Sequential Decision Making Lecture 4 : Reinforcement Learning with Function Approximation

Emilie Kaufmann

Ecole Centrale Lille, 2021/2022

Overall goal : learn the optimal policy π^* associated to some MDP parameterized by r(s, a) and $p(\cdot|s, a)$ for $(s, a) \in S \times A$.

Different contexts :

- ${f O}$ Small state space ${\cal S}$, unknown dynamics
- Large state space S, known dynamics
- Large state space S, unknown dynamics

Overall goal : learn the optimal policy π^* associated to some MDP parameterized by r(s, a) and $p(\cdot|s, a)$ for $(s, a) \in S \times A$.

Different contexts :

- Small state space S, known dynamics Value Iteration. Policy Iteration.
- ${f O}$ Small state space ${\cal S}$, unknown dynamics
- Large state space S, known dynamics
- Large state space S, unknown dynamics

➔ Dynamic Programming

Overall goal : learn the optimal policy π^* associated to some MDP parameterized by r(s, a) and $p(\cdot|s, a)$ for $(s, a) \in S \times A$.

Different contexts :

- Small state space *S*, known dynamics *Value Iteration. Policy Iteration.*
- Small state space S, unknown dynamics Q-Learning. SARSA.
- Large state space S, known dynamics
- Large state space S, unknown dynamics

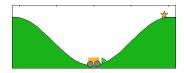
- ➔ Dynamic Programming
 - → Temporal Differences

Overall goal : learn the optimal policy π^* associated to some MDP parameterized by r(s, a) and $p(\cdot|s, a)$ for $(s, a) \in S \times A$.

Different contexts :

- Small state space *S*, known dynamics *Value Iteration. Policy Iteration.*
- Small state space S, unknown dynamics Q-Learning. SARSA.
- Large state space S, unknown dynamics

- → Dynamic Programming
 - → Temporal Differences



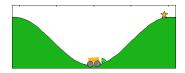
State : $(x, \dot{x}) \in [-1.2; 0.6] \times [-0.07; 0.07]$

Actions : $\mathcal{A} = \{-1, 0, 1\}$: full speed backwards / do nothing / full speed forward

Reward : always -1 except in the terminal (goal) state $x_{\star} = 0.6$

Dynamics : when doing action a_t in state $s_t = (x_t, v_t)$, the next state $s_{t+1} = (x_{t+1}, v_{t+1})$ is

$$\begin{cases} v_{t+1} = \max\{\min\{v_t + \epsilon_t + 0.001a_t - 0.0025\cos(3x_t), 0.07\}, -0.07\}, \\ x_{t+1} = \max\{\min\{x_t + v_t, 0.6\}, -1.2\}. \end{cases}$$



State : $(x, \dot{x}) \in [-1.2; 0.6] \times [-0.07; 0.07]$

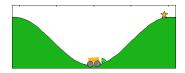
Actions : $\mathcal{A} = \{-1, 0, 1\}$: full speed backwards / do nothing / full speed forward

Reward : always -1 except in the terminal (goal) state $x_{\star} = 0.6$

Dynamics : when doing action a_t in state $s_t = (x_t, v_t)$, the next state $s_{t+1} = (x_{t+1}, v_{t+1})$ is

$$\begin{cases} v_{t+1} = \max\{\min\{v_t + \epsilon_t + 0.001a_t - 0.0025\cos(3x_t), 0.07\}, -0.07\}, \\ x_{t+1} = \max\{\min\{x_t + v_t, 0.6\}, -1.2\}. \end{cases}$$

➔ for physicists, this may be "continuous space, known dynamics"



State : $(x, \dot{x}) \in [-1.2; 0.6] \times [-0.07; 0.07]$

Actions : $\mathcal{A} = \{-1, 0, 1\}$: full speed backwards / do nothing / full speed forward

Reward : always -1 except in the terminal (goal) state $x_{\star} = 0.6$

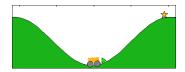
Dynamics : when doing action a_t in state $s_t = (x_t, v_t)$, the next state $s_{t+1} = (x_{t+1}, v_{t+1})$ is

$$\begin{cases} v_{t+1} = \max\{\min\{v_t + \epsilon_t + 0.001a_t - 0.0025\cos(3x_t), 0.07\}, -0.07\}, \\ x_{t+1} = \max\{\min\{x_t + v_t, 0.6\}, -1.2\}. \end{cases}$$

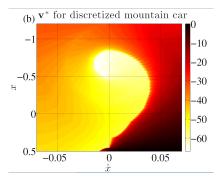
→ for others, this is a "continuous space, unknown dynamics" setting

Emilie Kaufmann | CRIStAL

<



The optimal policy is to first climb up the other side :



More "Large space, Unknown Dynamics"

Many concrete problems where RL could be applied fall in this framework

- micro-grid management
- self-driving cars
- autonomous robotics . . .

Benchmarks often used by researcher these days are video games :

- dynamics may be unknown (enemies behavior, random level generation...)
- → state-space may be large (e.g., pixels)

Outline

- 1 From Values to Policy Learning
- 2 Policy Evaluation with Approximation
- **3** Learning the Optimal Policy : Approximate Dynamic Programming
- 4 Learning the Optimal Policy : Approximate Q-Learning

Learning Values or Q-Values

In RL, one often learn values instead of policy directly :

$$\mathcal{V}^{\star}(s) = \max_{\pi} \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \middle| s_1 = s
ight]$$

Property : $V^{\star}(s) = \max_{a} Q^{\star}(s, a)$.

From an estimate of V^* to an estimate of Q^*

$$\begin{array}{ll} Q & \stackrel{\text{easy}}{\longrightarrow} & V(s) = \max_{a} Q(s,a) \\ V & \stackrel{\text{possibly harder}}{\longrightarrow} & Q(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim p(\cdot|s,a)} \left[V(s) \right] \end{array}$$

The policy deduced from an estimate V is $\pi = \text{greedy}(V)$

$$\pi(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim p(\cdot | s, a)} \left[V(s') \right] \right)$$

→ decide when to approximate V^* or Q^*

Learning Values or Q-Values

In RL, one often learn values instead of policy directly :

$$Q^{\star}(s,a) = \max_{\pi} \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \middle| s_1 = s, a_1 = a \right]$$

Property : $V^{\star}(s) = \max_{a} Q^{\star}(s, a)$.

From an estimate of V^* to an estimate of Q^*

$$\begin{array}{ll} Q & \stackrel{\text{easy}}{\longrightarrow} & V(s) = \max_{a} Q(s,a) \\ V & \stackrel{\text{possibly harder}}{\longrightarrow} & Q(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim p(\cdot|s,a)} \left[V(s) \right] \end{array}$$

The policy deduced from an estimate V is $\pi = \text{greedy}(V)$

$$\pi(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim p(\cdot|s, a)} \left[V(s') \right] \right)$$

→ decide when to approximate V^* or Q^*

Learning Values or Q-Values

In RL, one often learn values instead of policy directly :

$$Q^{\star}(s,a) = \max_{\pi} \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \middle| s_1 = s, a_1 = a \right]$$

Property : $V^*(s) = \max_a Q^*(s, a)$.

