Lecture 3 : Reinforcement Learning Algorithms

Emilie Kaufmann

i Hx
chnr: ‘ C
i I— .

Ecole Centrale de Lille, 2021/2022

Reminder : Dynamic Programming

If the parameters of a Markov Decision Process (MDP) are known
» mean reward (r(s, a))(s,a)esxA
» transition probabilities (p(s’[s, a))(s,a,s)esxAxS

one can compute the optimal value V* and optimal policy 7* using the
fact that they satisfy the Bellman equations.

=» Finite horizon H : V" and 7j; for h € {1,..., H} computed using
backwards induction from

Vi (s) = max r(s a) + E (s'ls, a) Viia(s)
a
s’esS J

=» Infinite horizon with discount factor ~ (our focus today):
m* is stationary and

V*(s):max r(s,a +’yz s'|s,a)V*(s')
? s'eS J

Emilie Kaufmann | CRIStAL

Reminder : Dynamic Programming

If the parameters of a Markov Decision Process (MDP) are known
» mean reward (r(s, a))(sa)esx.A
» transition probabilities (p(s’[s, a))(s,a,s)esxAxS

one can compute the optimal value V* and optimal policy 7* using the
fact that they satisfy the Bellman equations.

=» Finite horizon H : V" and 7} for h € {1,..., H} computed using
backwards induction from

Vi(s) = max |r(s,3) + 3 p(s']s. 2) Via(s)
s’eS
=» Infinite horizon with discount factor ~ (our focus today):

m* is stationary and

Vse S, V*(s)= T*(V*)(s)

One may use Value lteration or Policy Iteration

Emilie Kaufmann | CRIStAL

Reinforcement Learning

> r(s,a) and p(s’|s, a) are unknown, we can only interact with the
environment and observe transitions

The RL interaction protocol :
Ht =0 (517 317 r1,527 DR Stflu atfla rt7175t)

denotes the history of observations up to the beginning of round t.

At each time t, the agent
> selects an action a; ~ m¢(s;) according to some behavior policy

m: may depend on H,;

» observes the reward and next state

re ~ Vs,a) such that E[r|s;, a:] = r(s:, ar)
St+1 p('|5taat)

Emilie Kaufmann | CRIStAL

Reinforcement Learning

For example, starting from some state sy, one may observe several

trajectories under a given policy.
(1)
mﬂ}
M),

(i)

i,

St
(n)
Fhn
(n) (n) (n)
S1 S2 Stm

One may also :
> restart in different states
» observe a single, very long, trajectory
» adaptively change the behavior policy

Emilie Kaufmann | CRIStAL

From Monte Carlo to Stochastic Approximation

Emilie Kaufmann | CRIStAL

Monte Carlo estimation of a mean

A naive way to estimate a value is to use is definition as an expectation :

S1 = ;|
()

» Given n (long enough) trajectories under 7 starting from s;"” = s,

o0

Z’Yt_lrt

t=1

V7(s) =

(0 — (6,0, 0,49..o))

one can use the approximation

n 176
V7 (s) ~ %Z [Z q/tlrt(")].

i=1 Lt=1

i.i.d. with mean ~V7(s)

Emilie Kaufmann | CRIStAL

Properties

More generally, considering Z; that are i.i.d. with mean p, one can define
the Monte-Carlo estimator

1
ﬂn:;;Ziv

which has nice statistical properties, like fi, =3 .

Emilie Kaufmann | CRIStAL

Properties

More generally, considering Z; that are i.i.d. with mean p, one can define
the Monte-Carlo estimator

1 n
ﬂn = ; Z Zi7
i=1
which has nice statistical properties, like fi, =3 .

> lterative rewriting

n—1

fin—1 + Z

Emilie Kaufmann | CRIStAL

Properties

More generally, considering Z; that are i.i.d. with mean p, one can define
the Monte-Carlo estimator

1 n
ﬂn = ; Z Zi7
i=1
which has nice statistical properties, like fi, =3 .

> lterative rewriting

A 1 .
n = fip—1 + " (Zn - Mnfl)

Emilie Kaufmann | CRIStAL

Properties

More generally, considering Z; that are i.i.d. with mean g, one can define
the Monte-Carlo estimator

which has nice statistical properties, like fin =5 .

> lterative rewriting

/’ln = ﬁn—l + ap (Zn - ,an—l)

for the stepsize a, = L.

=» Can we choose other stepsizes and still have i, =3 1?

