcal{Y}$, which is a function that depends on the data \mathcal{D}_n , such that for a new observation (\mathbf{X}, \mathbf{Y})

$$\hat{g}_n(\boldsymbol{X})\simeq \boldsymbol{Y}.$$

→ smart prediction by means of generalization from examples

Emilie Kaufmann | CRIStAL

Examples

Image classification :

Personalized marketing :

Allstate Claim Prediction Challenge

A key part of insurance is charging each customer the appropriate price for the risk they represent.

Overview Data Discussion Leaderboard Rules Team

<u>Features</u> : pixel values <u>Label</u> : type of image

(classification)

<u>Features</u> : customer information <u>Label</u> : yearly claim

(regression)

Mathematical formalization

Modelling assumption : $\mathcal{D}_n = \{(X_i, Y_i)\}_{i=1,...n}$ contains **i.i.d samples** whose distribution is that of a random vector

$$(\boldsymbol{X}, \boldsymbol{Y}) \sim \mathbb{P}.$$

Goal

Given a loss function ℓ , build a predictor with small risk

$$R(g) = \mathbb{E}_{(\boldsymbol{X}, \boldsymbol{Y}) \sim \mathbb{P}} \left[\ell(g(\boldsymbol{X}), \boldsymbol{Y}) \right]$$

A learning algorithm : Empirical risk minimization

Given a class ${\mathcal G}$ of possible predictors, one can compute/approximate

$$\hat{g}_n^{\mathsf{ERM}} \in \operatorname*{argmin}_{g \in \mathcal{G}} \left[\frac{1}{n} \sum_{i=1}^n \ell(g(X_i), Y_i) \right]$$

Many supervised learning algorithms

Some of them can be related to an ERM :

- → linear regression (Gauss, 1795)
- → logistic regression (1950s)
- → *k*-nearest neighbors (1960s)
- → Decision Trees (CART, 1984)
- → Support Vector Machines (1995)
- ➔ Boosting algorithms (Adaboost, 1997)
- → Random Forest (2001)
- → Neural Networks (1960s-80s, Deep Learning 2010s)

Example : Linear Regression

 $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \{-1, 1\}$ (binary classification).

Linear regression

$$\hat{g}_n(x) = \mathrm{sgn}\left(\langle x | \hat{ heta}_n
angle
ight)$$
 where

$$\hat{ heta}_n \in \operatorname*{argmin}_{ heta \in \mathbb{R}^d} \; \sum_{i=1}^n \left(Y_i - \langle X_i, heta
angle
ight)^2$$

Links with the ERM with

 $\blacktriangleright \mathcal{G} = \{ \text{linear functions} \}$

• square loss :
$$\ell(u, v) = (u - v)^2$$

Example : Logistic Regression

 $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \{-1,1\}$ (binary classification).

Logistic regression

$$\hat{g}_n(x) = \operatorname{sgn}\left(\langle x | \hat{\theta}_n \rangle\right)$$
 where
 $\hat{\theta}_n \in \operatorname{summin} \sum_{i=1}^n \sum_{j=1}^n e_{ij} \left(x + \frac{1}{2} e_{ij} \right)$

$$\widehat{ heta}_n \in \operatorname*{argmin}_{ heta \in \mathbb{R}^d} \; \sum_{i=1}^n \ln \left(1 + e^{-Y_i \langle X_i, heta
angle}
ight)$$

Links with the ERM with

$$\blacktriangleright \mathcal{G} = \{ \text{linear functions} \}$$

• logistic loss :
$$\ell(u, v) = \ln(1 + e^{-uv})$$

Batch versus Online

Supervised Learning :

Based on a large database (batch), predict the label of new data (e.g., a test set).

Online Learning :

Data is collected sequentially, and we have to predict their label one-by-one (online), after which the true label is revealed.

Examples :

- predict the value of a stock
- predict electricity consumption for the next day
- predict the behavior of a customer

. . .

