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The Multi Armed Bandit (MAB) model

K unknown distributions ν1, . . . , νK called arms

a time t, select an arm At and collect an observation Xt ∼ νAt

Sequential strategy / algorithm : At+1 can depend on :

previous observation A1,X1, . . . ,At ,Xt

some external randomization Ut ∼ U([0, 1])

some knowledge about the possible distributions : νa ∈ D
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Two classical bandit problems

. . .

p1 p2 pK

pa : probability that a visitor seeing version a buys a product

For the t-th visitor :

choose a version At to display

observe Xt = 1 if a product is bought, 0 otherwise

Objective 1 : observation = reward→ maximize rewards

maximize E[
∑T

t=1 Xt ] for some (possibly unknown) T

maximize profit

a reinforcement learning problem
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Two classical bandit problems

. . .

p1 p2 pK

pa : probability that a visitor seeing version a buys a product

For the t-th visitor :

choose a version At to display

observe Xt = 1 if a product is bought, 0 otherwise

Objective 2 : best arm identification

identify quickly a? = arg maxa pa

find the best version (in order to keep displaying it)

a pure exploration problem
4



Other applications

clinical trials

→ observation : success/failure (Bernoulli distribution)

movie recommendation

→ observation : rating (multinomial)

recommendation in agriculture

→ observation : yield (complex, non-parametric distribution)
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A Detour : Maximizing Rewards

Bandit instance : ν = (ν1, ν2, . . . , νK ), mean µa = EX∼νa [X ].

µ? = max
a∈{1,...,K}

µa a? = arg max
a∈{1,...,K}

µa.

Maximizing rewards ↔ selecting a? as much as possible

↔ minimizing the regret [Robbins, 1952]

Rν(A,T ) := Tµ?︸︷︷︸
sum of rewards of
an oracle strategy

always selecting a?

− Eν

[
T∑
t=1

Xt

]
︸ ︷︷ ︸

sum of rewards of
the strategyA
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A Detour : Maximizing Rewards

Na(t) : number of selections of arm a in the first t rounds

∆a := µ? − µa : sub-optimality gap of arm a

Regret decomposition

Rν(A,T ) =
K∑

a=1

∆aE [Na(T )] .

A strategy with small regret should :

select not too often arms for which ∆a > 0

... which requires to try all arms to estimate their ∆a’s

⇒ Exploration / Exploitation trade-off
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The need for Exploration

Follow the Leader (or Greedy strategy)

Select each arm once, then exploit the current knowledge :

At+1 = arg max
a∈[K ]

µ̂a(t)

where

Na(t) =
∑t

s=1 1(As = a) is the number of selections of arm a

µ̂a(t) = 1
Na(t)

∑t
s=1 Xs1(As = a) is the empirical mean of the

rewards collected from arm a

Beeing greedy can fail ! ν1 = B(µ1), ν2 = B(µ2), µ1 > µ2

E[N2(T )] ≥ (1− µ1)µ2 × (T − 1)
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Thompson Sampling
A Bayesian strategy : encodes uncertainty with posterior distributions

0

1

6 19 443 4 27

In each round, TS samples a possible bandit model from the

posterior and selects the best arm in the sampled model

[Thompson, 1933, Russo et al., 2018]
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Thompson Sampling

Example : Bernoulli bandit with means µ = (µ1, . . . , µK )

prior distribution : µa
i.i.d.∼ U([0, 1]

Ü posterior distribution :

πa(t) = L (µa|X1, . . . ,Xt)

= Beta
(
Sa(t)︸ ︷︷ ︸
#ones

+1,Na(t)− Sa(t)︸ ︷︷ ︸
#zeros

+1
)

Na(t) =
∑t

s=1 1(As=a) number of observations from arm a

Sa(t) =
∑t

s=1 Xs1(As=a) sum of the rewards from arm a
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Thompson Sampling

Example : Bernoulli bandit with means µ = (µ1, . . . , µK )

prior distribution : µa
i.i.d.∼ U([0, 1]

Ü posterior distribution :

πa(t) = L (µa|X1, . . . ,Xt)

= Beta
(
Sa(t)︸ ︷︷ ︸
#ones

+1,Na(t)− Sa(t)︸ ︷︷ ︸
#zeros

+1
)

Thompson Sampling

In round t + 1 :

∀a ∈ [K ], θ̃a(t) ∼ πa(t)

At+1 = arg max
a∈[K ]

θ̃a(t)
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Thompson Sampling

Example : Gaussian bandit with means µ = (µ1, . . . , µK ), var σ2

prior distribution : µa
i.i.d.∼ N (0, κ2)

Ü posterior distribution :

