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Practical information

I webpage of the class :
https://emiliekaufmann.github.io/teaching.html
(slides online before the class)

I 3 pratical sessions with Omar Darwiche Domingues :

Ü Python and jupyter notebook
Ü open AI gym (to create RL environements)
Ü RL berry (to try and evaluate RL algorithms)
Ü Pytorch (for Deep RL)

I Evaluation of the class :

Ü the last practical session will be graded
Ü project (paper reading) : report + (visio) presentation
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What is Reinforcement Learning ?

Ü learning by “trial and error”

Ü learning to behave in an unknown, shochastic environement by
maximizing some real-valued reward signal

Example : learning to bike without a perfect knowledge of physics
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Key RL concepts

A learning agent sequentially interacts with its environment by
performing actions. Each action

I provides an instantaneous reward

I leads to an evolution of the agent’s state

Agent’s goal : act so as to maximize its total reward

source : Wikipedia
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Key RL concepts

Keywords (high-level) :

I Reward : instantaneous feedback received after acting

I Policy : strategy to choose an action in a given state

I Value : total reward the agent can get in some state by following
some policy

Agent’s goal : find a policy that maximizes the value in each state

source : Wikipedia
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RL successes : Games (1/2)

From Backgammon...

1992, TD-gammon

... to Go

2015, AlphaGo
2017, AlphaGo Zero

Ü RL agents learn new types of strategies
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RL successes : Games (2/2)

I Learning to play from pixels (and rewards) : Atari Games
2010+ Deep Reinforcement Learning

I Recent challenges : multi-player / partial information games

OpenAI Five (2019) Pluribus (2019)
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RL sucessess : Content Optimization

I online advertisement

Ü action : display an add / reward : click

I (sequential) recommender systems

Ü action : recommend a movie / reward : rating
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RL : Many potential applications

I Smart grid / microgrid management

source : ScienceDirect.com
Actions :

I charge or discharge storage systems

I turn on or off renewable energy source

I buy energy from the market ...

Reward : - Cost
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RL : Many potential applications

I Autonomous robotics

I Self-driving cars ?
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History of RL

• Learning to behave from rewards : an old idea from psychology

I 1900s : observation of animal behavior
(e.g. Thorndike 1911 “Law of Effect”)

Of several responses made to the same situation, those which are accompanied

or closely followed by satisfaction to the animal will [...] be more likely to recur.

I 1920s : Pavlov work on conditionnal reflexes
first occurence of “reinforcement” in animal learning

source : Wikipedia
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History of RL

• Learning to behave from rewards : an inspiration from the brain ?

I 1950s : first experiments on electric brain stimuli for controlling mice
behavior (Oak and Miller 1954)

Ü hypothesis that dopamine broadcast rewards signal to the brain
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History of RL

• Some steps towards computational RL

I 1950s, Shannon’s machines : “Theseus”, a mice finding how to get
out of a maze, a chess player, a Rubik’s cube solver

I 1957, Bellmann : Dynamic Programming
(control of dynamical systems)

I 1961, Minsky “Towards artificial intelligence”

I 1978, Sutton : Temporal Difference Learning
(artificial intelligence)

I 1989, Watkins : Q-Learning algorithm

Nowadays, reinforcement learning is mostly formalized as learning an
optimal policy in an incompletely-known Markov Decision Process.
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Markov Decision Process

A Markov Decision Process (MDP) models a situation in which repeated
decisions (= choices of actions) are made. MDP provides models for the
consequence of each decisions :

I in terms of reward

I in terms of the evoluation of the system’s state

In each (discrete) decision time t = 1, 2, . . . , a learning agent

I selects an action at based on his current state st
(or possibly all the previous observations),

I gets a reward rt ∈ R depending on his choice,

I transits to a new state st+1 depending on his choice.
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Markov Decision Process

A MDP is parameterized by a tuple (S,A,R,P) where

I S is the state space

I A is the action space

I R = (ν(s,a))(s,a)∈S×A where ν(s,a) ∈ ∆(R) is the reward distribution
for the state-action pair (s, a)

I P = (p(·|s, a))(s,a)∈S×A where p(·|s, a) ∈ ∆(S) is the transition
kernel associated to the state-action pair (s, a)

In each (discrete) decision time t = 1, 2, . . . , a learning agent

I selects an action at based on his current state st
(or possibly all the previous observations),

I gets a reward rt ∼ ν(st ,at)

I makes a transition to a new state st+1 ∼ p(·|st , at)

[Bellman 1957, Howard 1960, Blackwell 70s...]
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Markov Decision Process

A MDP is parameterized by a tuple (S,A,R,P) where

I S is the state space

I A is the action space (sometimes As for each s ∈ S)

I R = (ν(s,a))(s,a)∈S×A where ν(s,a) ∈ ∆(R) is the reward distribution
for the state-action pair (s, a)

I P = (p(·|s, a))(s,a)∈S×A where p(·|s, a) ∈ ∆(S) is the transition
kernel associated to the state-action pair (s, a)
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Markov Decision Process

