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Presentation

About me :
» CNRS researcher in the CRIStAL computer science lab

» member of the Inria team Scool
(Sequential COntinual Online Learning)

» Contact : emilie.kaufmann@univ-lille.fr
Practical information :

» Evaluation : (two homeworks) or (one homework + project), TBC
» Webpage of the class : https://emiliekaufmann.github.io/SDM.html
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https://emiliekaufmann.github.io/SDM.html

Sequential Decision Making

Sequential Decision Making vs. Supervised Learning

> sequential learning : the data needs to be processed sequentially
(= one by one) online learning

make predictions make decisions

» decisions can influence the data collection process

=¥ collect data in a smart way in order to optimize some criterion
[e.g., in Reinforcement Learning maximize some cumulated reward)
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Outline of the SDM course

Online Learning, Adversarial Bandits

Stochastic Multi-Armed Bandits

Beyond Classical Bandits

Introduction to Markov Decision Processes (MDP)
Solving a known MDP : Dynamic Programming
Solving an unknown MDP : RL algorithms
Reinforcement Learning with Function Approximation

©000000CO0

Bandit tools for Reinforcement Learning
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Bandit tools for Reinforcement Learning
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Recap : (batch) Supervised Learning
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Supervised Learning

We observe a database containing features (X) and labels (Y)

‘Dn — {(Xis Yi)}ifl....n e X x y
(“labeled examples”)

Typically X = R? (features are represented by vectors) and
» Y ={0,1} : binary classification
> 3 < |Y| < oo : multi-class classification
» YV =R : regression

The goal is to build a predictor g, : X — ), which is a function that
depends on the data D, such that for a new observation (X, Y)

Ea(X)~ Y.

=?» smart prediction by means of generalization from examples
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Examples

Image classification : Personalized marketing :
=R - IIIE&
E . H . s gs Allstate Claim Prediction Challenge
Overvies am

m El&lﬂﬂa‘!
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Features : pixel values Features : customer information

Label : type of image Label : yearly claim

(CIaSSiﬁcation) (regression)
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Mathematical formalization

Modelling assumption : D, = {(X;, Yi)}i=1,...» contains i.i.d samples
whose distribution is that of a random vector

(X,Y)~P.

Given a loss function ¢, build a predictor with small risk

R(g) = Ex,v)~p [((g(X), Y)]

A learning algorithm :

Given a class G of possible predictors, one can compute/approximate

R BEERS
gr™™ € argmin [ =) " U(g(Xi), 7)
e [N
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Many supervised learning algorithms

Some of them can be related to an ERM :

¥

linear regression (Gauss, 1795)

logistic regression (1950s)

k-nearest neighbors (1960s)

Decision Trees (CART, 1984)

Support Vector Machines (1995)

Boosting algorithms (Adaboost, 1997)

Random Forest (2001)

Neural Networks (1960s-80s, Deep Learning 2010s)

LR R R AR 2
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Example : Linear Regression

X =R and Y = {—1,1} (binary classification).

Linear regression

8n(x) =sgn ((X|§n>> where

0, € argmin (Y; — (X, )
(23S ——

Links with the ERM with
» G = {linear functions}

» square loss : £(u,v) = (u— v)?
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Example : Logistic Regression

X =R%and Y = {—1,1} (binary classification).

Logistic regression

8n(x) = sgn ((x|é,,>> where

n
én € argmin Z In (1 + e—\’;(X;,e))
0cRd i—1

Links with the ERM with
» G = {linear functions}
> logistic loss : £(u,v) =In(1+ e )
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Batch versus Online

Supervised Learning :
Based on a large database (batch), predict the label of new data
(e.g., a test set).

Online Learning :
Data is collected sequentially, and we have to predict their label
one-by-one (online), after which the true label is revealed.

Examples :
» predict the value of a stock
» predict electricity consumption for the next day

» predict the behavior of a customer
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Can existing methods be (efficiently) adapted
to the online setting ?

> Linear regression : not at first sight...

Closed-form expression for the least-square estimate :

0, = (X(I)X(n))_l Xy V(o)

where
X, Yy
T
Xny = X? eR™ and Y, = ’_/2 €R"
X7 Y,
design matrix vector of labels

=?» need to invert a d X d matrix depending on D,, in each round n+ 1

=?» need to store a growing matrix and vector
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Can existing methods be (efficiently) adapted
to the online setting ?

» Linear regression : ... but yes thanks to online least-squares
Another way to write the least-square estimate

n -1 n
0, = (Z Xe X, ) (Z tht>
t=1 t=1

Hence

n -1 n
Oni1 = (Z XX, + XnﬂX"L) (Z Y. X; + Yn+1xn+1)

=il t=1

=?» easy online update thanks to the Sherman-Morisson formula :
-1 A tuyyTA-T
A+wT) a2 A
1+ vTA- 1y
=» only requires to store a d x d matrix and a vector in R?
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Can existing methods be (efficiently) adapted
to the online setting ?