πa(t) = L (µa|X1, . . . ,Xt)

= N

(
Sa(t)

Na(t) + σ2

κ2

,
σ2

Na(t) + σ2

κ2

)

Thompson Sampling

In round t + 1 :

∀a ∈ [K ], θ̃a(t) ∼ πa(t)

At+1 = arg max
a∈[K ]

θ̃a(t)
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Thompson Sampling in action

source : Wikipedia
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Thompson Sampling : Theory

Upper bound on sub-optimal selections

∀a 6= a?, Eµ[Na(T )] ≤ log(T )

KL(νa, νa?)
+ oµ(log(T )).

where KL(νa, νa?) is the KL divergence between νa and νa?

proved for Bernoulli bandits, with a uniform prior

[Kaufmann et al., 2012, Agrawal and Goyal, 2013]

for 1-dimensional exponential families, with a conjuguate prior

[Agrawal and Goyal, 2017, Korda et al., 2013]

a nice non-parametric extension for bounded rewards
[Riou and Honda, 2020]

Ü Thompson Sampling is asymptotically optimal in these cases
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Is Thompson Sampling finding the Best Arm ?

At time t, TS is selecting

At = arg max
a∈[K ]

θ̃a(t − 1)

Is it a reasonnable guess for the best arm ?

Less explorative recommendation rules :

empirical best arm : Bt = arg maxa∈[K ] µ̂a(t)

most played arm : Bt = arg maxa∈[K ] Na(t)

a smoother (randomized) version

P(Bt = b|Ht) =
Nb(t)

t
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Is Thompson Sampling finding the Best Arm ?

For Thompson Sampling + Bt ∼
(
N1(t)

t , . . . , NK (t)
t

)
Pν(Bt 6= a?) =

∑
b 6=a?

Pν(Bt = b) =
∑
b 6=a?

Eν [Pν(Bt = b|Ht)]

=
∑
b 6=a?

Eν [Nb(t)]

t
≤ Cν

log(t)

t

How good is this decay rate ?

worse than uniform sampling + empirical best arm

(exponential decay)

in order to guarantee Pν(Bt 6= a?) ≤ δ, t has to be chosen as a

function of the unknown instance ν
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Pure Exploration

Arms : simple distributions parameterized by their means

(Bernoulli, Gaussian with known variance)

Possible vectors of arms means µ = (µ1, . . . , µK ) ∈M

Identification task

Given a correct answer function

i? :M−→ I
µ 7→ i?(µ)

find a correct answer with high probability.
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Pure Exploration with Fixed Confidence

An algorithm is made of :

a sampling rule At ∈ [K ] : what is the next arm to explore ?

Ü get a new observation Xt ∼ νAt

a recommendation rule ı̂t : a guess for the correct answer

a stopping rule τ : when to stop the data collection ?

Definition

An algorithm is δ-correct if, for all µ ∈M, Pµ(̂ıτ 6= i?(µ)) ≤ δ.

Goal : a δ-correct algorithm with small sample complexity Eµ[τ ]

18



Examples of identification tasks
Best Arm Identification [Even-Dar et al., 2006]

. . .

i?(µ) = arg max
a∈[K ]

µa

Thresholding bandit : classify the arms above/ below a threshold

[Locatelli et al., 2016]

i?(µ) = (1(µ1 > γ), . . . ,1(µK > γ)) ∈ {0, 1}K
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Examples of identification tasks

Other threshold-based questions

Which arm is the closest to γ ?

i?(µ) = arg max
a∈[K ]

|γ − µa|

[Garivier et al., 2019a]

Is there an arm below γ ?

i?(µ) = 1(min
a
µa < γ) ∈ {0, 1}

[Kaufmann et al., 2018]
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Examples of identification tasks

Finding the best move in a maxmin game tree

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

Vs(µ) =


µs if s ∈ L,

maxc∈C(s) Vc for s MAX,

minc∈C(s) Vc for s MIN.

i?(µ) = argmax
s∈C(s0)

Vs(µ)

[Teraoka et al., 2014, Kaufmann and Koolen, 2017]
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Pure Exploration with Fixed Confidence

An algorithm is made of :

a sampling rule At ∈ [K ] : what is the next arm to explore ?

Ü get a new observation Xt ∼ νAt

a recommendation rule ı̂t : a guess for the correct answer

a stopping rule τ : when to stop the data collection ?

Definition

An algorithm is δ-correct if, for all µ ∈M, Pµ(̂ıτ 6= i?(µ)) ≤ δ.