Emilie Kaufmann | CRIStAL

Stochastic Approximation : Robbins-Monro

Goal : Find the solution to ¢(x*) = 0 based on access to noisy function
evaluations, i.e. for every x, one can observe a random value

Y = ¢(x) +e,

where € has zero mean (conditionally to previous queries).

Robbins-Monro algorithm (1951)

Given an initial xg, forall n>1
> query a noisy evaluation Y, = ¢(x,-1) + €,
» update x, = x,_1 + a,Y,

Emilie Kaufmann | CRIStAL

Stochastic Approximation : Robbins-Monro

Goal : Find the solution to ¢(x*) = 0 based on access to noisy function
evaluations, i.e. for every x, one can observe a random value

Y = ¢(x) +e,

where € has zero mean (conditionally to previous queries).

Robbins-Monro algorithm (1951)

Given an initial xg, forall n>1
> query a noisy evaluation Y, = ¢(x,-1) + €,
» update x, = x,_1 + a,Y,

Particular case : estimate a mean p based on i.i.d. samples Z;

o(x)=p—x and Y,=2Z,— fin—1

Emilie Kaufmann | CRIStAL

Stochastic Approximation : Robbins-Monro

Goal : Find the solution to ¢(x*) = 0 based on access to noisy function
evaluations, i.e. for every x, one can observe a random value

Y = ¢(x) +e,

where € has zero mean (conditionally to previous queries).

Robbins-Monro algorithm (1951)

Given an initial xg, forall n>1
> query a noisy evaluation Y, = ¢(x,-1) + €,
» update x, = x,_1 + a,Y,

Particular case : estimate a mean p based on i.i.d. samples Z;

o(x)=p—x and Y,=2Z,— fin—1

Robbins-Monro update : i, = fip—1 + @n(Zy — fin-1).

Emilie Kaufmann | CRIStAL

Convergence of the Robbins-Monro algorithm

Let ¢ : Z C R — R. Under the following assumptions
> ¢ is continuous and Vx # x*, (x — x*)¢(x) < 0
» there exists C > 0 such that E[Y?|x,_1] < C(1 + x2_,).
> the stepsizes satisfy

ian:oo and ia%<oo (1)
n=1 n=1

under the Robbins-Monro algorithm, one has x, =5 x*.

Consequence : for the mean estimation problem, the sequence of iterates
l/ln = ,l/l,-,,l + an(Zn - ﬂnfl)

converges almost surely to p for any stepsize «, satisfying (1) if
E[Z2|X,_1] is finite.

Emilie Kaufmann | CRIStAL

Robbins-Monro for fixed points

Goal : Find the solution to x* = T(x*) based on access to noisy
evaluations of T(x).

Stochastic approximation for a fixed point

Given an initial xp, for all n > 1
> query a noisy evaluation Z, : E[Z,|x, 1] = T(x,_1).
> update x, = x,-1 + @y (Zy — Xp—1)

=¥ corresponds to the Robbins-Monro algorithm with

o(x)=T(x)—x and Y, =2Z,— x,_1.

Emilie Kaufmann | CRIStAL

-10

Temporal Difference Learning for Policy Evaluation

Emilie Kaufmann | CRIStAL

- 11

Temporal Differences
Given a policy m, we want to compute V™, which satisfies
VT =T7(V7)

where T™(V)(s) = r(s,7(s)) + 7> scsp(s']s,a)V(s').

» Given a current estimate V, if we generate a trajectory under m

S1,n,%,n,...,ST,IT,

one can produce noisy evaluations of T7™(V)(sy) for all
ke{l,..., T — 1} using

Zi = re + Yy \7(5;(I 1).

E[Z|V,s1,m, ... s = r(se, 7(sx)) + 7 Z p(s'| sk, T(sk))V(s')
s'eS

Emilie Kaufmann | CRIStAL -12

Temporal Differences

Given a policy 7, we want to compute V™, which satisfies
VT =T7(V™)

where T™(V)(s) = r(s,7(s)) + 7> gcsp(s']s,a)V(s').

» Given a current estimate V, if we generate a trajectory under 7

S1,Nn,%,n,...,ST,IT,

one can produce noisy evaluations of T7(V)(sy) for all
ke{l,...,T —1} using

Zi = 1 + YV (Sk41)-

Emilie Kaufmann | CRIStAL

Temporal Differences

Given a policy m, we want to compute V™, which satisfies
VT =T7(V7)

where T7(V)(s) = r(s,m(s)) +7 > gcsp(s']s,a)V(s').