Can existing methods be (efficiently) adapted to the online setting?

Linear regression : not at first sight...

Closed-form expression for the least-square estimate :

$$\hat{\theta}_n = \left(X_{(n)}^\top X_{(n)}\right)^{-1} X_{(n)}^\top Y_{(n)}$$

where

$$X_{(n)} = \begin{pmatrix} X_1^\top \\ X_2^- \\ \vdots \\ X_n^\top \end{pmatrix} \in \mathbb{R}^{n \times d} \quad \text{and} \quad Y_{(n)} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} \in \mathbb{R}^n$$

design matrix vector of labels

→ need to invert a $d \times d$ matrix depending on \mathcal{D}_n in each round n+1

→ need to store a growing matrix and vector

Emilie Kaufmann | CRIStAL

Can existing methods be (efficiently) adapted to the online setting?

Linear regression : ... but yes thanks to online least-squares

Another way to write the least-square estimate

$$\hat{\theta}_n = \left(\sum_{t=1}^n X_t X_t^{\top}\right)^{-1} \left(\sum_{t=1}^n Y_t X_t\right)$$

Hence

$$\hat{\theta}_{n+1} = \left(\sum_{t=1}^{n} X_t X_t^{\top} + X_{n+1} X_{n+1}^{\top}\right)^{-1} \left(\sum_{t=1}^{n} Y_t X_t + Y_{n+1} X_{n+1}\right)$$

→ easy online update thanks to the Sherman-Morisson formula :

$$(A + uv^{\top})^{-1} = A^{-1} - \frac{A^{-1}uv^{\top}A^{-1}}{1 + v^{\top}A^{-1}u}$$

 \Rightarrow only requires to store a $d \times d$ matrix and a vector in \mathbb{R}^d Emilie Kaufmann | CRISTAL

Can existing methods be (efficiently) adapted to the online setting?

Logistic regression : not so clear...

The optimization problem

$$\hat{ heta}_n = \operatorname*{argmin}_{ heta \in \mathbb{R}^d} \; \sum_{i=1}^n \ln\left(1 + e^{-Y_i \langle X_i, heta
angle}
ight)$$

has no closed-form solution ...

→ no hope for an explicit only update

→ online version of the optimization algorithms used?

Online Learning : general framework

Online Learning

At every time step $t = 1, \ldots, T$,

- observe (features) $x_t \in \mathcal{X}$
- **2** predict (label) $\hat{y}_t \in \mathcal{Y}$

• y_t is revealed and we suffer a loss $\ell(y_t, \hat{y}_t)$.

Goal : Minimize the cumulated loss

$$\sum_{t=1}^{l} \ell(y_t, \hat{y}_t)$$

We can compare our performance to :

- \rightarrow that of the best predictor in a family \mathcal{G}
- → that of ("black-box") experts that propose predictions

1 Recap : (batch) Supervised Learning

2 Online learning I : Online Convex Optimization

3 Online learning II : Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case

Learning the Best Predictor Online

Let ${\mathcal G}$ be a class of predictors.

A particular Online Learning problem

- A each time step $t = 1, \ldots, T$,
 - $\bullet \quad \text{choose a predictor } g_t \in \mathcal{G}$
 - ${f O}$ observe $x_t \in {\cal X}$ and predict $\hat{y}_t = g_t(x_t)$

• observe y_t and suffer a loss $\ell(y_t; \hat{y}_t)$.

Goal : minimize regret

Regret of a prediction strategy $(g_t)_{t\in\mathbb{N}}$

The regret is the difference between the cumulative loss of the strategy and the cumulative loss of the best predictor in ${\cal G}$:

$$R_{\mathcal{T}} = \sum_{t=1}^{l} \ell(y_t; \hat{y}_t) - \min_{g \in \mathcal{G}} \sum_{t=1}^{l} \ell(y_t; g(x_t)).$$

Learning the Best Predictor Online

Let ${\mathcal G}$ be a class of predictors.