Goal : a δ-correct algorithm with small sample complexity Eµ[τ ]
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A lower bound on the sample complexity

Lemma ([Garivier and Kaufmann, 2016, Garivier et al., 2019b])

µ ∈M and λ ∈M two different bandit instances.

τ a stopping time and E an event depending on X1, . . . ,Xτ .

KL
(
P(X1,...,Xτ )
µ ;P(X1,...,Xτ )

λ

)
≥ kl(Pµ(E),Pλ(E)),

where KL is the Kullback-Leibler divergence and

kl(x , y) = KL (B(x),B(y)) = x ln

(
x

y

)
+ (1− x) ln

(
1− x

1− y

)
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Lemma ([Garivier and Kaufmann, 2016, Garivier et al., 2019b])
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kl(x , y) = KL (B(x),B(y)) = x ln

(
x

y

)
+ (1− x) ln

(
1− x

1− y

)

Assumption : Arm distributions parameterized by their means

d(µ, µ′) =
(µ− µ′)2

2σ2
(Gaussian with variance σ2)
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A lower bound on the sample complexity

Lemma ([Garivier and Kaufmann, 2016, Garivier et al., 2019b])

µ ∈M and λ ∈M two different bandit instances.

τ a stopping time and E an event depending on X1, . . . ,Xτ .
K∑

a=1

Eµ[Na(τ)]d(µa, λa) ≥ kl(Pµ(E),Pλ(E)),

where KL is the Kullback-Leibler divergence and

kl(x , y) = KL (B(x),B(y)) = x ln

(
x

y

)
+ (1− x) ln

(
1− x

1− y

)

Assumption : Arm distributions parameterized by their means

d(µ, µ′) = kl(µ, µ′) (Bernoulli distributions)
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A lower bound on the sample complexity

Lemma ([Garivier and Kaufmann, 2016, Garivier et al., 2019b])

µ ∈M and λ ∈M two different bandit instances.

τ a stopping time and E an event depending on X1, . . . ,Xτ .
K∑

a=1

Eµ[Na(τ)]d(µa, λa) ≥ kl(Pµ(E),Pλ(E)),

where KL is the Kullback-Leibler divergence and

kl(x , y) = KL (B(x),B(y)) = x ln

(
x

y

)
+ (1− x) ln

(
1− x

1− y

)

Under a δ-correct algorithm,

λ such that i?(λ) 6= i?(µ)

E = (̂ıτ = i?(λ))

}
⇒
{
Pµ(E) ≤ δ
Pλ(E) ≥ 1− δ
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A lower bound on the sample complexity

Lemma

µ and λ be such that i?(µ) 6= i?(λ). For any δ-correct algorithm,
K∑

a=1

Eµ[Na(τ)]d(µa, λa) ≥ kl(δ, 1− δ).

Let Alt(µ) = {λ ∈M : i?(λ) 6= i?(µ)}.

inf
λ∈Alt(µ)

K∑
a=1

Eµ[Na(τ)]d(µa, λa) ≥ kl(δ, 1− δ)

Eµ[τ ]× inf
λ∈Alt(µ)

K∑
a=1

Eµ[Na(τ)]

Eµ[τ ]
d(µa, λa) ≥ ln

(
1

3δ

)

Eµ[τ ]×

(
sup

w∈∆K

inf
λ∈Alt(µ)

K∑
a=1

wad(µa, λa)

)
≥ ln

(
1

3δ

)
24



A lower bound on the sample complexity

Theorem [Garivier and Kaufmann, 2016]

For any δ-correct algorithm,

Eµ[τ ] ≥ T ?(µ) ln

(
1

3δ

)
,

where

T ?(µ)−1 = sup
w∈∆K

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)
.

where

∆K =

{
w ∈ [0, 1]K :

K∑
i=1

wi = 1

}
Alt(µ) = {λ ∈M : i?(λ) 6= i?(µ)}
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Optimal proportions

T ?(µ)−1 = sup
w∈∆K

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)
.

The proof of the lower bound further suggests that the vector(
Eµ[N1(τ)]

Eµ[τ ]
, . . . ,

Eµ[NK (τ)]

Eµ[τ ]

)
should belong to

w?(µ) = argmax
w∈∆K

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)

Ü algorithmic strategy : let’s make this happen !
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The Track-and-Stop principle

First ingredient : A stopping rule aligned with the lower bound

Are we confident enough in the empirical best answer ı̂t = i?(µ̂(t)) ?

