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Stochastic bandit : a simple MDP

A stochastic multi-armed bandit model can be viewed as an MDP with a
single state sy

» unknown reward distribution vy, , with mean r(sp, a)
> transition p(so|sp,a) =1

> the agent repeatedly chooses between the same set of actions

an agent facing arms in a Multi-Armed Bandit
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Sequential resource allocation

Clinical trials
> K treatments for a given symptom (with unknown effect)

* %’ - :}?dé’j :?B"

» What treatment should be allocated to the next patient based on
responses observed on previous patients ?

Online advertisement
» K adds that can be displayed

e

» Which add should be displayed for a user, based on the previous
clicks of previous (similar) users?
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The Multi-Armed Bandit Setup

K arms < K rewards streams (X, t)ren

At round t, an agent :
» chooses an arm A;
> receives a reward Ry = Xa, ¢
Sequential sampling strategy (bandit algorithm) :
At+1 - Ft(Ala Rl* s 7At7 Rt)

Goal : Maximize Z;l R:.
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The Stochastic Multi-Armed Bandit Setup

K arms < K probability distributions : v, has mean /i,

R

%1 1%] V3

At round t, an agent :
» chooses an arm A;

> receives a reward Ry = Xa, ¢+ ~ V4,
Sequential sampling strategy (bandit algorithm) :
Ari1 = Fe(A Ry, A Re).
Goal : Maximize £ [Z;l Rt}
=» a particular reinforcement learning problem

Emilie Kaufmann | CRIStAL



Clinical trials

Historical motivation [Thompson, 1933]

& @ -~ i, I
B(Ml) B(Mz) B(M3) B(IM) B(Ms)

For the t-th patient in a clinical study,
» chooses a treatment A;
> observes a response R; € {0,1} : P(R; = 1|A; = a) = pa

Goal : maximize the expected number of patients healed
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Online content optimization

Modern motivation ($$) [Li et al., 2010]
(recommender systems, online advertisement)

'r 1A Sk %
Sar J&
=
141 %) Ve ”

For the t-th visitor of a website,
» recommend a movie A;

> observe a rating Ry ~ va, (e.g. Rr € {1,...,5})

Goal : maximize the sum of ratings
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Outline

Performance measure and first strategies
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Regret of a bandit algorithm

Bandit instance : v = (11,14, ...,Vk), mean of arm a : p, = Ex.,,[X].
Ly = mMax [ a, = argmax [i,.
aE{l,...,K} ’ ae{l,...,K} ’

Maximizing rewards <> selecting a, as much as possible
+ minimizing the regret [Robbins, 1952]

T
Ru(AT):=  Tp —FE lz Ry
t=1

sum of rewards of
an oracle strategy
always selecting a,

sum of rewards of
the strategy A

What regret rate can we achieve?

Ru(A,T)
T

=» consistency : -0

=» can we be more precise ?
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Regret decomposition

N,(t) : number of selections of arm a in the first ¢ rounds
A, = pix — p, : sub-optimality gap of arm a

Regret decomposition

Ru(A, T)=> AE[N,(T).

Proof.
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Regret decomposition

N,(t) : number of selections of arm a in the first ¢ rounds
A, = pix — p5 : sub-optimality gap of arm a

Regret decomposition

Ru(A, T)=> AE[N,(T)].

A strategy with small regret should :
> select not too often arms for which A, >0

> ... which requires to try all arms to estimate the values of the A,'s

= Exploration / Exploitation trade-off
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Two naive strategies

» lIdea 1 : Uniform Exploration

Draw each arm T /K times

= EXPLORATION
Ru(A, T) ( Z A)

by > flx
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Two naive strategies

» lIdea 1 : Uniform Exploration

Draw each arm T /K times

= EXPLORATION
Ru(A, T) ( > A)
by > flx

» ldea 2 : Follow The Leader

iy = argmax [i,(t)
ae{l,...,K}
where t

/Aj'a( ) -

a,sL(A;=a)

is an estimate of the unknown mean p,.

= EXPLOITATION R,(A, T) > (1 — pu1) X pi2 X (ju1 — pi2) T

(Bernoulli arms)
Emilie Kaufmann | CRIStAL
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A better idea : Explore-Then-Commit

Given me {1,..., T/K},
» draw each arm m times
» compute the empirical best arm & = argmax, fi,(Km)
» keep playing this arm until round T
Atp1 =4 fort > Km

= EXPLORATION followed by EXPLOITATION
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A better idea : Explore-Then-Commit

Given me {1,..., T/K},
» draw each arm m times
» compute the empirical best arm & = argmax, fi,(Km)
» keep playing this arm until round T
Atp1 =4 fort > Km

= EXPLORATION followed by EXPLOITATION

Analysis for two arms. p3 > po, A = 11 — fio.