> Logistic regression : not so clear...

The optimization problem

9,, = argmin Z In (1 4 e*W(Xiﬁ))
0eR? —1

has no closed-form solution...

=» no hope for an explicit only update

=?» online version of the optimization algorithms used ?
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Online Learning : general framework

Online Learning

At every timestep t =1,.... T,
@ observe (features) x, € X
@ predict (label) y, € Y
© : is revealed and we suffer a loss £(y;, J;)-

Goal : Minimize the cumulated loss

T

Zg()’t’f’t)

t=1

We can compare our performance to :
=» that of the best predictor in a family G
=» that of (“black-box") experts that propose predictions
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Online learning | : Online Convex Optimization
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Learning the Best Predictor Online

Let G be a class of predictors.

A particular Online Learning problem

A each timestept=1,..., T,
© choose a predictor g; € §
@ observe x; € X’ and predict 9 = gi(x:)
© observe y; and suffer a loss £(y:; +).

» Goal : minimize regret

Regret of a prediction strategy (g:)ten

The regret is the difference between the cumulative loss of the strategy
and the cumulative loss of the best predictor in G :

T T
Rt = Ze()’ﬂf/t) - 2”6'8 Zf(}/t; g(xt))-
t=1 t=1
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Learning the Best Predictor Online

Let G be a class of predictors.

A particular Online Learning problem

A each timestept=1,..., T,
@ choose a predictor g; € G (based on previous observation)
@ observe x; € X’ and predict 9 = gi(x:)
© observe y; and suffer a loss £(y:; +).

» Goal : minimize regret

Regret of a prediction strategy (g:)ten

The regret is the difference between the cumulative loss of the strategy
and the cumulative loss of the best predictor in G :

T T
Rt = Ze()’ﬂf/t) - 2”6'8 Zf()/t; g(xt))-
t=1 t=1
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Example : Online Logistic Regression

Let G be a class of predictors.

A particular Online Learning problem

A each timestept=1,..., T,
© choose a predictor g; € §
@ observe x; € X’ and predict 9 = gi(x:)
© observe y; and suffer a loss £(y:; ;).

Example : X = RY ) =R (can be converted to prediction in {—1,1}).

» G is the set of linear functions : G = {g = (x,0),0 € Rd}
=» there exists 0; € R? such that g;(x) = (0, x)
» (s the logistic loss : £ (yz; 9:) =In(1+e Mef’xf))
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Example : Online Logistic Regression

Let G be a class of predictors.

A particular Online Learning problem

A each timestept=1,..., T,
© choose a predictor g; € G
@ observe x; € X’ and predict 9 = gi(x:)
© observe y; and suffer a loss £(y:; ;).

Goal : the regret that we should minimize rewrites

T T
Ry = Z In (1 + e_yf<‘9“X‘>) — min In (1 + e‘yt(e’x‘>)
t=1

0cRd
€ER P

loss obtained by updating loss obtained by the
our predictor in an online fashion logistic regression predictor

trained with the whole dataset
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Example : Online Logistic Regression

G is a parametric class of predictors : G = {gy, 0 € R}

A particular Online Learning problem

A each timestept=1,..., T,
@ choose a vector 0, ¢ R
@ a loss function is observed : £;(0) = In (1 + e Y:(02))
© we suffer a loss /;(0;).

Goal : the regret that we should minimize rewrites

T T
— =yt (0. x) — mi =yt (0, xt)
Rt ;In(l—key‘g ) min In(l—l—eya )

d
feR! —
~
loss obtained by updating loss obtained by the
our predictor in an online fashion logistic regression predictor

trained with the whole dataset

Emilie Kaufmann | CRIStAL

-20



Example : Online Logistic Regression

G is a parametric class of predictors : G = {gy, 0 € R}

A particular Online Learning problem

A each timestept=1,..., T,
@ choose a vector 0, ¢ R
@ a loss function is observed : £;(0) = In (1 + e Y:(02))
© we suffer a loss /;(0;).

Goal : the regret that we should minimize rewrites

T T
Rr = PRACS: - min > (0)
t=1 t=1

——— —_———
loss obtained by updating loss obtained by the
our predictor in an online fashion logistic regression classifier

trained with the whole dataset

=» fits the framework of Online Convex Optimization
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Online Convex Optimization

Online Convex Optimization

A each timestept=1,..., T,
@ choose 6; € K, a convex set
@ a convex loss function /() is observed
© we suffer a loss £;(6;).