A particular Online Learning problem

A each time step $t = 1, \ldots, T$,

• choose a predictor $g_t \in \mathcal{G}$ (based on previous observation)

 ${f O}$ observe $x_t \in {\cal X}$ and predict $\hat{y}_t = g_t(x_t)$

• observe y_t and suffer a loss $\ell(y_t; \hat{y}_t)$.

Goal : minimize regret

Regret of a prediction strategy $(g_t)_{t\in\mathbb{N}}$

The regret is the difference between the cumulative loss of the strategy and the cumulative loss of the best predictor in ${\cal G}$:

$$R_{\mathcal{T}} = \sum_{t=1}^{l} \ell(y_t; \hat{y}_t) - \min_{g \in \mathcal{G}} \sum_{t=1}^{l} \ell(y_t; g(x_t)).$$

Let ${\mathcal G}$ be a class of predictors.

A particular Online Learning problem

A each time step $t = 1, \ldots, T$,

- $\bullet \quad \text{choose a predictor } g_t \in \mathcal{G}$
- **2** observe $x_t \in \mathcal{X}$ and predict $\hat{y}_t = g_t(x_t)$

• observe y_t and suffer a loss $\ell(y_t; \hat{y}_t)$.

Example : $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$ (can be converted to prediction in $\{-1, 1\}$).

- ▶ \mathcal{G} is the set of linear functions : $\mathcal{G} = \{g(x) = \langle x, \theta \rangle, \theta \in \mathbb{R}^d\}$
- → there exists $heta_t \in \mathbb{R}^d$ such that $g_t(x) = \langle heta_t, x
 angle$
- ▶ ℓ is the logistic loss : $\ell(y_t; \hat{y}_t) = \ln(1 + e^{-y_t \langle \theta_t, x_t \rangle})$

Emilie Kaufmann | CRIStAL

Let ${\mathcal G}$ be a class of predictors.

A particular Online Learning problem

A each time step $t = 1, \ldots, T$,

- $\bullet \quad \text{choose a predictor } g_t \in \mathcal{G}$
- **2** observe $x_t \in \mathcal{X}$ and predict $\hat{y}_t = g_t(x_t)$
- observe y_t and suffer a loss $\ell(y_t; \hat{y}_t)$.

Goal : the regret that we should minimize rewrites

$$R_{T} = \underbrace{\sum_{t=1}^{T} \ln\left(1 + e^{-y_{t}\langle\theta_{t}, x_{t}\rangle}\right)}_{\text{loss obtained by updating our predictor in an online fashion}} - \underbrace{\min_{\theta \in \mathcal{R}^{d}} \sum_{t=1}^{T} \ln\left(1 + e^{-y_{t}\langle\theta, x_{t}\rangle}\right)}_{\text{loss obtained by the logistic regression predictor trained with the whole dataset}}$$

 \mathcal{G} is a parametric class of predictors : $\mathcal{G} = \{g_{ heta}, heta \in \mathbb{R}^d\}$

A particular Online Learning problem

- A each time step $t = 1, \ldots, T$,
 - choose a vector $\theta_t \in \mathbb{R}^d$
 - **2** a loss function is observed : $\ell_t(\theta) = \ln (1 + e^{-y_t \langle \theta, x_t \rangle})$
 - we suffer a loss $\ell_t(\theta_t)$.

Goal : the regret that we should minimize rewrites

$$R_{T} = \underbrace{\sum_{t=1}^{T} \ln\left(1 + e^{-y_{t}\langle\theta_{t}, x_{t}\rangle}\right)}_{\text{loss obtained by updating our predictor in an online fashion}} - \underbrace{\min_{\theta \in \mathcal{R}^{d}} \sum_{t=1}^{T} \ln\left(1 + e^{-y_{t}\langle\theta, x_{t}\rangle}\right)}_{\text{logistic regression predictor trained with the whole dataset}}$$

 \mathcal{G} is a parametric class of predictors : $\mathcal{G} = \{g_{\theta}, \theta \in \mathbb{R}^d\}$

A particular Online Learning problem

```
A each time step t = 1, \ldots, T,
```

- choose a vector $\theta_t \in \mathbb{R}^d$
- 2 a loss function is observed : $\ell_t(\theta) = \ln \left(1 + e^{-y_t \langle \theta, x_t \rangle}\right)$
- we suffer a loss $\ell_t(\theta_t)$.