RL(ETC, T) = AE[N(T)]
= AE[m+ (T —2m)1 (4 =2)]
< Am+ (AT) x P(fio,m > fl1,m)
fla,m : empirical mean of the first m observations from arm a
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A better idea : Explore-Then-Commit

Given me {1,..., T/K},
» draw each arm m times
» compute the empirical best arm & = argmax, fi,(Km)
» keep playing this arm until round T
Atp1 =4 fort > Km

= EXPLORATION followed by EXPLOITATION

Analysis for two arms. pg > po, A = 11 — jio.

RL(ETC, T) = AE[N(T)]

AE[m+ (T —2m)1 (5 = 2)]
Am+ (AT) X P(fio.m > fi1.m)
flam 1 empirical mean of the first m observations from arm a
—» requires a concentration inequality

IN
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Intermezzo : Concentration Inequalities

Sub-Gaussian random variables : Z is o2-subGaussian if

2,2

Ao

E[Z]=p and E [e)‘(z_“)] <e 2. (1)

Hoeffding inequality

Z; i.i.d. satisfying (1). For all s > 1

oo sz
P(MZ,HX) e
S

Proof : Cramér-Chernoff method

» v, bounded in [a, b] : (b — a)?/4 sub-Gaussian (Hoeffding's lemma)
» v, = N(ia,0?) : 02 sub-Gaussian
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Intermezzo : Concentration Inequalities

Sub-Gaussian random variables : Z is o2-subGaussian if

2,2

Ao

E[Z]=p and E [e)‘(z_“)] <e 2. (1)

Hoeffding inequality

Z; i.i.d. satisfying (1). For all s > 1

P(zl+-;+zs_

Proof : Cramér-Chernoff method

» v, bounded in [a, b] : (b — a)?/4 sub-Gaussian (Hoeffding's lemma)
» v, = N(ia,0?) : 02 sub-Gaussian

Emilie Kaufmann | CRIStAL



A better idea : Explore-Then-Commit

Given me {1,..., T/K},
» draw each arm m times
» compute the empirical best arm & = argmax, fi,(Km)
» keep playing this arm until round T
At =4 fort > Km

= EXPLORATION followed by EXPLOITATION

Analysis for two arms. p1 > pp, A = 1 — io.

Assumption : vy, 1, are bounded in [0, 1].
R.(T) = AE[NA(T)]
= AE[m+ (T —2m)1 (54 =2)]
< Am+(AT) X P(fiz,m > fi1,m)
fla,m : empirical mean of the first m observations from arm a
— Hoeffding’s inequality
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A better idea : Explore-Then-Commit

Given me {1,..., T/K},
» draw each arm m times
» compute the empirical best arm & = argmax, fi,(Km)
» keep playing this arm until round T
At =4 fort > Km

= EXPLORATION followed by EXPLOITATION

Analysis for two arms. p1 > pp, A = 1 — io.

Assumption : v, 1, are bounded in [0, 1].
Ru(T) = AE[Ny(T)]
= AE[m+ (T —2m)1 (4= 2)]
< Am+4 (AT) x exp(—mA?/2)
fla,m : empirical mean of the first m observations from arm a
— Hoeffding's inequality
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A better idea : Explore-Then-Commit

Given me {1,..., T/K},
» draw each arm m times
> compute the empirical best arm 4 = argmax, fi,(Km)
» keep playing this arm until round T
Air1 =4 for t > Km

= EXPLORATION followed by EXPLOITATION

Analysis for two arms. pg > po, A = 11 — io.

Assumption : vy, 1, are bounded in [0, 1].
For m = % log (%)
2 TA?
RL(ETC, T) < log > +1.

>|
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A better idea : Explore-Then-Commit

Given me {1,..., T/K},
» draw each arm m times
> compute the empirical best arm 4 = argmax, fi,(Km)
» keep playing this arm until round T
Air1 =4 for t > Km

= EXPLORATION followed by EXPLOITATION

Analysis for two arms. pg > po, A = 11 — io.