» Given a current estimate V/, if we generate a trajectory under 7
S1,Mn,%,Mn,...,sT,IT,

one can produce noisy evaluations of T™(V)(sy) for all
ke{l,...,T —1} using

Zi = re + 0 V(SkAl).

» “Robbins-Monro” update : V(s;) < V(s,) + o (Zk — \7(sk)>

Emilie Kaufmann | CRIStAL -12

Temporal Differences
The Robbins-Monro update rewrites
V(Sk) — V(Sk) ar aék(V)
introducing the k-th temporal difference (or TD error) :

8k(V) = rc + YV (skq1) — V(s).

> Interpretation :

5k(\7) = rg —|—’}/\7(Sk+1)— \7(51()
new estimate previous estimate

The value of the estimate is moved toward the value of the new

timate, which is itself built V. .
estimate, which IS I1tse ul upon _) Bootstrapplng!

Sutton, Learning to Predict by the Method of Temporal Differences, 1988
Emilie Kaufmann | CRIStAL

-13

The TD(0) algorithm

Input : 7 : policy, T : number of iterations, (a;(s))ien : stepsizes,
Vo € R® : initial values, sp € S : initial state (arbitrary)
V<V, s+ s
N < Qg
fort=1....T do
N(S) — N(S) +1 \\ update the number of visits of state s
(I’, Sl) = Step(s, 71'(5)) \\ perform a transition under m
V(s) V(5) 1 ango(s) (r +7V(5)) - V(s))
s« s
end
Return: V

0 N o s W=

Emilie Kaufmann | CRIStAL

-14

The TD(0) algorithm

Input : 7 : policy, T : number of iterations, (a;(s))ien : stepsizes,
Vo € R® : initial values, sp € S : initial state (arbitrary)
V<V, s+ s
N < Qg
fort=1....T do
N(S) — N(S) +1 \\ update the number of visits of state s
(I’, Sl) = Sth(S, 71'(5)) \\ perform a transition under m
V(s) V(5) 1 ango(s) (r +7V(5)) - V(s))
s« s
end
Return: V

0 N o s W=

,s') = step(s, o r~ Usm(s))
(r,s") = step(s, m(s)) { s~ p(s,7(s))

Emilie Kaufmann | CRIStAL

-14

The TD(0) algorithm

Input : 7 : policy, T : number of iterations, («;(s));cn : stepsizes,
Vo € R® : initial values, sp € S : initial state (arbitrary)
V<V, s+ s
N + Os
fort=1...,T do
N(S) — N(S) +1 \\ update the number of visits of state s
(r, S/) = Step(s, 71'(5)) \\ perform a transition under 7
V(s) <= V(s) + an(s) (r+vV(s') = V(s))
s+« s
end
Return: V

0 N o s W=

=?» tuning the stepsizes?

Emilie Kaufmann | CRIStAL

-14

The TD(0) algorithm

It the step-size (also called learning rate) satisfy the Robbins-Monro
conditions in all state s :

Zoz,-(s) =+00 and) (ai(s))’ < +o0

i=1
and all states are visited infinitely often, then

lim V¢ = V=,

T—oo

where V7 denotes the output of TD(0) after T iterations.

» Typical choice : o(s) = for Be(1/2,1].
Vi(s) = Vi1(s) + ——— (E <r+7\A/t_1(s’) - Vt_l(s))

with N¢(s) the number of visits of s up to the t-th iteration.

Emilie Kaufmann | CRIStAL

Monte-Carlo with Temporal Differences

Incremental Monte-Carlo for the estimation of

o0

t—1
E VoS
t=1

based on n trajectories starting in s :

V™ (sy) = E”

Update after the i-th trajectory :

\7i(51) = \A/ifl(sl) + @; Z’yt_lr,_gi) — \7,-,1(51)
t=1

Emilie Kaufmann | CRIStAL

- 16

Monte-Carlo with Temporal Differences

Incremental Monte-Carlo for the estimation of

o0

t—1
E Yo s1
t=1

based on n trajectories starting in s :
m’n

V™ (sy) = E”

Update after the i-th trajectory : — rewrites with the temporal differences

T 1

A A 1 (i A (i) _ i A

Vils1) = Viea(so)+ai | D2 4700 (Via) 4477 (A2 = Via(s70))
t=1

Emilie Kaufmann | CRIStAL

Monte-Carlo with Temporal Differences

TO -

Vi(s1) ~ Vioa(s1) + o Z 7ol

Limitation of naive Monte-Carlo :
» performing a full trajectory is needed before the update

» we only update the value of the initial state s;
Extension :

=» update the values of multiple states after each trajectory
=?» online updates, after each transition

Emilie Kaufmann | CRIStAL

- 17

Why update multiple states ?