Goal : the regret that we should minimize rewrites

➔ fits the framework of Online Convex Optimization

Online Convex Optimization

Online Convex Optimization

A each time step $t = 1, \ldots, T$,

• choose $\theta_t \in \mathcal{K}$, a **convex set**

2 a convex loss function $\ell_t(\theta)$ is observed

3 we suffer a loss
$$\ell_t(\theta_t)$$
.

Goal : minimize the regret

$$R_{T} = \underbrace{\sum_{t=1}^{T} \ell_{t}(\theta_{t})}_{\substack{\text{loss obtained by updating}\\ \theta \text{ in an online fashion}} - \underbrace{\min_{\theta \in \mathcal{R}^{d}} \sum_{t=1}^{T} \ell_{t}(\theta)}_{\substack{\text{loss obtained by the}\\ \text{best static choice of } \theta}}$$

Online Gradient Descent

Online (Projected) Gradient Descent

$$\begin{cases} \theta_1 \in \mathcal{K} \\ \theta_{t+1} = \Pi_{\mathcal{K}} \left(\theta_t - \eta \nabla \ell_t(\theta_t) \right) \end{cases}$$

where $\Pi_{\mathcal{K}}(x) = \operatorname{argmin}_{u \in \mathcal{K}} ||x - u||$ is the projection on \mathcal{K} .

Theorem [e.g., Theorem 3.2 in Bubeck 2015]

Assume $||\nabla \ell_t(\theta)|| \leq L$ and $\mathcal{K} \subseteq B(\theta_1, R)$. Then

$$R_T = \max_{\theta \in \mathcal{K}} \sum_{t=1}^T (\ell_t(\theta_t) - \ell_t(\theta)) \le \frac{R^2}{2\eta} + \frac{\eta L^2 T}{2}$$

Emilie Kaufmann | CRIStAL

Online Gradient Descent

Online (Projected) Gradient Descent

$$\begin{cases} \theta_1 \in \mathcal{K} \\ \theta_{t+1} = \Pi_{\mathcal{K}} \left(\theta_t - \eta \nabla \boldsymbol{\ell}_t(\theta_t) \right) \end{cases}$$

where $\Pi_{\mathcal{K}}(x) = \operatorname{argmin}_{u \in \mathcal{K}} ||x - u||$ is the projection on \mathcal{K} .

Theorem [e.g., Theorem 3.2 in Bubeck 2015]

Assume $||\nabla \ell_t(\theta)|| \leq L$ and $\mathcal{K} \subseteq B(\theta_1, R)$. Then

$$R_{T} = \max_{\theta \in \mathcal{K}} \sum_{t=1}^{T} (\ell_{t}(\theta_{t}) - \ell_{t}(\theta)) \leq \frac{R^{2}}{2\eta} + \frac{\eta L^{2} T}{2}$$

Corollary : for the choice $\eta_T = \frac{R}{L\sqrt{T}}$, we obtain $R_T \leq RL\sqrt{T}$

Emilie Kaufmann | CRIStAL

... and beyond

smaller regret for more regular functions (smooth, strongly convex)

second order methods (e.g. online version of Newton's algorithm)

References :

[Introduction to Online Optimization]

1 Recap : (batch) Supervised Learning

2 Online learning I : Online Convex Optimization

3 Online learning II : Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case

Prediction with expert advice

- we want to sequentially predict some phenomenon (market, weather, energy cunsumption...)
- no probabilistic hypothesis is made about this phenomenon
- we rely on experts (black boxes) \pm good
- we want to be at least as good as the best expert

A prediction game

K experts. Prediction space \mathcal{Y} . Loss function $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$.