Assumption : vy, 1, are bounded in [0, 1].
For m = é log (%)

2 TA?
< — .
RL(ETC, T) < A {Iog < > ) + 1}

-+ logarithmic regret !
— requires the knowledge of T and A
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Outline

Mixing Exploration and Exploitation
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A simple strategy : e-greedy

The e-greedy rule [Sutton and Barto, 1998] is the simplest way to
alternate exploration and exploitation.

e-greedy strategy

At round t,
> with probability €
Ac~U{T,...,K})
> with probability 1 — €

Ay = argmax [i,(t).
a=1,...,K

=» Linear regret : R, (e-greedy, T) > e52 A T.
Apin = min A,

arfra<[lx
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A simple strategy : e-greedy

A simple fix :

€:-greedy strategy

At round t,
» with probability ¢, := min (1, %)

A ~U{D,...,K})
> with probability 1 — ¢,

A¢ = argmax fi,(t — 1).
a=1,...,K

If 0 < d < Anin, Ry (er-greedy, T) = O <KI<:lg2(T)>.

=¥ requires the knowledge of a lower bound on A,...
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Outline

Mixing Exploration and Exploitation
m Upper Confidence Bound algorithms
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The optimism principle

Step 1 : construct a set of statistically plausible models

» For each arm a, build a confidence interval on the mean p, :

Z,(t) = [LCB,(t), UCB,(t)]

LCB = Lower Confidence Bound
UCB = Upper Confidence Bound

o

FIGURE — Confidence intervals on the means after t rounds

Emilie Kaufmann | CRIStAL
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The optimism principle

Step 2 : act as if the best possible model were the true model
(optimism in face of uncertainty)

F1GURE — Confidence intervals on the means after t rounds

Optimistic bandit model = argmax max  p,
weC(t) a=1,...,.K

» That is, select

A1 = argmax UCB,(t).
a=1,..,K
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How to build confidence intervals ?

We need UCB,(t) such that

P(us <UCB,4(t) 21— t.

=» tool : concentration inequalities

Example : rewards are o sub-Gaussian

Hoeffding inequality, reloaded

Z; i.i.d. satisfying (1). For all s > 1

Z so0odb Z o2
P(%—Fs<u_x> < e 27
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How to build confidence intervals ?

We need UCB,(t) such that

P(ua < UCB,(t)) 21—t~

=» tool : concentration inequalities

Example : rewards are o sub-Gaussian

Hoeffding inequality, reloaded

Z; i.i.d. satisfying (1). For all s > 1

i+t Z 2
P<—1+ + s<u—x>§e‘2o2
s

ACannot be used directly in a bandit model as the number of
observations from each arm is random!
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How to build confidence intervals ?

L AGED N 1 (a,—2) number of selections of a after t rounds
> flas = 1375, Yax average of the first s observations from arm a

> fia(t) = fla,n,(r) empirical estimate of y, after t rounds

Hoeffding inequality +

. log(t 1
P(Magﬂa(t)+0 ﬁszf_))> >1-— tg—l
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How to build confidence intervals ?

L AGED N 1 (a,—a) number of selections of a after t rounds
> flas =135, Yax average of the first s observations from arm a

> fia(t) = fla,n,(r) empirical estimate of y, after t rounds

Hoeffding inequality +

. log(t 1
P(Magﬂa(t)+0 ﬁNi?E))> >1-— tg—l

Proof.

]P’(,u3>ﬂa(t)+o ﬁI:IO%E)t)>§P<Els§t:,ua>ﬁa,s+a 5'°Sg(t)>

t t
. Blog(t) 1 1
§2P<ua,s<ua—o . <2 r = paa
s=
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A first UCB algorithm

UCB(«) selects A¢r1 = argmax, UCB,(t) where

N alog(t)
UCB,(t) = At
(0= palt) e
exploitation term —_———

exploration bonus

» popularized by [Auer, 2002] for bounded rewards : UCBI, for ov = 2

> the analysis was UCB(«) was further refined to hold for o > 1/2,
still for bounded rewards [Bubeck, 2010]

Emilie Kaufmann | CRIStAL
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A UCB algorithm in action
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Regret of UCB(«)

Context : 02 sub-Gaussian rewards

UCB,(t) = fia(t) + \/ 2“2('%(’-‘)/\&:)'% log(1))

For ¢ > 3, the UCB algorithm associated to the above index satisfy

2

20
E[N,(T)] < [ log(T) + Cu/log(T).

if the rewards distributions are o2 sub-Gaussian.
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Regret of UCB(«)

Context : 02 sub-Gaussian rewards

UCB,(t) = fia(t) + \/ 2“2('°g<f)Nj(:)log log(1))

For ¢ > 3, the UCB algorithm associated to the above index satisfy

2

20
E[N,(T)] < [ log(T) + Cu/log(T).

if the rewards distributions are o2 sub-Gaussian.