Goal : minimize the regret

T T
Rr= > 4(0:) - ;2;24251‘(9)
t=1 t=1

—_———
loss obtained by updating loss obtained by the
6 in an online fashion best static choice of €
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Online Gradient Descent

01 e K
0t+1 = I_I]C (0t — nVKt(Ht))

where My (x) = argmin,cx|[x — ul| is the projection on K.

Assume ||V£:(0)|] < L and K C B(61, R). Then

o

R?>  nl®T
=S - < =
Rt ?ea%;(et(et) £(9)) < 2n + 2

Proof : -
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Online Gradient Descent

E
{ 0t+1 = I_I[C (9t — ant(Qt))

where lMi(x) = argmin,cx|[x — u|| is the projection on K.

Assume [|[V£:(0)]] < L and K C B(61, R). Then

;
R? LT

= — < —
Rt ?ea%;(ﬁt(ﬁt) €t(9))_2n+ 5

Corollary : for the choice nT = L\Lﬁ, we obtain R+ < RLVT
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... and beyond

» smaller regret for more regular functions (smooth, strongly convex)

» second order methods (e.g. online version of Newton's algorithm)

References :

[Introduction to Online

[The OCO book] Optimization]
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http://sbubeck.com/BubeckLectureNotes.pdf
http://sbubeck.com/BubeckLectureNotes.pdf

Online learning Il : Prediction of Individual Sequences
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Prediction with expert advice

> we want to sequentially predict some phenomenon
(market, weather, energy cunsumption...)

» no probabilistic hypothesis is made about this phenomenon
> we rely on experts (black boxes) + good

> we want to be at least as good as the best expert
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A prediction game

K experts. Prediction space ). Loss function £: ) x Y — R*.

Prediction with Expert Advice

At each timestept=1,..., T,
@ cach expert k makes a prediction z,; € Y (that we observe)
@ we predict v, € V

© y: is revealed and we suffer a loss /(7;., y:).
Expert k suffers a loss £(zx ¢, yt)-

Remark : experts may exploit some underlying feature vector x; € X

Goal : minimize

The regret of a prediction strategy is

T T
Rr= > Uey) —min lz E(Zk,t,yt)]
t=1 t=1

———
cumulative loss cumulative loss
of our prediction strategy of the best expert
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A prediction game

K experts. Prediction space ). Loss function £: ) x Y — R*.

Prediction with Expert Advice

At each time stept=1,..., T,
@ cach expert k makes a prediction z,; € Y (that we observe)
@ we predict J; € )V (using past observation + current predictions)

© y: is revealed and we suffer a loss /(7;., y:).
Expert k suffers a loss £(zx ¢, yt)-

Remark : experts may exploit some underlying feature vector x; € X

Goal : minimize

The regret of a prediction strategy is

T T
Rr= > Uey) —min lz E(Zk,t,yt)]
t=1 t=1

———
cumulative loss cumulative loss
of our prediction strategy of the best expert
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Weighted (Average) Prediction

Assign a weight wy ; for expert k at round t and predict a “weighted
average” of the experts’ predictions.

» First idea :
SK Wiz K
A k=1 Wk, t<k,t
Ve = —(—% E Zk t-
Zk:l Wit =\ i 1 Wit

=» the prediction of experts with large weights matter more

=?» we should assign larger weights to “good” experts
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Weighted (Average) Prediction

Assign a weight wy ; for expert k at round t and predict a “weighted
average” of the experts’ predictions.

» First idea :
SK Wiz K
A k=1 Wk, t<k,t
Ve = —(—% E Zk t-
Zk:l Wit =\ i 1 Wit

=» the prediction of experts with large weights matter more

=?» we should assign larger weights to “good” experts

/\ Jr might not be in ) if ) is not convex...
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Weighted (Average) Prediction

Assign a weight wy ; for expert k at round t and predict a “weighted
average” of the experts’ predictions.

» Second idea :
=» compute the probability vector p; = (p1.s,. ... pk.t) Where

Wik, t

Z:K:I Wi,t7

=» select an expert k; ~ p;, i.e. P(ky = k) = py;
=» predict J; =z, €Y

Pk,t =
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How to choose the weights ?

The weights should depend on the quality of the expert in the past.
» cumulative loss of expert k at time t : L, , = > " ((z .. ve)

> “good expert” at time t = expert with a small loss

A natural weight selection

Wit = F (Lk,t—1) for some decreasing function F.