Prediction with Expert Advice

```
At each time step t = 1, \ldots, T,
```

- each expert k makes a prediction $z_{k,t} \in \mathcal{Y}$ (that we observe)
- 2 we predict $\hat{y}_t \in \mathcal{Y}$
- y_t is revealed and we suffer a loss l(ŷ_t, y_t).
 Expert k suffers a loss l(z_{k,t}, y_t).

Remark : experts may exploit some underlying feature vector $x_t \in \mathcal{X}$

Goal : minimize regret

The regret of a prediction strategy is

$$R_{T} = \sum_{\substack{t=1\\ \text{cumulative loss}\\ \text{of our prediction strategy}}}^{T} - \min_{\substack{k \in K}} \left[\sum_{t=1}^{T} \ell(z_{k,t}, y_{t}) \right]$$

A prediction game

K experts. Prediction space \mathcal{Y} . Loss function $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$.

Prediction with Expert Advice

At each time step $t = 1, \ldots, T$,

• each expert k makes a prediction $z_{k,t} \in \mathcal{Y}$ (that we observe)

- **2** we predict $\hat{y}_t \in \mathcal{Y}$ (using past observation + current predictions)
- y_t is revealed and we suffer a loss $\ell(\hat{y}_t, y_t)$. Expert k suffers a loss $\ell(z_{k,t}, y_t)$.

Remark : experts may exploit some underlying feature vector $x_t \in \mathcal{X}$

Goal : minimize regret

The regret of a prediction strategy is

$$R_{T} = \sum_{\substack{t=1\\ \text{cumulative loss}\\ \text{of our prediction strategy}}}^{T} \ell(\hat{y}_{t}, y_{t}) - \min_{\substack{k \in K}} \left[\sum_{t=1}^{T} \ell(z_{k,t}, y_{t}) \right]_{\text{cumulative loss}}_{\text{of the best expert}}$$

Weighted (Average) Prediction

Idea

Assign a weight $w_{k,t}$ for expert k at round t and predict a "weighted average" of the experts' predictions.

► First idea :

$$\hat{y}_{t} = \frac{\sum_{k=1}^{K} w_{k,t} z_{k,t}}{\sum_{k=1}^{K} w_{k,t}} = \sum_{k=1}^{K} \left(\frac{w_{k,t}}{\sum_{i=1}^{K} w_{i,t}} \right) z_{k,t}.$$

→ the prediction of experts with large weights matter more
→ we should assign larger weights to "good" experts

Weighted (Average) Prediction

Idea

Assign a weight $w_{k,t}$ for expert k at round t and predict a "weighted average" of the experts' predictions.

► First idea :

$$\hat{y}_{t} = \frac{\sum_{k=1}^{K} w_{k,t} z_{k,t}}{\sum_{k=1}^{K} w_{k,t}} = \sum_{k=1}^{K} \left(\frac{w_{k,t}}{\sum_{i=1}^{K} w_{i,t}} \right) z_{k,t}.$$

→ the prediction of experts with large weights matter more
 → we should assign larger weights to "good" experts

 \hat{y}_t might not be in \mathcal{Y} if \mathcal{Y} is not convex...

Weighted (Average) Prediction

Idea

Assign a weight $w_{k,t}$ for expert k at round t and predict a "weighted average" of the experts' predictions.

Second idea :

→ compute the probability vector $p_t = (p_{1,t}, \dots, p_{K,t})$ where

$$p_{k,t} := \frac{w_{k,t}}{\sum_{i=1}^{K} w_{i,t}},$$

→ select an expert $k_t \sim p_t$, i.e. $\mathbb{P}(k_t = k) = p_{k,t}$

→ predict
$$\hat{y}_t = z_{k_t,t} \in \mathcal{Y}$$

How to choose the weights?

The weights should depend on the quality of the expert in the past.