» regret bound for Gaussian distribution with variance o :

1

R,(UCB(a), T) = 202 ( > K) log(T) 4+ O(y/log(T))
for a = 202. o
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Regret of UCB(«)

Context : 02 sub-Gaussian rewards

UCB,L(t) = fis(t) + \/ 202(Iog(t)/vt(i)log log(t))

For ¢ > 3, the UCB algorithm associated to the above index satisfy

2

20
E[N,(T)] < [ log(T) + Cur/log(T).

if the rewards distributions are o2 sub-Gaussian.

> regret bound for distributions that are bounded in [0, 1] :

R,(UCB(a), T) = %( > Ai> log(T) + O(y/log(T))
for a =1/2.

3 pta<fi
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Is UCB(«) the best possible algorithm ?

Context : a parametric bandit model where each arm is parameterized
by its mean v = (V.. Vyy), pha € L.

Vo l"':(/'l’h"'aNK)

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

dv
kl(:“? ,LL/) = KL (Vlh VM') = EX"‘VH |:|0g dl/:/ (X):|

For uniformly good algorithm,

NL(T)] 1
< by = I|m inf ”[ >
e S —oo  log T 7 Kkl(pa, fix)
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Is UCB(«) the best possible algorithm ?

Context : a parametric bandit model where each arm is parameterized
by its mean v = (v, ..., V), Ha € L.

Vo< H:(ulr"a/j’K)

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

N2
kl(p, p') = ('u2—éb) (Gaussian bandits)
o

Lower bound

For uniformly good algorithm,
(T 1

log T = Kl(pa, f1x)

E
fa < s = liminf =&
T—oo
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Is UCB(«) the best possible algorithm ?
Context : a parametric bandit model where each arm is parameterized
by its mean v = (v, ..., V), Ha € L.

Vo< I‘L:(ulr"aMK)

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

Kl(, p') := plog (5) + (1 —p)log (1;5,) (Bernoulli bandits)

Lower bound

For uniformly good algorithm,

CEulNo(T) 1

< = limi
oSt = S log T = Kl(jiay 1)
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Comparing upper and lower bounds

For Gaussian bandits with variance o2,

» Upper bound for UCB(25?) :

R,(UCB,T) < Y ( 20° log(T)

sz, (0 = pa)

» Lower bound : for large values of T,

RAATIZ S Wemba)yop ()

wpz, Kl 1)
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Comparing upper and lower bounds

For Gaussian bandits with variance o2,

» Upper bound for UCB(205?) :

RAUCB.T)S Y 2°  1og(T)

iz, (0 = pa)

» Lower bound : for large values of T,

RAATIZ S 7 og(T)

by — U
wz, (e = p1a)

=» UCB is asymptotically optimal for Gaussian bandits!
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Comparing upper and lower bounds

For Bernoulli bandits (that are bounded in [0, 1]),

» Upper bound for UCB(1/2) :

RAUCB.TIS Y o L og(7)

w2, 2w = pa)

» Lower bound : for large values of T,

RAATIZ S Wemha) o )

arires, Kl(Ha: 1)
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Comparing upper and lower bounds

For Bernoulli bandits (that are bounded in [0, 1]),

» Upper bound for UCB(1/2) :

R,(UCB, T)S Y ’ 1

———— log(T)
w2, 2w = pa)

» Lower bound : for large values of T,

RAAT)Z S V) iog (T

ez, K1(fea, pis)
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Comparing upper and lower bounds

For Bernoulli bandits (that are bounded in [0, 1]),

» Upper bound for UCB(1/2) :

RAUCB.TIS Y o L og(7)

w2, 2w = pa)

» Lower bound : for large values of T,

RAAT)Z S V) iog (T

ez, K1(fea, pis)

=» UCB is not asymptotically optimal for Bernoulli bandits...

Pinsker's inequality : kl(u, p') > 2(p — p')?

Emilie Kaufmann | CRIStAL
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The kl-UCB algorithm

Exploits the KL-divergence in the lower bound !