µ̂(t) = (µ1(t), . . . , µK (t))

Ü yes, for high values of the Generalized (log) Likelihood Ratio

ln
supλ∈M ` (X1, . . . ,Xt ;λ)

supλ∈Alt(µ̂(t)) `(X1, . . . ,Xt ;λ)
= inf

λ∈Alt(µ̂(t))
ln
` (X1, . . . ,Xt ; µ̂(t))

` (X1, . . . ,Xt ;λ)

= inf
λ∈Alt(µ̂(t))

K∑
a=1

Na(t)d(µ̂a(t), λa)

for exponential families (Bernoulli, Gaussian with known variance, etc.)
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The Track-and-Stop principle
GLR stopping rule with threshold function β(t, δ) :

τδ = inf

{
t ∈ N : inf

λ∈Alt(µ̂(t))

K∑
a=1

Na(t)d(µ̂a(t), λa) ≥ β(t, δ)

}

associated to the recommendation rule ı̂t = i?(µ̂(t))

Correctness [Kaufmann and Koolen, 2021]

When the arm distributions belong to a one-dimensional exponential

family, there exists a threshold such that

β(t, δ) ' log(1/δ) + log log(1/δ) + K log log(t)

for which, Pµ(τ <∞, ı̂τ 6= i?(µ)) ≤ δ.

(the factor K may be reduced for some particular identification tasks)
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The Track-and-Stop principle

Second ingredient : A mechanism to make the empirical allocation

converge to w?(µ)

w?(µ) = argmax
w∈∆K

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)

Requirements :

For all µ ∈M, |w?(µ)| = 1 (unique optimal allocation)

µ 7→ w?(µ) is continuous in all µ ∈M
µ 7→ w?(µ) can be computed efficiently, for all µ ∈M
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The Track-and-Stop principle

Introducing Ut =
{
a : Na(t) <

√
t
}
,

At+1 ∈


argmin
a∈Ut

Na(t) if Ut 6= ∅ (forced exploration)

argmax
1≤a≤K

[
w?
a (µ̂(t))− Na(t)

t

]
(tracking)

Lemma

Under the Tracking sampling rule,

Pµ
(

lim
t→∞

Na(t)

t
= w?

a (µ)

)
= 1.
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An asymptotically optimal algorithm
Theorem [Garivier and Kaufmann, 2016, Kaufmann and Koolen, 2021]

The Track-and-Stop strategy, that uses

the Tracking sampling rule

the GLRT stopping rule with

β(t, δ) ' ln (1/δ) + ln ln (1/δ) + K ln(ln(t))

and recommandation rule ı̂t = i?(µ̂(t))

is δ-correct for every δ ∈]0, 1[ and satisfies

lim sup
δ→0

Eµ[τδ]

ln(1/δ)
= T ?(µ).

Why ?

τδ = inf

{
t ∈ N? : inf

λ∈Alt(µ̂(t))

K∑
a=1

Na(t)d (µ̂a(t), λa) > β(t, δ)

}
31
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An asymptotically optimal algorithm

Theorem [Garivier and Kaufmann, 2016, Kaufmann and Koolen, 2021]
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Computational aspects

Track-and-Stop requires the computation in every round t of the

“minimal distance”

inf
λ∈Alt(µ̂(t))

K∑
a=1

Na(t)d(µ̂a(t), λa)

for checking the stopping rule, and

arg max
w∈ΣK

inf
λ∈Alt(µ̂(t))

K∑
a=1

Na(t)d(µ̂a(t), λa)

for the sampling rule.

Ü Both can be challenging to compute for arbitrary identification

tasks, especially the second one .
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Track-and-Stop for Best Arm Identification

i?(µ) = a?(µ) = arg max
a∈[K ]

µa

Using that Alt(µ) =
⋃

a 6=a?(µ) {λ : λa > λa?} yields

inf
λ∈Alt(µ)

K∑
i=1

wid(µi , λi )

= min
a 6=a?

inf
λ:λa>λa?

K∑
i=1

wid(µi , λi )

= min
a 6=a?

inf
λ:λa>λa?

∑
i∈{a,a?}

wid(µi , λi )

= min
a 6=a?

min
λ∈(µa,µa? )

[wa?d(µa? , λ) + wad(µa, λ)]︸ ︷︷ ︸
“transportation cost” associated to arm a

The min in λ is further attained in λ = wa?µa?+waµa
wa?+wa

.
33



Track-and-Stop for Best Arm Identification

In order to compute w?(µ), we further need to compute

arg max
w∈∆K

min
a 6=a?

[
wa?d

(
µa? ,

wa?µa? + waµa

wa? + wa

)
+ wad

(
µa,

wa?µa? + waµa

wa? + wa

)]
︸ ︷︷ ︸

:=Ta(w)

which can be done efficiently1 by noting that at the optimum in w
all the Ta(w) are equal, and optimizing for their common value.