From an estimate of V^* to an estimate of Q^*

$$egin{array}{ccc} Q & \stackrel{ ext{easy}}{\longrightarrow} & V(s) = \max_{a} Q(s,a) \ V & \stackrel{ ext{possibly harder}}{\longrightarrow} & Q(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim p(\cdot|s,a)} \left[V(s)
ight] \end{array}$$

The policy deduced from an estimate Q is $\pi = greedy(Q)$

$$\pi(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q(s, a)$$

→ decide when to approximate V^* or Q^*

From Values to Policies

Question : how does the approximation error $||V - V^*||$ impact the performance loss of the policy deduced from V?

Proposition

Let V be an approximation of V^{*} and $\pi = greedy(V)$.

$$\underbrace{\|V^{\star} - V^{\pi}\|_{\infty}}_{\text{performance loss}} \leq \frac{2\gamma}{1 - \gamma} \underbrace{\|V^{\star} - V\|_{\infty}}_{\text{approximation error}}$$

▶ also,
$$\|V^{\star} - V\|_{\infty} \leq \|Q^{\star} - Q\|_{\infty}$$
 if $V(s) = \max_{a} Q(s, a)$.

Exercise : Prove it !

Value Functions Approximation

Problem : Often S is too large to store a vector $V \in \mathbb{R}^S$ or a table $Q \in \mathbb{R}^{S \times A}$ in memory...

Solution : look for estimates V (resp. Q) of V^* (resp. Q^*) in an approximation space \mathcal{F}_V (resp. \mathcal{F}_Q)

$$\mathcal{F}_V \subseteq \mathcal{F}\left(\mathcal{S}, \mathbb{R}
ight) \qquad \mathcal{F}_Q \subseteq \mathcal{F}\left(\mathcal{S} imes \mathcal{A}, \mathbb{R}
ight)$$

Parametric approximation :

$$\mathcal{F}_V = \Big\{ s \mapsto V_ heta(s) ig | \ heta \in \Theta \Big\} \quad \mathcal{F}_Q = \Big\{ (s, \mathsf{a}) \mapsto Q_ heta(s, \mathsf{a}) ig | \ heta \in \Theta \Big\}$$

→ only requires to store a parameter θ (typically in \mathbb{R}^d with $d \ll |S|$)

Smooth parameterization if $\nabla_{\theta} V_{\theta}(s)$ (resp. $\nabla_{\theta} Q_{\theta}(s, a)$) can be computed

Value Functions Approximation

Problem : Often S is too large to store a vector $V \in \mathbb{R}^S$ or a table $Q \in \mathbb{R}^{S \times A}$ in memory...

Solution : look for estimates V (resp. Q) of V^* (resp. Q^*) in an approximation space \mathcal{F}_V (resp. \mathcal{F}_Q)

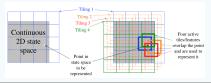
$$\mathcal{F}_V \subseteq \mathcal{F}\left(\mathcal{S}, \mathbb{R}
ight) \qquad \mathcal{F}_Q \subseteq \mathcal{F}\left(\mathcal{S} imes \mathcal{A}, \mathbb{R}
ight)$$

► Non-parametric approximation :

- → nearest neighbors
- → kernel smoothing

$$V_n(s) = \sum_{t=1}^n v_t rac{K(x,s_t)}{\sum_{\ell=1}^n K(x,s_\ell)} \quad ext{for some kernel } K$$

 \rightarrow tile coding



Linear function approximation

V is some linear combinations of *basis functions* (or *features*).

$$\mathcal{F}_V = \left\{ \left. oldsymbol{s} \mapsto V_ heta(oldsymbol{s}) = \sum_{i=1}^d heta_i \phi_i(oldsymbol{s}) \; \left| \; oldsymbol{ heta} \in \mathbb{R}^d
ight.
ight\}$$

Introducing the feature vector of a state s

$$\phi(s) = (\phi_1(s), \dots, \phi_d(s))^\top \in \mathbb{R}^d$$

one can write

$$V_{ heta}(s) = heta^ op \phi(s).$$

Remarks :

• smooth parameterization with $abla_{ heta}V_{ heta}(s) = \phi(s)$

▶ if
$$S = \{s_1, ..., s_S\}$$
, one recovers the tabular case with $\phi_i(s) = \mathbb{1}(s = s_i)$ for $i = 1, ..., S$

Linear function approximation

Q is some linear combinations of *basis functions* (or *features*).

$$\mathcal{F}_{\mathcal{Q}} = \left\{ \left. (s, \textit{a}) \mapsto \mathcal{Q}_{ heta}(s, \textit{a}) = \sum_{i=1}^{d} heta_i \phi_i(s, \textit{a}) \; \middle| \; \; heta \in \mathbb{R}^d
ight\}$$

Introducing the feature vector of a state-action pair (s, a)

$$\phi(s,a) = (\phi_1(s,a), \dots, \phi_d(s,a))^\top \in \mathbb{R}^d$$

one can write

$$Q_ heta(s,a) = heta^ op \phi(s,a).$$

Remarks :

- ▶ smooth parameterization with $\nabla_{\theta} Q_{\theta}(s, a) = \phi(s, a)$
- ▶ if $S = \{s_1, \ldots, s_S\}$, $A = \{a_1, \ldots, a_A\}$ one recovers the tabular case with $\phi_{i,j}(s, a) = \mathbb{1}(s = s_i, a = a_j)$ for $i = 1, \ldots, S$ and $j = 1, \ldots, A$

Examples of features

S ⊆ ℝ : one may use polynomial or Fourrier basis
 S = I₁ × · · · × I_K : one may use tensor products of features

$$\phi_{(i_1,\ldots,i_K)}\left(\left(s^{(1)},\ldots,s^{(K)}\right)\right) = \prod_{j=1}^K \phi_{i_j}\left(s^{(j)}\right)$$

RBF features

If $\mathcal{S} \subseteq \mathbb{R}^d$, one can use Radial Basic Functions

$$\phi_i(s) = \exp\left(-\eta \|s - s^{(i)}\|^2\right),$$

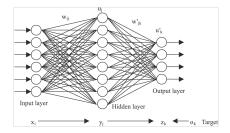
with some scale parameter η and "centers" $s^{(1)}, \ldots, s^{(d)}$ (e.g. a uniform covering of S, or random centers)

Non linear function approximation

Linear function approximation requires to design (meaningful) features, which can be hard...