Typical choice : F(x) = exp(—nx).
=¥ leads to an easy multiplicative update
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Exponentially Weighted Forecaster

Parameter : > 0.
Initialization : for all k € {1,..., K}, w1 = ~.
Fort=1....T

© Observe the experts’ predictions : (zx ¢)1<k<k

@ Compute the probability vector pr = (p1¢, - - -, Pk,t) Where

W . .
Pkt = Kikt (normalize the weights)

Zifl Wi ¢

© Select an expert k; ~ p;, i.e., P (ke = k) = pi;

@ Predict y» = z, + and observe the losses

lee = Uz, ye) forall ke{l,...,K}

© Update the weights : Vk € {1,..., K}, wi 11 = wi e exp (—nlk.e).

EWF(n) algorithm (or HEDGE)

Emilie Kaufmann | CRIStAL
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Analysis of EWF

As the algorithm is randomized, we consider the expected regret

T

.
E[RT]=E| ) lke— _mi ‘
Rr1 =B |32t join D the

Assume that

> the losses ¢) + = {(zx ¢, y¢) are fixed in advance (oblivious case)
> forall k,t,0< 4, <1
Then for all n > 0 and T > 0, EWF(n) satisfies

E[R7] < —= 5

In(K) 0T
; .

Proof : -
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A useful lemma

Hoeffding's lemma

Let Z be a random variable supported in [a, b]. Then

s2(b — a)?

Vs e R, InE[e¥] < sE[Z] + g
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Analysis of EWF

Choosing nt = 4/ 8'"—7(.'(), EWF (n7) satisfies

E[Rr] < T|r12(K)

Remarks :

> 171 can also be chosen without the knowledge of the “horizon” T with
similar regret guarantees (up to a constant factor) :

8In(K)

t

» if ) is convex, one can replace randomization by actual average,
with the same regret guarantees

=» Exponentially Weighted Average (EWA)

Nt =
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Exponentially Weighted Average

Parameter : n > 0.
Initialization : for all k € {1,..., K}, wx1 = +.
Fort=1,..., T

© Observe the experts’ predictions : (zx ¢)1<k<k

@ Compute the probability vector pr = (p1,¢, - - -, Pk,t) Where

W - .
Pkt = Kikt (normalize the weights)

21;1 Wi ¢

© Predict y; = Zle Pk.tZk, + and observe the losses

Zk,t :g(zk,tayt) for all k € {1,,K}

@ Update the weights : Vk € {1,..., K}, Wi ¢r1 = wirexp(—nlk.t).

v

EWA(n) algorithm
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A Online Learning with partial information : the Bandit case

Emilie Kaufmann | CRIStAL
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From full information to partial information

Prediction with Expert Advice

At each timestept=1,..., T,

@ cach expert k makes a prediction zx ; € Y (that we observe)
@ we predict y; € V

© y: is revealed and we suffer a loss /) == /(7. yi).

» A full information game :
we assumed to observe the losses of all experts
» Partial information game : we only observe a subset of the (¢ )«
» Bandit information : we predict ; = z, ; and only observe the loss
of the chosen expert, /4, ;

Bandit information : Our prediction strategy has consequences on the
loss received but also on the information gathered.

Emilie Kaufmann | CRIStAL
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Can we use EWF ?

The Bandit game

At each timestept=1,..., T,
@ nature picks a loss vector ¢y = ({1, ...,¢k.+) [unobserved]
@ the learner selects an action k; € {1,... K}

© the learner receives (and observes) the loss of the chosen action /y, ¢

» EWF update :
Vke{l,... K}, Wier1 = wieexp (=nlk t)

=» not possible for k # k...
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EWF becomes EXP3

Parameter : n > 0.
Initialization : for all k € {1,..., K}, wx1 = =.
Fort=1,..., T

© Observe the experts’ predictions : (zx ¢)1<k<k

@ Compute the probability vector p; = (p1,¢t, - - -, Pk.¢+) Where

Wi, t

z:ﬁl W

Pkt = (normalize the weights)

@ Select an expert k; ~ p;, i.e., P(ke = k) = pit
@ Predict y; = 7z, and observe ¢y, ;

@ Compute estimates of the unobserved losses : /) ; = hﬂ(kt:k)

Pkt

@ Update the weights : Vk, wy t41 = wi rexp (—ng,t)-

EXP3 (Explore, Exploit and Exponential Weights)

Emilie Kaufmann | CRIStAL
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Theoretical guarantees for EXP3

Why does it work ?

~ 14 . . .
by = ﬁﬂ(k,:k) is an unbiaised estimate of  { ;
k,t

For the choice
B log(K)
M=V Tkt

E[R7] < 2In(K)WVKT

EXP3(n7) satisfies

= regret in /T for both EWF and EXP3

=» worse dependency in the number of “arms” K for EXP3
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Nicold Cesa-Bianchi Gabor Lugosi

[Prediction, Learning and Games]
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