(1)
(1) St
@ e M,
r

trajectory starting from so=s,"

(i)
(i) o M)
i) (i) ‘/—\(.l)
So S2 S
trajectory starting from so=s," ")
T(n)_1
(n) (n) (n)
S1 S? Stm

Emilie Kaufmann | CRIStAL

- 18

Every visit Monte-Carlo

Every visits Monte-Carlo (a.k.a. TD(1)) : after the i-th trajectory,
instead of updating only V/(sy), for all k = T() — 1 down to 1,

v (s,((i)> «V (S,Ei)) + a; (S,Ei)) Z’yt*krt(i) -V (s,((i))

Remarks :
» multiple updates of states visited more than once in the trajectory

» first visit variant : update s,((i) only is s,((i) ¢ {s ... ,5,2'21

Emilie Kaufmann | CRIStAL

- 19

Every visit Monte-Carlo

Every visits Monte-Carlo (a.k.a. TD(1)) : after the i-th trajectory,
instead of updating only V/(sy), for all k = T() — 1 down to 1,

T

5 (<) 5 (<) (D —k (1) (Y7
V(sk > — V(sk)Jra, (sk) ;Wt 5 (V

Remarks :
» multiple updates of states visited more than once in the trajectory

» first visit variant : update s,E) only is s() ¢ {1 .. s£)1

Emilie Kaufmann | CRIStAL -19

TD methods for learning the optimal policy ?

TD methods permit to approximately compute V™ for a given policy 7

=?» can we use them to get to 7* 7

Hope : policy evaluation is a central ingredient in Policy Iteration

*

mo — V™ — m = greedy(V™) — V™ — 1 = greedy(V™) - V™2 — ... > 1

Emilie Kaufmann | CRIStAL - 20

TD methods for learning the optimal policy ?

TD methods permit to approximately compute V™ for a given policy 7

=?» can we use them to get to 7* 7

Hope : policy evaluation is a central ingredient in Policy Iteration

*

mo — V™ — = greedy(V™) = V™ — 7 = greedy(V™) - V™2 — ... > 1

Limitation : the policy improvement step cannot be performed without
the knowledge of the MDP parameters

ki1 = greedy (V™)
& mre(s) = argmax [r(s,a)+y Z p(s'|s,a) V™ (s")
acA

s’eS

Emilie Kaufmann | CRIStAL - 20

TD methods for learning the optimal policy ?

TD methods permit to approximately compute V™ for a given policy 7

=?» can we use them to get to 7* 7

Hope : policy evaluation is a central ingredient in Policy Iteration

*

mo — V™ — = greedy(V™) = V™ — 7 = greedy(V™) - V™2 — ... > 1

Limitation : the policy improvement step cannot be performed without
the knowledge of the MDP parameters

ki1 = greedy (V™)
& mre(s) = argmax [r(s,a)+y Z p(s'|s,a) V™ (s")
acA

s’eS

Other possibility : work directly with Q-values!

Emilie Kaufmann | CRIStAL - 20

Q-Learning for Finding the Optimal Policy

Emilie Kaufmann | CRIStAL

-21

Reminder : Q-values

Q" (s,a) = r(s,a)+~ Z s'|s,a)V™(s")

s’eS

Q'(5,3) = maxQ7(s,2)

© Q7 statisfies the Bellman equations

Q*(s,a) = r(s,a) +’yz s'|s, a) maxQ*(s a')

s’eS

Q@ V*(s) = Q*(s,7*(s))
© 7 = greedy(Q*), i.e. 7*(s) = argmax,. 4 Q*(s, a)

=» New goal : Learning Q*

Emilie Kaufmann | CRIStAL -22

A stochastic approximation scheme for Q*

> Q@ also satisfies a fixed point equation : @* = T*(Q*) where
T* — ! / / .
(Q)(s.2) = r(s.2) +7 3. pls'ls.2) max Q(s'.)

s’eS

> Noisy evaluations of T*(Q)(sk, ax) along a trajectory :
Zy = !
k= Mty max Q(sk+1,2")

satisfies E[Zk|Hk, ak] = T*(Q)(sk, ak).