Modeling V as a neural network can be more powerful :

- neural networks are known to be universal approximators
- they "learn features" from the data
- ▶ and $\nabla_{\theta} V_{\theta}(s)$ can still be computed efficiently



Outline

1 From Values to Policy Learning

2 Policy Evaluation with Approximation

- 3 Learning the Optimal Policy : Approximate Dynamic Programming
- 4 Learning the Optimal Policy : Approximate Q-Learning

Performance measure

In the tabular case, we proposed algorithms that converge to the **exact** V^{π} . This is in general hopeless with function approximation.

→ we can instead try to minimize the Mean Square Error

Mean Square Value Error

Let ν be some probability measure on the state space S and $V : S \to \mathbb{R}$.

$$ext{MSVE}_{
u}(V) = \mathbb{E}_{s \sim
u} \left[\left(V^{\pi}(s) - V(s) \right)^2 \right]$$

Performance measure

In the tabular case, we proposed algorithms that converge to the **exact** V^{π} . This is in general hopeless with function approximation.

→ we can instead try to minimize the Mean Square Error

Mean Square Value Error

Let ν be some probability measure on the state space \mathcal{S} and $V: \mathcal{S} \to \mathbb{R}$.

$$ext{MSVE}_{
u}(V) = \mathbb{E}_{s \sim \nu} \left[\left(V^{\pi}(s) - V(s) \right)^2 \right]$$

 \rightarrow what measure ν do we choose?

Assumption. Under the policy π , the sequence of visited state $(s_t)_{t \in \mathbb{N}}$ is a Markov chain. We assume that it admits a stationary distribution ν .

Performance measure

We proposed before algorithms that converge to the **exact** V^{π} . This is in general hopeless with function approximation.

→ we can instead try to minimize the Mean Square Error

Mean Square Value Error

Let ν be some probability measure on the state space S and $V : S \to \mathbb{R}$.

$$ext{MSVE}_{
u}(V) = \mathbb{E}_{s \sim
u} \left[\left(V^{\pi}(s) - V(s) \right)^2 \right]$$

Remark : defining $||\cdot||_{\nu}$ to be the norm associated to the scalar product

$$\langle f|g\rangle_{\nu} = \mathbb{E}_{s\sim\nu}\left[f(s)g(s)\right],$$

one has

$$ext{MSVE}_
u(V) = ||V^\pi - V||_
u^2$$

Minimizing the MSVE

We consider a smooth parametric representation for V, $\mathcal{F} = \{V_{\theta}, \theta \in \Theta\}$, for which we can define

$$ext{MSVE}(heta) = \mathbb{E}_{
u} \left[\left(V^{\pi}(s) - V_{ heta}(s)
ight)^2
ight]$$

and we aim for $\theta^* = \operatorname{argmin}_{\theta \in \Theta} \operatorname{MSVE}(\theta)$.

Given the smooth parameterization, one can compute

$$abla_ heta$$
MSVE $(heta) = -2\mathbb{E}_
u \left[\left(V^\pi(s) - V_ heta(s)
ight)
abla_ heta V_ heta(s)
ight]$

(valid for finite state space, and possibly under some assumption in continuous state spaces)

Gradient descent :

$$\theta_t \leftarrow \theta_{t-1} + \alpha_t \times \mathbb{E}_{\nu} \left[\left(V^{\pi}(s) - V_{\theta_{t-1}}(s) \right) \nabla_{\theta} V_{\theta_{t-1}}(s) \right]$$

Minimizing the MSVE

We consider a smooth parametric representation for V, $\mathcal{F} = \{V_{\theta}, \theta \in \Theta\}$, for which we can define

$$ext{MSVE}(heta) = \mathbb{E}_{
u} \left[\left(V^{\pi}(s) - V_{ heta}(s)
ight)^2
ight]$$

and we aim for $\theta^{\star} = \operatorname{argmin}_{\theta \in \Theta} \operatorname{MSVE}(\theta)$.

Given the smooth parameterization, one can compute

$$abla_ heta$$
MSVE $(heta) = -2\mathbb{E}_
u \left[\left(V^\pi(s) - V_ heta(s)
ight)
abla_ heta V_ heta(s)
ight]$

(valid for finite state space, and possibly under some assumption in continuous state spaces)

Stochastic gradient descent :

$$\theta_t \leftarrow \theta_{t-1} + \alpha_t \times (V^{\pi}(s_t) - V_{\theta_{t-1}}(s_t)) \nabla_{\theta} V_{\theta_{t-1}}(s_t)$$

(for large t, s_t is approximately distributed under ν)

Minimizing the MSVE

We consider a smooth parametric representation for V, $\mathcal{F} = \{V_{\theta}, \theta \in \Theta\}$, for which we can define

$$ext{MSVE}(heta) = \mathbb{E}_{
u} \left[\left(V^{\pi}(s) - V_{ heta}(s)
ight)^2
ight]$$

and we aim for $\theta^{\star} = \operatorname{argmin}_{\theta \in \Theta} \operatorname{MSVE}(\theta)$.

Given the smooth parameterization, one can compute

$$abla_ heta$$
MSVE $(heta) = -2\mathbb{E}_
u \left[\left(V^\pi(s) - V_ heta(s)
ight)
abla_ heta V_ heta(s)
ight]$

(valid for finite state space, and possibly under some assumption in continuous state spaces)

Stochastic gradient descent :

$$\theta_t \leftarrow \theta_{t-1} + \alpha_t \times \left(V^{\pi}(s_t) - V_{\theta_{t-1}}(s_t) \right) \nabla_{\theta} V_{\theta_{t-1}}(s_t)$$

(for large t, s_t is approximately distributed under ν)

→ problem : $V^{\pi}(s_t)$ is unknown...

A semi-gradient approach

Idea : in the stochastic gradient descent update

$$\theta_t \leftarrow \theta_{t-1} + \alpha_t \times \left(V^{\pi}(s_t) - V_{\theta_{t-1}}(s_t) \right) \nabla_{\theta} V_{\theta_{t-1}}(s_t)$$

replace $V^{\pi}(s_t)$ by either

- ▶ a Monte-Carlo estimate (TD(1))
- a "Bootstrap" estimate (TD(0))

TD(0) with smooth function approximation

The TD(0) semi-gradient update is

$$\theta_t \leftarrow \theta_{t-1} + \alpha_t \times \left(r_t + \gamma V_{\theta_{t-1}}(s_{t+1}) - V_{\theta_{t-1}}(s_t) \right) \nabla_{\theta} V_{\theta_{t-1}}(s_t)$$

🚹 this is *not* a stochastic gradient update, hence the terminology

→ stepsize tuning : decaying not too fast (Robbins-Monro style)

→ very few convergence guarantees besides the linear case...

