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From bandit to RL

Solve a multi-armed bandit problem
= maximize rewards in a MDP with one state

The bandit world
I several principles for

exploration/exploitation

I efficient algorithms
(UCB, Thompson Sampling)

I with regret guarantees

RL algorithms so far

I ε-greedy exploration

I algorithms with (sometimes)
convergence guarantees that
are not very efficient

vs. (more) efficient algorithms
with little theoretical
understanding

Question : can we be inspired by bandit algorithms to

I propose new RL algorithms

I ... with theoretical guarantees ?

Emilie Kaufmann |CRIStAL - 2



Outline

1 Regret minimization in Reinforcement Learning

2 Bandit tools for Regret Minimization in RL
Optimism for Reinforcement Learning
Thompson Sampling for Reinforcement Learning

3 Scalable heuristics inspired by those principles
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Regret minimization

For simplicity, we will define regret for episodic MDPs, in which

V π(s) = V π
1 (s) = Eπ

[
H∑

h=1

r(st , at)

∣∣∣∣∣ s1 = s

]
.

For each episode t ∈ {1, . . . ,T}, an episodic RL algorithm

I starts in some initial state st1 ∼ ρ
I selects a policy πt (based on observations from past episodes)
I uses this policy to generate an episode of length H :

st1, a
t
1, r

t
1 , s

t
2, . . . , s

t
H , a

t
H , r

t
H

where ath = πt
h(sth) and (r th , s

t
h+1) = step(sth, a

t
h)

Definition

The (pseudo)-regret of an episodic RL algorithm π = (πt)t∈N in T
episodes is

RT (π) =
T∑
t=1

[
V ?(st1)− V πt

(st1)
]
.
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Reminder : Minimizing regret in bandits

Small regret requires to introduce the right amount of exploration, which
can be done with

I ε-greedy

explore uniformly with probability ε, otherwise trust the estimated model

I Upper Confidence Bounds algorithms

act as if the optimistic model were the true model

I Thompson Sampling

act as if a model sampled from the posterior distribution were the true model
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What is wrong with ε-greedy in RL ?

Example : Q-Learning with ε-greedy

Ü ε-greedy exploration

at =

{
argmaxa∈A Q̂t(st , a) with probability 1− εt

∼ U(A) with probability εt

Ü Q-Learning update

Q̂t(st , at) = Q̂t−1(st , at) + αt

(
rt + γmax

b
Q̂t−1(st , b)− Q̂t−1(st , at)

)

" Q̂t(s, a) is not an unbiased estimate of Q?(s, a)...
(except in the bandit case)
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What is wrong with ε-greedy ?

The RiverSwim MDP :

" ε can be hard to tune...
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What is wrong with ε-greedy ?

εt = 0.5 εt =
ε0

(N(st)− 1000)2/3 εt =

{
1 if t < 7000
ε0√
N(st )

otherwise

credit : Alessandro Lazaric

" ε-greedy performs undirected exploration

I alternative : model-based methods in which exploration is targeted
towards uncertain regions of the state/action space
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Towards an optimistic learning algorithm

I Reminder : Optimistic Bandit model

set of possible bandit models µ = (µ1, µ2, µ3, µ4) :

Mt = I1(t)× I2(t)× I3(t)× I4(t)

An optimistic bandit model is

µ+
t ∈ argmax

µ∈Mt

µ?

Ü the best arm in µ+
t is At = argmax

a∈A
UCBa(t)

(arm selected by UCB)
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Towards an optimistic learning algorithm

I Extension : Optimistic Markov Decision Process

set of possible MDPs M = 〈S,A, r , p〉 :

Mt = {〈S,A, r , p〉 : r , p ∈ Brt × B
p
t }

An optimistic Markov Decision Process is

M+
t ∈ argmax

M∈Mt

V ?
M(s1)

Ü an optimal policy in M+
t is such that

π+
t ∈ argmax

π
max

M∈Mt

V π
M(s1)

Challenges
1 How to construct the set Mt of possible MDPs ?