- cumulative loss of expert k at time $t : L_{k,t} = \sum_{s=1}^{t} \ell(z_{k,s}, y_s)$
- "good expert" at time t = expert with a small loss

A natural weight selection

 $w_{k,t} = F(L_{k,t-1})$ for some decreasing function F.

Typical choice : $F(x) = \exp(-\eta x)$.

→ leads to an easy multiplicative update

Exponentially Weighted Forecaster

Parameter : $\eta > 0$. Initialization : for all $k \in \{1, ..., K\}$, $w_{k,1} = \frac{1}{K}$. For t = 1, ..., T

• Observe the experts' predictions : $(z_{k,t})_{1 \le k \le K}$

② Compute the probability vector $p_t = (p_{1,t}, \ldots, p_{K,t})$ where

$$p_{k,t} = \frac{W_{k,t}}{\sum_{i=1}^{K} W_{i,t}}$$
 (normalize the weights)

• Select an expert $k_t \sim p_t$, i.e., $\mathbb{P}(k_t = k) = p_{k,t}$

• Predict $\hat{y}_t = z_{k_t,t}$ and observe the losses

$$\ell_{k,t} = \ell(z_{k,t}, y_t)$$
 for all $k \in \{1, \dots, K\}$

• Update the weights : $\forall k \in \{1, \dots, K\}, \ w_{k,t+1} = w_{k,t} \exp(-\eta \ell_{k,t}).$

 $EWF(\eta)$ algorithm (or HEDGE)

Analysis of EWF

As the algorithm is randomized, we consider the expected regret

$$\mathbb{E}[R_T] = \mathbb{E}\left[\sum_{t=1}^T \ell_{k_t,t} - \min_{k \in \{1,\dots,K\}} \sum_{t=1}^T \ell_{k,t}\right].$$

Theorem (e.g., Cesa-Bianchi and Lugosi 06)

Assume that

▶ the losses $\ell_{k,t} = \ell(z_{k,t}, y_t)$ are fixed in advance (oblivious case)

▶ for all
$$k, t, 0 \le \ell_{k,t} \le 1$$

Then for all $\eta > 0$ and $T \ge 0$, $EWF(\eta)$ satisfies

$$\mathbb{E}[R_T] \leq \frac{\ln(K)}{\eta} + \frac{\eta T}{8} \; .$$

A useful lemma

Hoeffding's lemma

Let Z be a random variable supported in [a, b]. Then

$$\forall s \in \mathbb{R}, \ \ln \mathbb{E}\left[e^{sZ}\right] \leq s\mathbb{E}[Z] + rac{s^2(b-a)^2}{8}$$

Analysis of EWF

Theorem

Choosing
$$\eta_T = \sqrt{\frac{8\ln(K)}{T}}$$
, EWF (η_T) satisfies
 $\mathbb{E}[R_T] \le \sqrt{\frac{T\ln(K)}{2}}$

Remarks :

> η can also be chosen without the knowledge of the "horizon" T with similar regret guarantees (up to a constant factor) :

$$\eta_t = \sqrt{\frac{8\ln(K)}{t}}$$

- \blacktriangleright if ${\mathcal Y}$ is convex, one can replace randomization by actual average, with the same regret guarantees
 - → Exponentially Weighted Average (EWA)

Exponentially Weighted Average

Parameter : $\eta > 0$. Initialization : for all $k \in \{1, ..., K\}$, $w_{k,1} = \frac{1}{K}$. For t = 1, ..., T

• Observe the experts' predictions : $(z_{k,t})_{1 \le k \le K}$

② Compute the probability vector $p_t = (p_{1,t}, \ldots, p_{K,t})$ where

 $p_{k,t} = rac{w_{k,t}}{\sum_{i=1}^{K} w_{i,t}}$ (normalize the weights)