TD(0) with linear function approximation

We assume $V_{ heta}(s) = heta^ op \phi(s)$ with the feature vector

 $\phi(\mathbf{s}) = (\phi_1(\mathbf{s}), \dots, \phi_d(\mathbf{s}))^\top \in \mathbb{R}^d.$

Then $abla_{ heta}V_{ heta}(s)=\phi(s)$ and the algorithm becomes

TD(0) with linear function approximation

Along a trajectory following π , after observing (s_t, r_t, s_{t+1}) update

$$\theta_t = \theta_{t-1} + \alpha_t \left(\mathbf{r}_t + \gamma \theta_{t-1}^\top \phi(\mathbf{s}_{t+1}) - \theta_{t-1}^\top \phi(\mathbf{s}_t) \right) \phi(\mathbf{s}_t).$$

Using the notation $\phi_t = \phi(s_t)$, one has

$$\theta_t = \theta_{t-1} + \alpha_t \left(r_t \phi_t - \phi_t (\phi_t - \gamma \phi_{t+1})^\top \theta_{t-1} \right).$$

Convergence properties

Theorem

Under the following assumptions :

- **()** the Markov chain $(s_t)_{t\in\mathbb{N}}$ admits a stationary distribution u
- ② the state space is finite and the vectors φ_i = (φ_i(s))_{s∈S} ∈ ℝ^S are linearly independent
- the step-sizes satisfy the Robbins-Monro conditions, i.e.

$$\sum_{t=1}^{\infty} \alpha_t = \infty \quad \text{and} \quad \sum_{t=1}^{\infty} \alpha_t < \infty$$

then the parameter θ_t converges almost surely to some value θ_{TD} s.t.

$$V_{\theta_{\text{TD}}} = \underbrace{\prod_{\mathcal{F}, \nu} T^{\pi}}_{\text{projected}} V_{\theta_{\text{TD}}}$$
Bellman operator

$$\prod_{\mathcal{F},\nu} T^{\pi}(V) = \operatorname*{argmin}_{f \in \mathcal{F}} ||T^{\pi}(V) - f||_{\nu}$$

Emilie Kaufmann | CRIStAL

Tsitsiklis and Van Roy, 1996] _ 19

Computing the fixed point

According to the theorem, TD(0) converges to the solution to

 $V_{ heta_{ ext{td}}} = \Pi_{\mathcal{F},
u} T^{\pi} V_{ heta_{ ext{td}}}$

Proposition

The vector θ_{TD} can be obtained as a solution to the linear system

 $A^{\pi} \theta_{\text{TD}} = b^{\pi},$

where

$$\begin{array}{lll} {\cal A}^{\pi}_{i,j} & = & \langle \phi_i | \phi_j - \gamma {\cal P}^{\pi} \phi_j \rangle_{\nu} \\ {\cal b}^{\pi}_i & = & \langle r^{\pi} | \phi_i \rangle \end{array}$$

Computing the fixed point

According to the theorem, TD(0) converges to the solution to

 $V_{\theta_{\mathrm{TD}}} = \Pi_{\mathcal{F},\nu} T^{\pi} V_{\theta_{\mathrm{TD}}}$

Proposition

The vector θ_{TD} can be obtained as a solution to the linear system

 $A^{\pi} \theta_{\text{TD}} = b^{\pi},$

where

$$\begin{array}{lll} \mathcal{A}^{\pi} & = & \mathbb{E}_{\substack{s \sim \nu \\ s' \sim p(\cdot | s, \pi(s))}} \left[\phi(s) \left(\phi(s) - \gamma \phi(s') \right)^{\top} \right] \in \mathbb{R}^{d \times d} \\ b^{\pi} & = & \mathbb{E}_{s \sim \nu} \left[r(s, \pi(s)) \phi(s) \right] \in \mathbb{R}^{d} \end{array}$$

Why does TD(0) converge to θ_{TD} ?

(heuristic argument in [Sutton and Barto, 1998])

Recall the TD(0) update :

$$\begin{aligned} \theta_t &= \theta_{t-1} + \alpha_t \left(r_t \phi(s_t) - \phi(s_t) (\phi(s_t) - \gamma \phi(s_{t+1}))^\top \theta_{t-1} \right) \\ &= \theta_{t-1} + \alpha_t \left(b_t - A_t \theta_{t-1} \right), \end{aligned}$$

where we introduce

$$\begin{aligned} A_t &= \phi(s_t)(\phi(s_t) - \gamma \phi(s_{t+1}))^\top \in \mathbb{R}^{d \times d} \\ b_t &= r_t \phi(s_t) \in \mathbb{R}^d \end{aligned}$$

Why does TD(0) converge to θ_{TD} ?

(heuristic argument in [Sutton and Barto, 1998])

Recall the TD(0) update :

$$\begin{aligned} \theta_t &= \theta_{t-1} + \alpha_t \left(r_t \phi(s_t) - \phi(s_t) (\phi(s_t) - \gamma \phi(s_{t+1}))^\top \theta_{t-1} \right) \\ &= \theta_{t-1} + \alpha_t \left(b_t - A_t \theta_{t-1} \right), \end{aligned}$$

where we introduce

$$\begin{array}{lll} A_t &\simeq & \mathbb{E}_{s_t \sim \nu} \left[\phi(s_t) (\phi(s_t) - \gamma \phi(s_{t+1}))^\top \right] = A^{\pi} \\ b_t &\simeq & \mathbb{E}_{s_t \sim \nu} \left[r_t \phi(s_t) \right] = b^{\pi} \end{array}$$

when t is large as s_t is approximately drawn under ν .

Why does TD(0) converge to θ_{TD} ?

(heuristic argument in [Sutton and Barto, 1998])

Recall the TD(0) update :

$$\begin{aligned} \theta_t &= \theta_{t-1} + \alpha_t \left(r_t \phi(s_t) - \phi(s_t) (\phi(s_t) - \gamma \phi(s_{t+1}))^\top \theta_{t-1} \right) \\ &= \theta_{t-1} + \alpha_t \left(b_t - A_t \theta_{t-1} \right), \end{aligned}$$

where we introduce

$$\begin{array}{lll} A_t &\simeq & \mathbb{E}_{s_t \sim \nu} \left[\phi(s_t) (\phi(s_t) - \gamma \phi(s_{t+1}))^\top \right] = A^{\pi} \\ b_t &\simeq & \mathbb{E}_{s_t \sim \nu} \left[r_t \phi(s_t) \right] = b^{\pi} \end{array}$$

when t is large as s_t is approximately drawn under ν .

Approximate recursion :

$$\theta_t = \theta_{t-1} + \alpha \left(b^{\pi} - A^{\pi} \theta_{t-1} \right)$$

If it converges, the convergence is towards a fixed point, satisfying

$$b^{\pi} - A^{\pi}\theta = 0$$

Least Square Temporal Difference

Idea : Now that we know towards what TD(0) converges, is there a way to get there faster?