2 How to numerically compute π+
t ?
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Step 1 : Constructing Mt

Mt =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}
Idea : build individual confidence regions

I on the average reward r(s, a) : Brt (s, a) ⊆ R
I on the transition probability vector p(·|s, a) : Bpt (s, a) ⊆ ∆(S)

that rely on the empirical estimates

r̂t(s, a) =
1

nt(s, a)

nt(s,a)∑
i=1

r [i ] and p̂t(s
′|s, a) =

nt(s, a, s
′)

nt(s, a)

nt(s, a) : number of visits of (s, a) until episode t

nt(s, a, s
′) : number of times s ′ was the next state when the transition (s, a)

was performed until episode t

Goal : PM (M ∈Mt) is close to 1
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Step 1 : Constructing Mt

Mt =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}
Idea : build individual confidence regions

I on the average reward r(s, a) : Brt (s, a) ⊆ R

Assuming bounded rewards,

Brt (s, a) =

[
r̂t(s, a)−

√
ln(4(nt(s, a))2/δ)

2nt(s, a)
; r̂t(s, a)+

√
ln(4(nt(s, a))2/δ)

2nt(s, a)

]

satisfies
P
(
∃t ∈ N : r(s, a) /∈ Brt (s, a)

)
≤ δ.

(Hoeffding inequality + union bound)
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Step 1 : Constructing Mt

Mt =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}
Idea : build individual confidence regions

I on the transition probability vector p(·|s, a) : Bpt (s, a) ⊆ ∆(S)

Bpt (s, a) =

{
p(·|s, a) ∈ ∆(S) : ‖p(·|s, a)− p̂t(·|s, a)‖1 ≤ C

√
S ln(nt(s, a)/δ)

nt(s, a)

}
satisfies

P
(
∃t ∈ N : p(·|s, a) /∈ Bpt (s, a)

)
≤ δ.

(Freedman inequality + union bound)
[Jaksch et al., 2010]
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Step 1 : Constructing Mt

Mt =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}

Brt (s, a) =
[
r̂t(s, a)− βr

t (s, a); r̂t(s, a) + βr
t (s, a)

]
Bpt (s, a) =

{
p(·|s, a) ∈ ∆(S) : ‖p(·|s, a)− p̂t(·|s, a)‖1 ≤ β

p
t (s, a)

}
with exploration bonuses :

βr
t (s, a) ∝

√
ln(nt(s, a)/δ)

nt(s, a)

βp
t (s, a) ∝

√
S ln(nt(s, a)/δ)

nt(s, a)
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Step 2 : Optimistic Value Iteration

Goal : Approximate π+ ∈ argmax
π

max
M∈M

V π
M for a set of MDPs

M =
{
〈S,A, r , p〉 : ∀(s, a) ∈ S×A, r(s, a) ∈ Br (s, a), p(·|s, a) ∈ Bp(s, a)

}

Recall the optimal solution for a fixed MDP : π?h = greedy(Q?
h ) where

Q?
h (s, a) = r(s, a) +

∑
s′

p(s ′|s, a) max
b

Q?
h+1(s ′, b)

Ü π+
h = greedy(Q+

h ) where

Q+
h (s, a) = max

(r ,p)∈M

[
r(s, a) +

∑
s′

p(s ′|s, a) max
b

Q+
h+1(s ′, b)

]
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Step 2 : Optimistic Value Iteration

Q+
h (s, a) = max

(r ,p)∈Br (s,a)×Bp(s,a)

[
r(s, a) + p(·|s, a)>

(
max
b

Q+
h+1(s ′, b)

)
s′∈S︸ ︷︷ ︸

V+
h+1

]

= max
r∈Br (s,a)

r + max
p∈Bp(s,a)

p>V+
h+1

= r̂t(s, a) + βr
t (s, a) + max

p∈Bp(s,a)
p>V+

h+1

= r̂t(s, a) + βr
t (s, a) + p̂t(·|s, a)>V+

h+1 + max
p∈Bp(s,a)

(p − p̂t(·|s, a))>V+
h+1

≤ r̂t(s, a) + βr
t (s, a) + p̂t(·|s, a)>V+

h+1 + max
p∈Bp(s,a)

‖p − p̂t(·|s, a)‖1‖V+
h+1‖∞

= r̂t(s, a) + βr
t (s, a) + p̂t(·|s, a)>V+

h+1 + βp
t (s, a)(H − h)rmax

= r̂t(s, a) + [βr
t (s, a) + βp

t (s, a)(H − h)rmax]︸ ︷︷ ︸
exploration bonus

+p̂t(·|s, a)>V+
h+1
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Optimistic algorithm

A family of algorithms

An optimistic algorithm uses in episode t + 1 the exporation policy
πt+1
h = greedy

(
Qh

)
where Qh(s, a) is an optimistic Q-value function

Qh(s, a) = r̂t(s, a) + βt(s, a) +
∑
s′∈S

p̂t(s
′|s, a) max

b
V h+1(s ′)

V h(s) = min

[
H − h; max

b
Qh(s, b)

]
,

where βt(s, a) is some exploration bonus.