• Predict $\hat{y}_t = \sum_{k=1}^{K} p_{k,t} z_{k_t,t}$ and observe the losses

$$\ell_{k,t} = \ellig(z_{k,t},y_tig) \;\;\;$$
 for all $\;\; k \in \{1,\ldots,K\}$

• Update the weights : $\forall k \in \{1, \dots, K\}, w_{k,t+1} = w_{k,t} \exp(-\eta \ell_{k,t}).$

 $EWA(\eta)$ algorithm

1 Recap : (batch) Supervised Learning

2 Online learning I : Online Convex Optimization

3 Online learning II : Prediction of Individual Sequences

4 Online Learning with partial information : the Bandit case

From full information to partial information

Prediction with Expert Advice

```
At each time step t = 1, \ldots, T,
```

- each expert k makes a prediction $z_{k,t} \in \mathcal{Y}$ (that we observe)
- **2** we predict $\hat{y}_t \in \mathcal{Y}$

• y_t is revealed and we suffer a loss $\ell_{k,t} := \ell(\hat{y}_t, y_t)$.

- A full information game : we assumed to observe the losses of all experts
- ▶ Partial information game : we only observe a subset of the $(\ell_{k,t})_k$
- ▶ Bandit information : we predict $\hat{y}_t = z_{k_t,t}$ and only observe the loss of the chosen expert, $\ell_{k_t,t}$

Bandit information : Our prediction strategy has consequences on the loss received but also on the information gathered.

Can we use EWF?

The Bandit game

At each time step $t = 1, \ldots, T$,

- nature picks a loss vector $\ell_t = (\ell_{1,t}, \dots, \ell_{K,t})$ [unobserved]
- **2** the learner selects an action $k_t \in \{1, \ldots, K\}$
- the learner receives (and observes) the loss of the chosen action $\ell_{k_t,t}$

EWF update :

$$\forall k \in \{1,\ldots,K\}, \ w_{k,t+1} = w_{k,t} \exp\left(-\eta \ell_{k,t}\right)$$

→ not possible for $k \neq k_t$...

EWF becomes **EXP3**

Parameter : $\eta > 0$. Initialization : for all $k \in \{1, \dots, K\}$, $w_{k,1} = \frac{1}{K}$. For $t = 1, \dots, T$

- Observe the experts' predictions : $(z_{k,t})_{1 \le k \le K}$
- **2** Compute the probability vector $p_t = (p_{1,t}, \ldots, p_{K,t})$ where

$$p_{k,t} = rac{W_{k,t}}{\sum_{i=1}^{K} W_{i,t}}$$
 (normalize the weights)

- Select an expert $k_t \sim p_t$, i.e., $\mathbb{P}(k_t = k) = p_{k,t}$
- Predict $\hat{y}_t = z_{k_t,t}$ and observe $\ell_{k_t,t}$

• Compute estimates of the unobserved losses : $\tilde{\ell}_{k,t} = \frac{\ell_{k,t}}{p_{k,t}} \mathbb{1}_{\{k_t=k\}}$

• Update the weights :
$$orall k, \ w_{k,t+1} = w_{k,t} \exp{\left(-\eta ilde{\ell}_{k,t}
ight)}.$$

EXP3 (Explore, Exploit and Exponential Weights)

Theoretical guarantees for EXP3

Why does it work?

$$ilde{\ell}_{k,t} = rac{\ell_{k,t}}{p_{k,t}} \mathbbm{1}_{(k_t=k)}$$
 is an unbiaised estimate of $\ell_{k,t}$

Theorem [Auer et al., 02]

For the choice

$$\eta_T = \sqrt{\frac{\log(K)}{KT}}$$

EXP3(η_T) satisfies

$$\mathbb{E}[\mathcal{R}_{\mathcal{T}}] \leq \sqrt{2\ln(\mathcal{K})}\sqrt{\mathcal{K}\mathcal{T}}$$

→ regret in \sqrt{T} for both EWF and EXP3

→ worse dependency in the number of "arms" K for EXP3

Reference

[Prediction, Learning and Games]