 $A^{\pi} heta_{ ext{TD}} = b^{\pi},$

where

$$\begin{array}{lcl} \mathcal{A}^{\pi} & = & \mathbb{E}_{\substack{s \sim \nu \\ s' \sim \rho(\cdot | s, \pi(s))}} \left[\phi(s) \left(\phi(s) - \gamma \phi(s') \right)^{\top} \right] \in \mathbb{R}^{d \times d} \\ b^{\pi} & = & \mathbb{E}_{s \sim \nu} \left[r(s, \pi(s)) \phi(s) \right] \in \mathbb{R}^{d} \end{array}$$

use estimation :

$$\hat{\mathcal{A}}_n = rac{1}{n}\sum_{t=1}^n \phi(s_t)\left(\phi(s_t) - \gamma \phi(s_{t+1})
ight)^ op$$
 and $\hat{b}_n = rac{1}{n}\sum_{t=1}^n r_t \phi(s_t)$

If \hat{A}_n is invertible, $\hat{\theta}_n = \hat{A}_n^{-1} \hat{b}_n$.

Emilie Kaufmann | CRIStAL

An online implementation of LSTD

We need to compute

$$\hat{\theta}_n = \hat{A}_n^{-1} \hat{b}_n$$

where

$$\hat{A}_n = \sum_{t=1}^n \phi(s_t) \left(\phi(s_t) - \gamma \phi(s_{t+1}) \right)^\top \text{ and } \hat{b}_n = \sum_{t=1}^n r_t \phi(s_t).$$

→ requires to invert a d × d matrix at every round... (much more costly than the TD(0) update !)

More efficient : update the inverse online !

Sherman-Morrison formula

For any matrix $B \in \mathbb{R}^{d \times d}$ and vectors $u, v \in \mathbb{R}^d$,

$$(B + uv^{\top})^{-1} = B^{-1} - \frac{B^{-1}uv^{\top}B^{-1}}{1 + v^{\top}B^{-1}u}$$

LSTD update versus TD(0) update

Letting $\phi_t = \phi(s_t)$, both update also rely on temporal differences

$$\delta_t(\theta) = r_t + \gamma \phi_{t+1}^\top \theta - \phi_t^\top \theta$$

Recursive LSTD

$$C_{n} = C_{n-1} - \frac{C_{n-1}\phi_{n}(\phi_{n} - \gamma\phi_{n+1})^{\top}C_{n-1}}{1 + (\phi_{n} - \gamma\phi_{n+1})^{\top}C_{n-1}\phi_{n}}$$

$$\theta_{n} = \theta_{n-1} + \frac{C_{n-1}}{1 + (\phi_{n} - \gamma\phi_{n+1})^{\top}C_{n-1}\phi_{n}}\delta_{n}(\theta_{n-1})\phi_{n}$$

$\mathsf{TD}(0)$

$$\theta_n = \theta_{n-1} + \alpha_n \delta_n(\theta_{n-1}) \phi_n$$

Complexity : $O(d^2)$ versus 0(1) but LSTD converges faster

Emilie Kaufmann | CRIStAL

Wait... How good is the TD solution?

We presented two algorithms which converge to the value function

 $V_{ ext{TD}}(s) = heta_{ ext{TD}}^ op \phi(s)$

such that V_{TD} is a fixed point to $\Pi_{\mathcal{F},\nu}T^{\pi}$ (when it exists).

→ Is it at all close to our target V^{π} ?

Proposition

If $\boldsymbol{\nu}$ is the stationary distribution of the sequence of states

- ▶ $\Pi_{\mathcal{F},\nu}T^{\pi}$ is a γ contraction with respect to $||\cdot||_{\nu}$ and admits therefore a unique fixed point, V_{TD}
- The TD solution satisfies

$$\left|\left|m{V}^{\pi}-m{V}_{ extsf{TD}}
ight|
ight|_{
u}\leqrac{1}{\sqrt{1-\gamma^{2}}}\inf_{m{V}\in\mathcal{F}}\left|\left|m{V}^{\pi}-m{V}
ight|
ight|_{
u}$$

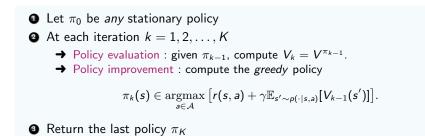
Answer : not too far from the best possible approximation (wrt to $|| \cdot ||_{\nu}$)

Emilie Kaufmann | CRIStAL

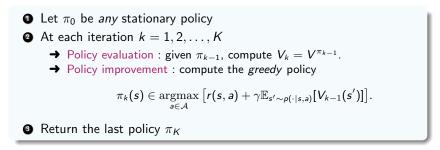
Outline

- 1 From Values to Policy Learning
- 2 Policy Evaluation with Approximation
- 3 Learning the Optimal Policy : Approximate Dynamic Programming
- 4 Learning the Optimal Policy : Approximate Q-Learning

Reminder : Policy Iteration

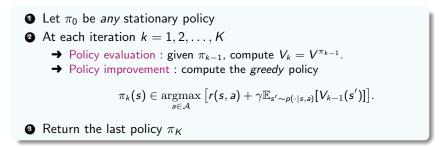


Reminder : Policy Iteration



Problem : we saw how to approximately perform policy evaluation, how about policy improvement?

Reminder : Policy Iteration



Problem : we saw how to approximately perform policy evaluation, how about policy improvement?

→ work with Q-values directly to make policy improvement easy !

LSTD-Q

LSTD-Q : a variant of LSTD aimed at estimating directly Q^{π}

$$Q_{ heta}(s,a) = heta^ op \phi(s,a)$$

The solution to

$$Q_{ heta} = \Pi_{\mathcal{F},
u} T^{\pi} Q_{ heta}$$

can similarly be approximated by solving a linear system.

$$\begin{pmatrix} A_n = A_{n-1} + \phi(s_n, a_n)(\phi(s_n, a_n) - \gamma \phi(s_{n+1}, \pi(s_{n+1})))^{\mathsf{T}} \\ b_n = b_{n-1} + \phi(s_n, a_n)r_n \end{pmatrix}$$

$$\theta_n^{\text{LSTD-Q}} = A_n^{-1} b_n$$

The resulting algorithm is Least-Squares Policy Iteration (LSPI) [Lagoudakis and Parr, 2003]

Reminder : Value Iteration

• Let
$$Q_0$$
 be any action-value function
• At each iteration $k = 1, 2, ..., K$
 $Q_k(s, a) = T^* Q_{k-1}(s, a)$
 $= r(s, a) + \mathbb{E}_{s' \sim p(\cdot|s, a)} \left[\max_{a' \in \mathcal{A}} Q_{k-1}(s', a') \right]$

Return the greedy policy

 $\pi_{\mathcal{K}}(s) \in \operatorname*{argmax}_{a \in \mathcal{A}} Q_{\mathcal{K}}(s, a).$

Reminder : Value Iteration

Let
$$Q_0$$
 be any action-value function
At each iteration $k = 1, 2, ..., K$
 $Q_k(s, a) = T^* Q_{k-1}(s, a)$
 $= r(s, a) + \mathbb{E}_{s' \sim p(\cdot|s, a)} \left[\max_{a' \in \mathcal{A}} Q_{k-1}(s', a') \right]$

Return the greedy policy

$$\pi_{\mathcal{K}}(s) \in \operatorname*{argmax}_{a \in \mathcal{A}} Q_{\mathcal{K}}(s, a).$$

- → **Problem** : how can we approximate T^*Q_k ?
- Problem : does value iteration still work with such an approximation ?