From the previous calculation, one can propose

βt(s, a) = βr
t (s, a) + Cβp

t (s, a) '

√
ln(nt(s, a))

nt(s, a)
+ C

√
S ln(nt(s, a))

nt(s, a)

Ü βt(s, a) scales in 1/
√
nt(s, a) where nt(s, a) is the number of

previous visits to (s, a).
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Optimistic algorithm

A family of algorithms

An optimistic algorithm uses in episode t + 1 the exporation policy
πt+1
h = greedy

(
Qh

)
where Qh(s, a) is an optimistic Q-value function

Qh(s, a) = r̂t(s, a) + βt(s, a) +
∑
s′∈S

p̂t(s
′|s, a) max

b
V h+1(s ′)

V h(s) = min

[
H − h; max

b
Qh(s, b)

]
,

where βt(s, a) is some exploration bonus.

I An example of optimistic algorithm in the episodic setting :
UCB-VI [Azar et al., 2017]

I Optimistic algorithms were first proposed in the more complex
average-reward MDPs : UCRL [Jaksch et al., 2010]

UCB-VI achieves RT = O(
√
H2SAT ) w.h.p.
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Posterior Sampling for RL

Bayesian assumption : M is drawn from some prior distribution ν0.

νt ∈ ∆(M) : posterior distribution over the set of MDPs

Optimism Posterior Sampling
Set of possible MDPs Posterior distribution over MDPs

Compute the optimistic MDP Sample from the posterior distribution
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Posterior Sampling for Episodic RL

Algorithm 1: PSRL

Input : Prior distribution ν0

1 for t = 1, 2, . . . do
2 s1 ∼ ρ \\ get the starting state of episode t

3 Sample M̃t ∼ νt−1 \\ sample an MDP from the current posterior distribution

4 Compute π̃t an optimal policy for M̃t

5 for h = 1, . . . ,H do
6 ah = π̃t

h(sh) \\ choose next action according to π̃t

7 rh, sh+1 = step(sh, ah)

8 end

9 Compute νt based on νt−1 and {(sh, ah, rh, sh+1)}Hh=1

10 end

[Strens, 2000, Osband et al., 2013]
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Limitations of optimistic approaches

An important message from optimistic approaches :

Ü Do not only trust the estimated MDP M̂t , but take into account the
uncertainty in the underlying estimate

Brt (s, a) =
[
r̂t(s, a)− βr

t (s, a); r̂t(s, a) + βr
t (s, a)

]
Bpt (s, a) =

{
p(·|s, a) ∈ ∆(S) : ‖p(·|s, a)− p̂t(·|s, a)‖ 1 ≤ βp

t (s, a)
}

expressed by exploration bonuses scaling in
√

1
nt(s,a) where nt(s, a) is the

count (=number of visits) of (s, a).

Scaling for large state action spaces ?

I each state action pair may be visited only very little...

I UCB-VI is quite inefficient in practice for large state-spaces
(efficient, continuous variants is an active research direction)
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A heuristic : count-based exploration

General principle
1 Estimate a “proxi” for the number of visits of a state ñt(s)

2 Add an exploration bonus directly to the collected rewards :

r+
t = rt + c

√
1

ñt(st)

3 Run any DeepRL algorithm on

D =
⋃
t

{
(st , at , r

+
t , st+1)

}

Example of pseudo-counts :

I use a hash function, e.g. φ : S → {−1, 1}k
n(φ(st))← n(φ(st)) + 1
(possibly learn a good hash function)

[Tang et al., 2017]
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2 Add an exploration bonus directly to the collected rewards :

r+
t = rt + c

√
1
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Limitations of Posterior Sampling

An important message from posterior sampling :

Ü Adding some noise to the estimated MDP M̂t is helpful !

r̃t(s, a) = r̂t(s, a) + εt(s, a)

p̃t(s
′|s, a) = p̂t(·|s, a) + ε′t(s, a).

Scaling for large state action spaces ?

I maintaining independent posterior over all state action rewards and
transitions can be costly

I more sophisticated prior distributions encoding some structure and
the associated posteriors can be hard to sample from

Ü use other type of (non-Bayesian) randomized exploration ?
Noisy Networks [Fortunato et al., 2017]
Bootstrap DQN [Osband et al., 2016] ...
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Conclusion : Bandits for RL

Bandits tools are useful for Reinforcement Learning :

I UCRL, PSRL : bandit-based exploration for tabular MDPs

I ... that can motivate “deeper” heuristics

Bandit tools lead to big success in Monte-Carlo planning

I ... without proper sample complexity guarantees

Ü Unifying theory and practice is a big challenge in RL !
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