(for any behavior policy)

Emilie Kaufmann | CRIStAL

-23

A stochastic approximation scheme for Q*

> Q@ also satisfies a fixed point equation : @* = T*(Q*) where
T* — ! / / .
(Q)(s.2) = r(s.2) +7 3. pls'ls.2) max Q(s'.)

s’eS
> Noisy evaluations of T*(Q)(sk, ax) along a trajectory :
Zy = !
k= rx+ ¥ max Q(Sk+1,2a")
satisfies E[Zk|Hk, ak] = T*(Q)(sk, ak).
(for any behavior policy)

=» Robbins-Monro update :

Q(sk, ak) < Q(sk, ak) + « <f/< + max Q(skr1,3) — Q(sk, 3k)>

Emilie Kaufmann | CRIStAL -23

Q-Learning

Input : T : number of iterations, (a;(s, a))ien : step-sizes,
Qo € R>*A - initial Q-values, sp € S : initial state (arbitrary)
7 : behavior policy

1 Q<+ Qo s+ 59

2 N+ Osxa

3fort=1,..., T do

4 an ﬂ't(S) \\ choose an action under the behavior policy

5 N(S, a) — N(S, a) +1 \\ update the number of visits of (s, a)

6 (r, S/) = step(s, a) \\ perform a transition

7 Q(s,a) < Q(s,a) + apn(s,a) (s, a) (r +ymax, Q(s', b) — Q(s, a))
8 | s« ¢

9 end

Return: Q, 7 = greedy(Q)

[Watkins, 1989]

Emilie Kaufmann | CRIStAL

-24

Q-Learning

Input : T : number of iterations, («;(s,a))jen : step-sizes,
Qo € R>*A - initial Q-values, sp € S : initial state (arbitrary)
m: : behavior policy

1 Q<+ Qo s+ 59

2 N+ Osxa

3fort=1,..., T do

4 an ﬂ't(S) \\ choose an action under the behavior policy

5 N(S, a) — N(S, a) +1 \\ update the number of visits of (s, a)

6 (r, S/) = Step(s, a) \\ perform a transition

7 Q(s,a) < Q(s,a) + apn(s,a) (s, a) (r +ymax, Q(s', b) — Q(s, a))
8 | s« ¢

9 end

Return: Q, 7 = greedy(Q)

[Watkins, 1989]

Emilie Kaufmann | CRIStAL

-24

Q-Learning

It the step-size (also called learning rate) satisfy the Robbins-Monro
conditions in all state action pair (s, a) :

Za;(aa) = 400 and Z (ai(s, a))? < +o0

i=1
and all states-action pairs are visited infinitely often , then

lim QT = Q*7

T—o0

where @T denotes the output of T iterations of Q-Learning.

Emilie Kaufmann | CRIStAL -25

Q-Learning

It the step-size (also called learning rate) satisfy the Robbins-Monro
conditions in all state action pair (s, a) :

Za;(sa) = 400 and Z (ai(s, a))? < +o0

i=1
and all states-action pairs are visited infinitely often , then

lim Qr = @,

T—o0

where @T denotes the output of T iterations of Q-Learning.

=» typical step-sizes choice : «;(s.a) = - with 8 € (1/2,1].

Emilie Kaufmann | CRIStAL -25

Behavior Policy

» Constraint : all state-action pairs need to be visited infinitely often

me(s) =U(A) — a; chosen uniformly at random?

» ldea : we care about 7*, we need to refine our estimate of Q* in the
pairs (s, 7*(s)) / we may want to maximize rewards while learning

T = greedy (@t,l)?

e-greedy exploration

The e-greedy policy performs the following :
=» with probability €, select a; ~ U(A)
=» with probability 1 — ¢, select a; = argmax Q(s;, a)
acA

=¥ tends to the greedy policy when ¢ — 0

Emilie Kaufmann | CRIStAL

Behavior Policy

» Constraint : all state-action pairs need to be visited infinitely often
me(s) =U(A) — a; chosen uniformly at random?

» ldea : we care about 7*, we need to refine our estimate of Q* in the
pairs (s,7*(s)) / we may want to maximize rewards while learning

T = greedy (@t_l)?