Fitted-Q Iteration

Input : number of iterations <i>K</i> , number of samples per iteration <i>n</i> ,							
Initial function ${\it Q}_{0}\in {\cal F}$, sampling distribution $ ho$,							
Approximation space ${\cal F}$, loss function ℓ							
1 for $k = 1,, K$ do							
2	Draw <i>n</i> samples $(s_i, a_i) \sim \rho$						
3	Perform <i>n</i> transitions $r_i, s'_i = \texttt{step}(s_i, a_i)$						
4	Compute the targets $y_i = r_i + \gamma \max_a Q_{k-1}(s'_i, a)$						
5	From the training dataset $\mathcal{D}_k = \{((s_i, a_i), y_i)_{1 \le i \le n}\}$, solve the						
6	empirical risk minimization problem :						
	$f \in \operatorname*{argmin}_{f \in \mathcal{F}} \;\; rac{1}{n} \sum_{i=1}^n \ell\left(y_i, f(s_i, a_i) ight)$						
7	Set $Q_k = f$ (with clipping if $f(s, a) \notin [-rac{R_{\max}}{1-\gamma}; rac{R_{\max}}{1-\gamma}]$).						
8 end							
$\textbf{Return:} \ \pi = \texttt{greedy}(\mathcal{Q}_{\mathcal{K}})$							
ERM can be replaced by other possibly non parameteric regression							

ERM can be replaced by other possibly non-parameteric regression techniques (decision trees, k-nn, ...) Emilie Kaufmann (CRISTAL)

Linear Fitted Q-Iteration

Input : number of iterations <i>K</i> , number of samples per iteration <i>n</i> ,						
Initial function $Q_0 \in \mathcal{F}$, sampling distribution $ ho$,						
Approximation space ${\cal F}$, loss function ℓ						
1 for $k = 1,, K$ do						
Draw <i>n</i> samples $(s_i, a_i) \sim \rho$						
Perform <i>n</i> transitions $r_i, s'_i = \text{step}(s_i, a_i)$						
Compute the targets $y_i = r_i + \gamma \max_a Q_{k-1}(s'_i, a)$						
From the training dataset $\mathcal{D}_k = \{((s_i, a_i), y_i)_{1 \le i \le n}\}$, solve the						
6 least squares problem :						
$ heta_k \in \operatorname*{argmin}_{ heta \in \mathbb{R}^d} \; \; rac{1}{n} \sum_{i=1}^n \left(y_i - heta^ op \phi(s_i, a_i) ight)^2$						
7 Set $Q_k(s, a) = \theta_k^\top \phi(s, a)$ (with clipping).						
8 end						

Return: $\pi = \operatorname{greedy}(Q_K)$

Linear Fitted-Q : Sampling

Draw n samples (s_i, a_i) ~ ^{i.i.d} ~ Perform a transition for each of them : s'_i ~ p(·|s_i, a_i) and r_i ~ ν_(s_i, a_i)

Linear Fitted-Q : Sampling

- Draw n samples (s_i, a_i) ^{i.i.d} ~ ρ
 Perform a transition for each of them : s'_i ~ p(·|s_i, a_i) and r_i ~ ν_(s_i, a_i)
- In practice sampling can be done once before running the algorithm (or a database of transitions can be used)
- The sampling distribution ρ should cover the state-action space in all relevant regions
- The algorithm requires call to a simulator which can simulate independent transitions from anywhere in the state-action space

Linear Fitted-Q : Building the training set

- Compute $y_i = r_i + \gamma \max_a Q_{k-1}(s'_i, a)$
- Build training set $\mathcal{D}_k = \{((s_i, a_i), y_i)_{1 \le i \le n}\}$

Linear Fitted-Q : Building the training set

→ Each sample y_i is an unbiased estimate of $T^*Q_{k-1}(s_i, a_i)$:

$$\mathbb{E}[y_i|s_i, a_i, Q_{k-1}] = \mathbb{E}[r_i + \gamma \max_{a'} Q_{k-1}(s'_i, a')|s_i, a_i, Q_{k-1}]$$

= $r(s_i, a_i) + \gamma \mathbb{E}_{s' \sim p(\cdot|s_i, a_i)}[\max_{a'} Q_{k-1}(s', a')]$
= $T^* Q_{k-1}(s_i, a_i)$

- → The problem "reduces" to standard regression
- → A new regression problem at each iteration : new function to fit T^{*}Q_{k-1} + new training set D_k

Linear Fitted-Q : The regression problem

• Solve the least squares problem

$$heta_k \in \operatorname*{argmin}_{ heta \in \mathbb{R}^d} \; rac{1}{n} \sum_{i=1}^n \left(y_i - heta^ op \phi(s_i, a_i)
ight)^2$$

Linear Fitted-Q : The regression problem

Solve the least squares problem

$$heta_k \in \operatorname*{argmin}_{ heta \in \mathbb{R}^d} \; rac{1}{n} \sum_{i=1}^n \left(y_i - heta^ op \phi(\mathbf{s}_i, \mathbf{a}_i)
ight)^2$$

→ standard linear regression problem with design matrix and targets

$$X = \begin{pmatrix} \phi(s_1, a_1)^\top \\ \phi(s_2, a_2)^\top \\ \vdots \\ \phi(s_n, a_n)^\top \end{pmatrix} \in \mathbb{R}^{n \times d} \text{ and } Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^d$$

whose solution is

$$\theta_k = \left(X^\top X\right)^{-1} X^\top Y.$$

Linear Fitted-Q : Error bound

Theorem

Linear FQI with a space \mathcal{F} of d features, with n samples drawn from ρ at each iteration, returns a policy π_K after K iterations which satisfies, w.p. larger than $1 - \delta$,

$$\begin{split} \|Q^{\star} - Q^{\pi_{\kappa}}\|_{\mu} &\leq \frac{2\gamma}{(1-\gamma)^{2}} C_{\mu,\rho} \left[\sup_{g \in \mathcal{F}} \inf_{f \in \mathcal{F}} \|T^{\star}g - f\|_{\rho} \right. \\ &\left. + O\left(\sqrt{\frac{d \log(n/\delta)}{\omega n}}\right) \right] \\ &\left. + O\left(\frac{\gamma^{\kappa}}{(1-\gamma)^{2}}\right) . \end{split}$$

see, e.g. [Munos and Szepesvári, 2008]