A MDP is parameterized by a tuple (S,A,R,P) where

I S is the state space

I A is the action space

I R = (ν(s,a))(s,a)∈S×A where ν(s,a) ∈ ∆(R) is the reward distribution
for the state-action pair (s, a)

I P = (p(·|s, a))(s,a)∈S×A where p(·|s, a) ∈ ∆(S) is the transition
kernel associated to the state-action pair (s, a)

Goal : (made more precise later) select actions so as to maximize some
notion of expected cumulated rewards

Mean reward of action a in state s

r(s, a) = ER∼ν(s,a)
[R]
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Markov Decision Process

A MDP is parameterized by a tuple (S,A,R,P) where

I S is the state space

I A is the action space

I R = (ν(s,a))(s,a)∈S×A where ν(s,a) ∈ ∆(R) is the reward distribution
for the state-action pair (s, a)

I P = (p(·|s, a))(s,a)∈S×A where p(·|s, a) ∈ ∆(S) is the transition
kernel associated to the state-action pair (s, a)

• The tabular case : finite state and action spaces

S = {1, . . . ,S}
A = {1, . . . ,A}

For every s, s ′ ∈ S, a ∈ A, p(s ′|s, a) = P (st+1 = s ′|st = s, at = a).
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Why Markov ?

In an MDP, the sequence of sucessive states / actions / rewards

s1, a1, r1, . . . , st−1, at−1, rt−1, st

satisfies some extension of the Markov property :

P (st = s, rt−1 = r |s1, a1, r1, . . . , st−1, at−1)

= P (st = s, rt−1 = r |st−1, at−1)

(discrete action and reward)

Definition

A Markov chain on a discrete space X is a stochastic process (Xt)t∈N
that satisfies the Markov property :

P(Xt = xt |Xt−1 = xt−1, . . . ,X0 = x0) = P(Xt = xt |Xt−1 = xt−1).
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Example : Tetris

• State : current board and next
blocks to add

• Action : orientation + position of
the dropped block

• Reward : increment in the score/
number of lines

• Transition : new board +
randomness in the new block

Ü difficulty : large state space !
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Example : Grid world

• State : position of the robot

• Actions : ←,↑,→,↓
• Transitions : (quasi)

deterministic

• Rewards : depends on the
behavior to incentivise
(positive or negative rewards
on some states / −1 for each
step before a goal...)

Ü possible difficulty : sparse rewards
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Example : The Student Dilemma

credit : Rémi Munos, Alessandro Lazaric
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(running) Example : Retail Store Management

You own a bike store. During week t, the (random) demand is Dt units.
On Monday morning you may choose to command at additional units :
they are delivered immediately before the shop opens.

For each week :

I Maintenance cost : h per unit left in your stock

I Ordering cost : c per unit ordered + fix cost c0 if an order is placed

I Sales profit : p per unit sold

Constraints :

I your warehouse has a maximal capacity of M bikes
(any additional bike gets stolen)

I you cannot sell bikes that you don’t have in stock

Exercise : Write down the underlying Markov Decision Process
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Policies

Definition

A (Markovian) policy is a sequence π = (πt)t∈N∗ of mappings

πt : S → ∆(A),

where ∆(A) is the set of probability distributions over the action space.

Ü An agent acting under policy π selects at round t the action

at ∼ πt(st)

I Remark : one could also consider history-dependent policies
πt : Ht → ∆(A), where the next action is chosen based on

ht = (s1, a1, r1, . . . , st−1, at−1, rt−1, st)
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Policies

Definition

A (Markovian) policy is a sequence π = (πt)t∈N∗ of mappings

πt : S → ∆(A),

where ∆(A) is the set of probability distributions over the action space.

A policy may be

Deterministic Stochastic
πt : S → A πt : S → ∆(A)

I Terminology : policy = strategy = decision rule = control
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Policies

Definition

A (Markovian) policy is a sequence π = (πt)t∈N∗ of mappings

πt : S → ∆(A),

where ∆(A) is the set of probability distributions over the action space.

A policy may be

Stationary Non-stationary
π = (π, π, π, . . . ) π = (π1, π2, . . . )

I Terminology : policy = strategy = decision rule = control
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Policies

Under a stationary (deterministic) policy π : S → A, the random process
(st)t∈N is a Markov chain, with transition probability

Pπ(st+1 = s ′|st = s) = P(st+1 = s ′|st = s, at = π(s)) = p(s ′|s, π(s))

(can be extended to stochastic policies and continuous spaces)

Ü A MDP is sometimes referred to as a controlled Markov chain
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Value function

Value of a policy π in a state s ∈ S
V π(s) measures the expected cumulative reward obtained by an agent
starting from state s and applying policy π.

Ü 6= notions of cumulative reward provide 6= definitions of the value

À Finite horizon

Given a known horizon H ∈ N∗,

V π(s) = Eπ
[

H∑
t=1

rt

∣∣∣∣∣ s1 = s

]

Ü When is it used ? In the presence of a natural notion of duration of
an episode (e.g. maximal number of steps in a game)
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Value function

Value of a policy π in a state s ∈ S
V π(s) measures the expected cumulative reward obtained by an agent
starting from state s and applying policy π.