Boltzmann (or softmax) exploration

The softmax policy with temperature 7 is given by

L — eXp(ét(Saa)/T)
(me(s)), S eaexp(Qe(s,)/T)

and a; ~ m¢(st).

=¥ tends to the greedy policy when 7 — 0

Emilie Kaufmann | CRIStAL

In practice

> Q-Learning (and more generaly TD methods) can be very slow to
converge...

=» Let's try it on our Retail Store Management use case

Emilie Kaufmann | CRIStAL

-27

B An Actor/Critic Variant

Emilie Kaufmann | CRIStAL

-28

The Actor/Critic architecture

» the actor : update its policy to improve the value given by the critic
» the critic : evaluates the actor's policy

Reward
—— System
State

source : [Szepesvari, 2010]

Emilie Kaufmann | CRIStAL -29

Generalized Policy lteration

Policy Iteration is an extreme example of an Actor/Critic architecture :

> the actor : “acts” with 7 = greedy(V) where V is the value
provided by the critic

» the critic : computes V™ where 7 is the current actor’s policy

Emilie Kaufmann | CRIStAL -30

Generalized Policy lteration

Policy Iteration is an extreme example of an Actor/Critic architecture :

» the actor : performs policy improvement
» the critic : performs policy evaluation

=» Actor/Critic is also referred to as Generalized Policy lteration
[Sutton and Barto, 1998]

There are many algorithms of this type!

Emilie Kaufmann | CRIStAL

- 30

An example : the SARSA algorithm

» The critic
After observing the actor’s recent behavior (s;, at, rt, Se41, ar+1), update
@(Sty at) ©(5t7 ar) +a (rt + ’YQ(St—H, arr1) — @(St, at))

State Action Reward State Action (SARSA) update

=¥ if the actor is following a fixed policy 7 (a; = 7(s;:)), SARSA=TD(0)

Emilie Kaufmann | CRIStAL

-31

An example : the SARSA algorithm

» The critic
After observing the actor’s recent behavior (s;, at, rt, Se41, ar+1), update
@(Sn at) Q(Sn ar) +a (rt + ’YQ(St—H, arr1) — @(St, at))

State Action Reward State Action (SARSA) update

=¥ if the actor is following a fixed policy 7 (a; = 7(s;:)), SARSA=TD(0)

» The actor : moves its behavior policy towards being greedy with
respect to the Q-value provided by the critic, e.g.
=» c-greedy policy
=» softmax policy with temperature 7

Emilie Kaufmann | CRIStAL -31

Q-Learning versus SARSA

The update rules of the two algorithms are close but not identical :
» Q-Learning :
é(sh 3t) — @(Sh at) + « (ft + v mae/ax @(5t+1, 3/) - @(St, 3t))

» SARSA :
@(St’ 3t) — é(sn at) + « (rt + ’Yé(st+1, 3t+1) — Q(St’ at))

Both aim at learning the target policy 7*(s) = argmax, Q*(s, a).

> Q-Learning converges for any behavior policy (exploring enough)
off-policy learning

» for SARSA the bahavior policy is close to the estimated target policy
on-policy learning

Emilie Kaufmann | CRIStAL -32

Q-Learning versus SARSA

An example from [Sutton and Barto, 1998] : Q-Learning and SARSA
used with e-greedy exploration with ¢ = 0.1.

Sarsa

25 /W/\/\/\/\«W\/\Fﬁ

R=—1 Sumof 5,

Safer path rewards Q-learning
during
episode 75
Optimal path ! B
G
-100+ T T T T 1
- 0 100 200 300 400 500
-_ Episodes

Observation : SARSA converges to a sub-optimal safer policy that yield
more reward during learning, while Q-Learning converges to the optimal
policy, while falling often from the cliff during learning

(if e — 0, SARSA would also converge to the optimal policy)

Emilie Kaufmann | CRIStAL

-33

Sutton, R. and Barto, A. (1998).
Reinforcement Learning : an Introduction.
MIT press.

Sutton, R. S. (1988).
Learning to predict by the methods of temporal differences.
Machine Learning, 3 :9-44.

Szepesvari, C. (2010).
Algorithms for Reinforcement Learning.
Morgan & Claypool.

Watkins, C. (1989).
Learning from Delayed Rewards.
PhD thesis, University of Cambridge.

	From Monte Carlo to Stochastic Approximation
	Temporal Difference Learning for Policy Evaluation
	Q-Learning for Finding the Optimal Policy
	An Actor/Critic Variant