Outline

- 1 From Values to Policy Learning
- 2 Policy Evaluation with Approximation
- **3** Learning the Optimal Policy : Approximate Dynamic Programming
- 4 Learning the Optimal Policy : Approximate Q-Learning

Let's try to find θ minimizing

$$\begin{split} \mathtt{MSE}(\theta) &= \mathbb{E}_{\nu} \left[\left(Q^{\star}(s,a) - Q_{\theta}(s,a) \right)^{2} \right] \\ \nabla_{\theta} \mathtt{MSE}(\theta) &= -2 \mathbb{E}_{\nu} \left[\left(Q^{\star}(s,a) - Q_{\theta}(s,a) \right) \nabla_{\theta} Q_{\theta}(s,a) \right] \end{split}$$

Let's try to find θ minimizing

$$\begin{split} \mathtt{MSE}(\theta) &= & \mathbb{E}_{\nu}\left[\left(Q^{\star}(s,a)-Q_{\theta}(s,a)\right)^{2}\right] \\ \nabla_{\theta}\mathtt{MSE}(\theta) &= & -2\mathbb{E}_{\nu}\left[\left(Q^{\star}(s,a)-Q_{\theta}(s,a)\right)\nabla_{\theta}Q_{\theta}(s,a)\right] \end{split}$$

→ gradient descent :

$$\theta \leftarrow \theta + \alpha \mathbb{E}_{\nu} \left[\left(Q^{\star}(s, a) - Q_{\theta}(s, a) \right) \nabla_{\theta} Q_{\theta}(s, a) \right]$$

Let's try to find θ minimizing

$$\begin{split} \mathtt{MSE}(\theta) &= \mathbb{E}_{\nu} \left[\left(Q^{\star}(s,a) - Q_{\theta}(s,a) \right)^{2} \right] \\ \nabla_{\theta} \mathtt{MSE}(\theta) &= -2 \mathbb{E}_{\nu} \left[\left(Q^{\star}(s,a) - Q_{\theta}(s,a) \right) \nabla_{\theta} Q_{\theta}(s,a) \right] \end{split}$$

➔ gradient descent :

$$\theta \leftarrow \theta + \alpha \mathbb{E}_{\nu} \left[\left(Q^{\star}(s, a) - Q_{\theta}(s, a) \right) \nabla_{\theta} Q_{\theta}(s, a) \right]$$

→ stochastic gradient descent : if $(s_t, a_t) \sim \nu$,

$$\theta \leftarrow \theta + \alpha \left(Q^{\star}(s_t, a_t) - Q_{\theta}(s_t, a_t) \right) \nabla_{\theta} Q_{\theta}(s_t, a_t)$$

Let's try to find θ minimizing

$$\begin{split} \mathtt{MSE}(\theta) &= \mathbb{E}_{\nu} \left[\left(Q^{\star}(s,a) - Q_{\theta}(s,a) \right)^{2} \right] \\ \nabla_{\theta} \mathtt{MSE}(\theta) &= -2 \mathbb{E}_{\nu} \left[\left(Q^{\star}(s,a) - Q_{\theta}(s,a) \right) \nabla_{\theta} Q_{\theta}(s,a) \right] \end{split}$$

→ gradient descent :

$$heta \leftarrow heta + lpha \mathbb{E}_{
u} \left[\left(Q^{\star}(s, a) - Q_{ heta}(s, a) \right)
abla_{ heta} Q_{ heta}(s, a)
ight]$$

→ stochastic gradient descent : if $(s_t, a_t) \sim \nu$,

$$\theta \leftarrow \theta + \alpha \left(Q^{\star}(s_t, a_t) - Q_{\theta}(s_t, a_t) \right) \nabla_{\theta} Q_{\theta}(s_t, a_t)$$

→ bootstrapping : given a transition (s_t, a_t, r_t, s_{t+1}) ,

$$\theta \leftarrow \theta + \alpha \left(r_t + \gamma \max_{b} Q_{\theta}(s_{t+1}, b) - Q_{\theta}(s_t, a_t) \right) \nabla_{\theta} Q_{\theta}(s_t, a_t)$$

Emilie Kaufmann | CRIStAL

Let's try to find $\boldsymbol{\theta}$ minimizing

$$\begin{split} \mathtt{MSE}(\theta) &= \mathbb{E}_{\nu}\left[\left(Q^{\star}(s,a) - Q_{\theta}(s,a)\right)^{2}\right] \\ \nabla_{\theta}\mathtt{MSE}(\theta) &= -2\mathbb{E}_{\nu}\left[\left(Q^{\star}(s,a) - Q_{\theta}(s,a)\right)\nabla_{\theta}Q_{\theta}(s,a)\right] \end{split}$$

Q-Learning update with function approximation

Given a Q-value $Q_{\theta}(s, a)$, this **semi-gradient** update is

$$\begin{cases} \delta_t = r_t + \gamma \max_b Q_{\theta_{t-1}}(s_{t+1}, b) - Q_{\theta_{t-1}}(s_t, a_t) \\ \theta_t = \theta_{t-1} + \alpha_t \delta_t \nabla_\theta Q_{\theta_{t-1}}(s_t, a_t) \end{cases}$$

→ one recovers Q-Learning in the tabular case

Negative results

	TD(0)	LSPI	Fitted-Q	Q-Learning
Linear functions	×	×	×	×
Non-linear functions	×	×	(✓)	×

- ► TD(0) is known to diverge with non-linear function approximation
- ▶ Q-Learning can already diverge with linear function approximation...

(see examples in [Sutton and Barto, 1998])

Q-Learning update with function approximation

$$\begin{cases} \delta_t = r_t + \gamma \max_b Q_{\theta_{t-1}}(s_{t+1}, b) - Q_{\theta_{t-1}}(s_t, a_t) \\ \theta_t = \theta_{t-1} + \alpha_t \delta_t \nabla_\theta Q_{\theta_{t-1}}(s_t, a_t) \end{cases}$$

Alternative view : in each step t, perform one SGD step on

$$L(\theta) = \mathbb{E}_{\substack{(s,a) \sim \rho \\ (r,s') \sim \text{step}(s,a)}} \left[\left(r + \gamma \max_{b} Q_{\theta_{t-1}}(s',b) - Q_{\theta}(s,a) \right)^2 \right]$$

where ρ is the current behavior policy.