Ü 6= notions of cumulative reward provide 6= definitions of the value

Á Infinite time horizon with a discount parameter

Given a known discount parameter γ ∈ (0, 1),

V π(s) = Eπ
[ ∞∑

t=1

γt−1rt

∣∣∣∣∣ s1 = s

]

at ∼ π(st), st+1 ∼ p(·|st , at), rt ∼ νst ,at starting from state s

Ü When is it used ? To put more weight on short-term reward / when
there is a natural notion of discount
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Other possible definitions
(not discussed much in this class)

Â Infinite time horizon with a terminal state

Given τ the random time at which we first reach a terminal state.

V π(s) = Eπ
[

τ∑
t=1

rt

∣∣∣∣∣ s1 = s

]

Ü When ? For tasks that have a natural notion of terminal state

Ã Infinite time horizon with average reward

V π(s) = lim
T→∞

Eπ
[

1

T

T∑
t=1

rt

∣∣∣∣∣ s1 = s

]

Ü When ? The system should be controlled for a very long time
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Optimal policy

Given a value function (À,Á,Â or Ã), one can define the following.

Definition
The optimal value in a state s is given by

V ?(s) = max
π

V π(s).

Theorem [Puterman, 1994]

There exists an optimal policy π? which satisfies

∀s ∈ S, π? ∈ argmax
π

V π(s)

Therefore, one can write V ? = V π?

.

Ü as we shall see, one of these optimal policies is deterministic .
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Let’s try a policy on Cart Pole

Task : maintain the pole as long as possible in a quasi-vertical position,
by applying some force on the cart towards the left or right

one of the classical environement in OpenAI Gym

see the introductory notebook
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Back to Retail Store Management

I State : number of bikes in stock on Sunday
State space : S = {0, . . . ,M}

I Action : number of bikes ordered at the beginning of the week
Action space : A = {0, . . . ,M}

I Reward = balance of the week : if your stock was st and you order
at bikes, in week t you earn

rt = −c01(at>0) − c × at − h × st + p ×min(Dt , st + at ,M)

I Transition : you end the week with

st+1 = max
(
0,min(M, st + at)− Dt

)
bikes

Goal : From an initial stock s, maximize the sum of discounted rewards

V π(s) = Eπ
[ ∞∑

t=1

γt−1rt

∣∣∣∣∣ s1 = s

]
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Possible policies

I Uniform policy :

π(s) ∼ U({0, . . . ,M − s})

I Constant policy : always buy m0 bikes

π(s) = max(M − s,m0)

I Threshold policy : whenever there are less than m1 bikes in stock,
refill it up to m2 bikes. Otherwise, do not order.

π(s) = 1(s≤m1)(m2 − s)
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Simulations

Let’s try out some policies !
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Evolution of the stock under a threshold policy

Figure – Evolution of the stock st under a threshold policy (m1 = 4,m2 = 10)
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Questions

In an known Markov Decision Process

I can we compute an optimal policy ?
(based on the explicit knowledge of r(s, a) and p(·|s, a))

I ... even with very large (or infinite) state and/or action spaces ?
(e.g. based on a simulator for transitions)

Beyond :

I Can we learn a good policy in an unknown MDP, only by selecting
actions and performing transitions ?

I ... and can we do it while maximizing reward ?

Broad goal of Reinforcement Learning

Learning an optimal policy in an unknown (or very large) MDP, by
acting (=choosing action) and observing transitions.
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Policy evaluation

Given a policy π = (πt)t∈N, how can we compute

I Finite horizon MDP :

V π
h (s) = Eπ

[
H∑

t=h

rt

∣∣∣∣∣ sh = s

]

and in particular V π(s) = V π
1 (s)

I Discounted MDP :

V π(s) = Eπ
[ ∞∑

t=1

γt−1rt

∣∣∣∣∣ s1 = s

]
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Intermezzo : Probability theory

We will need to compute several conditional expectations.

Recall that :

I E[X |Y = y ] is a number :

E[X |Y = y ] =
∑
x∈X

xP(X = x |Y = y) in the discrete case

I E[X |Y ] is a random variable that is σ(Y )-measurable

E[X |Y ] =
∑
y∈Y

1(Y=yi )E[X |Y = yi ] in the discrete case

I more generally E[X |F ] is random variable that is F-measurable

Useful properties

I Law of total expectation : E[E[X |Y ]] = E[X ].

I E[X ] =
∑

y∈Y P(Y = y)E[X |Y = y ].
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Bellman equations (finite horizon)

V π
h (s) = Eπ

[
H∑

t=h

rt

∣∣∣∣∣ sh = s

]

Proposition

The value functions of a deterministic policy π satisfies the following
equations : for all h ∈ {1, . . . ,H},

V π
h (s) = r(s, πh(s)) +

∑
s′∈S

p(s ′|s, πh(s))V π
h+1(s ′),

with the convention that V π
H+1(s) = 0 for all s ∈ S.

Exercise : Prove it !
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