UCB,(t) = max {q €[0,1] : Kl (fa(t), q) < 'l‘\’/g((;))} . J

0s | TogON 0

A tighter concentration inequality

For Bernoulli rewards

P(UCB,(t) > pa) 2 1 - P
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An asymptotically optimal algorithm

kl-UCB selects A1 = argmax, UCB,(t) with

log(t) + c log log(t)

UCB,(t) = max{q €10,1] : kI (pa(t), q) < N (D)

If ¢ > 3, for every arm such that p, < py,

log(T) + Cuy/log(T).

EuNo(T)] € m— kl( PR

b

» kI-UCB is asymptotically optimal for Bernoulli bandits :

Hx — Ha
R, (k-UCB, T) ~ ( > W) log(T).

i<y

Emilie Kaufmann | CRIStAL
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Bayesian bandit algorithms

Emilie Kaufmann | CRIStAL

Outline
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Frequentist versus Bayesian bandit

Context : parametric bandit model v, = (V. .., V).

» Two probabilistic models

Frequentist model Bayesian model
Py ooy UK U1, - -, K drawn from a
unknown parameters prior distribution : p, ~ m,
iid. iid.
arm a: (Yas)s ~ v, arm a: (Yas)s|lp ~ v,

where (Y, ) is the sequence of successive rewards obtained from arm a
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Frequentist and Bayesian algorithms

» Two types of tools to build bandit algorithms :

Frequentist tools

Bayesian tools

MLE estimators of the means
Confidence Intervals

Posterior distributions
W; - L(Ma| Yaflf ey Ya,Na(t))

Emilie Kaufmann | CRIStAL
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Example : Bernoulli bandits

Bernoulli bandit model p = (1, ..., k)
» Bayesian view : y1, ..., uk are random variables
prior distribution @, ~ U([0,1])
=¥ posterior distribution :
7ra(t) = ‘C’(:U'S|R17"',Rt)
- Beta(Sa(t)+1,Na(t)—Sa(t)—i-l)

~—— —_———
F#ones #zeros

Sa(t) = 3i_; Rel(a,—a) sum of the rewards.
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Bayesian algorithm

A Bayesian bandit algorithm exploits the posterior distributions of the
means to decide which arm to select.

| —
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Outline

Performance measure and first strategies

Mixing Exploration and Exploitation

Bayesian bandit algorithms
m Thompson Sampling

Emilie Kaufmann | CRIStAL

- 36



Thompson Sampling

A very old idea : [Thompson, 1933].

Two equivalent interpretations :

» ‘“select an arm at random according to its probability of being the best”

» ‘“draw a possible bandit model from the posterior distribution and act
optimally in this sampled model”

# optimistic

Thompson Sampling : a randomized Bayesian algorithm

{ Va e {1.K}, 0.(t) ~ ma(t)

Air1 = argmax 6,(t).
a=1...K
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Thompson Sampling is asymptotically optimal

Problem-dependent regret

Ve >0, Eu[N,(T)] < (1+ e)m log(T) + 0.« (log(T))-

This results holds :

» for Bernoulli bandits, with a uniform prior
[Kaufmann et al., 2012, Agrawal and Goyal, 2013]

» for Gaussian bandits, with Gaussian prior [Agrawal and Goyal, 2017]

» for exponential family bandits, with Jeffrey's prior
[Korda et al., 2013]
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Bayesian versus Frequentist algorithms

» Regret up to T = 2000 (average over N = 200 runs)
as a function of T (resp. log(T))

50 100
— ucB — CB
— K-UCB — HK-UCB
40 { = Thompson Sampling 80 { —— Thompson Sampling

—— Lower Bound

0 20 S0 750 1000 1250 1500 1750 2000 ) 1 3 ] 5

p=1[0.10.150.2 0.25]
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Summary

Several ways to solve the exploration/exploitation trade-off, mostly
> the optimism-in-face-of-uncertainty principle (UCB)
» posterior sampling (Thompson Sampling)

What do they need ?

» UCB : the capacity to build a confidence region for the unknown
model parameters and compute the best possible model

» Thompson Sampling : the ability to define a prior distribution and
sample from the corresponding posterior distribution

=?» these principles can be extended to more challenging bandit
problems and to reinforcement learning

Emilie Kaufmann | CRIStAL - 40
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Bandit
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The Bandit Book

by [Lattimore and Szepesvari, 2019]


http://downloads.tor-lattimore.com/book.pdf
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