Q-Learning update with function approximation

$$\begin{cases} \delta_t = r_t + \gamma \max_b Q_{\theta_{t-1}}(s_{t+1}, b) - Q_{\theta_{t-1}}(s_t, a_t) \\ \theta_t = \theta_{t-1} + \alpha_t \delta_t \nabla_\theta Q_{\theta_{t-1}}(s_t, a_t) \end{cases}$$

Alternative view : in each step t, perform one SGD step on

$$L(\theta) = \mathbb{E}_{\substack{(s,a) \sim \rho \\ (r,s') \sim \mathtt{step}(s,a)}} \left[\left(r + \gamma \max_{b} Q_{\theta_{t-1}}(s',b) - Q_{\theta}(s,a) \right)^2 \right]$$

where ρ is the current behavior policy.

Three tricks : (e.g. [Mnih et al., 2015, Hessel et al., 2018])

- → mini-batches : rely on more than one transition
- ➔ two learning scales : do not update the target network in every round

Q-Learning update with function approximation

$$\begin{cases} \delta_t = r_t + \gamma \max_b Q_{\theta_{t-1}}(s_{t+1}, b) - Q_{\theta_{t-1}}(s_t, a_t) \\ \theta_t = \theta_{t-1} + \alpha_t \delta_t \nabla_\theta Q_{\theta_{t-1}}(s_t, a_t) \end{cases}$$

Alternative view : in each step t, perform one SGD step on

$$L(\theta) = \mathbb{E}_{\substack{(s,a) \sim \rho \\ (r,s') \sim \mathtt{step}(s,a)}} \left[\left(r + \gamma \max_{b} Q_{\theta_{t-1}}(s',b) - Q_{\theta}(s,a) \right)^2 \right]$$

where ρ is the current behavior policy.

Three tricks : (e.g. [Mnih et al., 2015, Hessel et al., 2018])

- → mini-batches : rely on more than one transition
- ➔ two learning scales : do not update the target network in every round

Q-Learning update with function approximation

$$\begin{cases} \delta_t = r_t + \gamma \max_b Q_{\theta_{t-1}}(s_{t+1}, b) - Q_{\theta_{t-1}}(s_t, a_t) \\ \theta_t = \theta_{t-1} + \alpha_t \delta_t \nabla_\theta Q_{\theta_{t-1}}(s_t, a_t) \end{cases}$$

Alternative view : in each step t, perform one SGD step on

$$L(\theta) = \mathbb{E}_{\substack{(s,a) \sim \rho \\ (r,s') \sim \mathtt{step}(s,a)}} \left[\left(r + \gamma \max_{b} Q_{\theta_{t-1}}(s',b) - Q_{\theta}(s,a) \right)^2 \right]$$

where ρ is the current behavior policy.

Three tricks : (e.g. [Mnih et al., 2015, Hessel et al., 2018])

- → mini-batches : rely on more than one transition
- ➔ two learning scales : do not update the target network in every round

Q-Learning update with function approximation

$$\begin{cases} \delta_t = r_t + \gamma \max_b Q_{\theta_{t-1}}(s_{t+1}, b) - Q_{\theta_{t-1}}(s_t, a_t) \\ \theta_t = \theta_{t-1} + \alpha_t \delta_t \nabla_\theta Q_{\theta_{t-1}}(s_t, a_t) \end{cases}$$

Alternative view : in each step t, perform one SGD step on

$$L(\theta) = \mathbb{E}_{\substack{(s,a) \sim \rho \\ (r,s') \sim \mathtt{step}(s,a)}} \left[\left(r + \gamma \max_{b} Q_{\theta_{t-1}}(s',b) - Q_{\theta}(s,a) \right)^2 \right]$$

where ρ is the current behavior policy.

Three tricks : (e.g. [Mnih et al., 2015, Hessel et al., 2018])

- → mini-batches : rely on more than one transition
- ➔ two learning scales : do not update the target network in every round

Deep Q Networks

Input : number of iterations T, minimatch size B, update frequency for the target network N, exploration sequence (ε_t) , stepsize (α_t) **Initialize** : replay buffer $\mathcal{D} \leftarrow \{\}$, first state s_1 , online network parameter θ , target network parameter $\theta_{-} \leftarrow \theta$ 1 for t = 1, ..., T do 2 $a_t = \operatorname{argmax}_{a} Q_{\theta}(s_t, a)$ w.p. $1 - \varepsilon_t$, random action w.p. ε_t 3 Perform transition $(r_t, s_{t+1}) = \text{step}(s_t, a_t)$ Add transition to the replay buffer $\mathcal{D} \leftarrow \mathcal{D} \cup \{(s_t, a_t, r_t, s_{t+1})\}$ 4 Draw a minibatch \mathcal{B} of size B uniformly from \mathcal{D} 5 6 Perform one step of online optimization on the loss function $L(\theta) = \sum \left(r + \gamma \max_{L} Q_{\theta^{-}}(s', b) - Q_{\theta}(s, a) \right)^{2}$ $(s.a,r,s') \in \mathcal{B}$ e.g. $\theta \leftarrow \theta - \alpha_t \nabla_{\theta} L(\theta)$ 8 every N time steps, $\theta^- \leftarrow \theta$ 9 10 end Return: Q_A

Emilie Kaufmann | CRIStAL

Results on Atari Games

DQN was proposed in combination with

- ▶ a well chosen pre-processing of the state
- an optimized architecture for the Deep Neural Network used for the approximator

that reaches super-human level performance on Atari games.

Summary

In this class, we mostly saw how to scale up reinforcement learning with $\ensuremath{\mathsf{Value-based}}$ methods :

- Fitted-Q Iteration
- Deep Q Networks

In the sequel, we will see :

- Policy-based methods (based on direct search over a policy space)
- Actor-critic methods (using both a policy and a value),

whose performance can also be "boosted" with Deep Learning.

We will also discuss the exploration issue : can we go beyond ε -greedy ? (starting with very simple MDPs : multi-armed bandits)

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M. G., and Silver, D. (2018).
Rainbow : Combining improvements in deep reinforcement learning.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence.

Lagoudakis, M. G. and Parr, R. (2003).

Least-squares policy iteration.

Journal of Machine Learning Research, 4 :1107-1149.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015).

Human-level control through deep reinforcement learning.

Nature, 518(7540) :529-533.

Munos, R. and Szepesvári, C. (2008). Finite-time bounds for fitted value iteration. Journal of Machine Learning Research, 9 :815–857.

Sutton, R. and Barto, A. (1998). Reinforcement Learning : an Introduction. MIT press.

Tsitsiklis, J. N. and Van Roy, B. (1996). Analysis of temporal-difference learning with function approximation. In Advances in Neural Information Processing Systems (NIPS).