Ü efficient evaluation of w?(µ)

1 By computing the root of a real-valued function whose evaluation is linear in K
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Track-and-Stop for Best Arm Identification

Example : BAI in Gaussian bandits with variance 1, for which

d(x , y) =
(x − y)2

2

we get

T ?(µ)−1 = sup
w∈∆K

min
a 6=a?

(µa? − µa)2

2
(

1
wa?

+ 1
wa

)
GLR stopping rule :

τδ = inf

t ∈ N : min
a 6=ât

(µ̂ât (t)− µ̂a(t))2

2
(

1
Nât (t) + 1

Na(t)

) > β(t, δ)


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Track-and-Stop for Best Arm Identification

Example : BAI in Gaussian bandits with variance 1, for which

d(x , y) =
(x − y)2

2

we get

T ?(µ)−1 = sup
w∈∆K

min
a 6=a?

(µa? − µa)2

2
(

1
wa?

+ 1
wa

)
Lemma [Garivier and Kaufmann, 2016]

Recalling the gap ∆a = µ? − µa for a 6= a? and ∆a? = mina 6=a? ∆a,
K∑

a=1

1

∆2
a

≤ T ?(µ) ≤ 2
K∑

a=1

1

∆2
a
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Baseline : LUCB

Ia(t) = [LCBa(t),UCBa(t)].

0

1

771 459 200 45 48 23

In round t, draw

Bt = arg max
b

µ̂b(t)

Ct = arg max
c 6=Bt

UCBc(t)

Stop at round t if

LCBBt (t) > UCBCt (t)

Theorem [Kalyanakrishnan et al., 2012]

For (sub)-Gaussian arms and well-chosen confidence intervals,

Pµ(Bτ 6= a?(µ)) ≤ δ and

Eµ [τδ] = O

([
K∑

a=1

1

∆2
a

]
ln

(
1

δ

))
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Numerical experiments
Experiments on two Bernoulli bandit models :

µ1 = [0.5 0.45 0.43 0.4], such that

w?(µ1) = [0.417 0.390 0.136 0.057]

µ2 = [0.3 0.21 0.2 0.19 0.18], such that

w?(µ2) = [0.336 0.251 0.177 0.132 0.104]

In practice, set the threshold to β(t, δ) = ln
(

ln(t)+1
δ

)
.

Track-and-Stop kl-LUCB kl-Racing

µ1 4052 8437 9590

µ2 1406 2716 3334

Table – Expected number of draws Eµ[τδ] for δ = 0.1,
averaged over N = 3000 experiments.
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Limitations

Track-and-Stop works really well for best arm identification but

its computational cost is still an order of magnitude larger than

existing baselines

its performance guarantees are only asymptotic

(even if it works well for moderate values of δ)

computing w?(µ) is not always doable for arbitrary

identification tasks
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Alternative to Track-and-Stop
[Degenne et al., 2019] leverage the interpretation of the lower bound

as the value of a two-player zero-sum game

sup
w∈∆K

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)
.

and propose to use two online learning algorithms to converge to it :

The w -player gets w t ∈ ∆K from an online learning algorithm

The λ-player best responds to it :

λt = arg min
λ∈Alt(µ̂(t))

t∑
a=1

w t
ad(µ̂a(t), λa)

The online learner is fed with (an upper bound on)
gt(w) =

∑K
a=1 wad(µ̂a(t), λta)

Other idea : Thompson Sampling ?
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Top Two Thompson Sampling

Πt = (π1(t), . . . , πK (t)) posterior distribution on (µ1, . . . , µK )

Top-Two Thompson Sampling (TTTS) [Russo, 2016]

Input : parameter β ∈ (0, 1).

In round t + 1 :

draw a posterior sample θ ∼ Πt , a?(θ) = arg maxa θa

with probability β, select At+1 = a?(θ)

with probability 1− β, re-sample the posterior θ′ ∼ Πt until

a?(θ′) 6= a?(θ), select At+1 = a?(θ′)
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Top Two Thompson Sampling

Bayesian analysis of TTTS

[Russo, 2016] proves that, for exponential families,

Πt ({θ : a?(θ) 6= a?}) . C exp
(
−t/T ?

β (µ)
)

a.s.

where

T ?
β (ν)−1 = sup

w∈4K
wa?=β

min
a 6=a?

inf
λ∈(µa,µa? )

[wa?d(µa? , λ) + wad(µa, λ)] .

Links with our (frequentist) characteristic time T ?(µ) :

T ?(µ) = minβ T
?
β (µ)

T ?(µ) ≤ T ?
1/2(µ) ≤ 2T ?(µ) (hence β = 1/2 is never too bad)
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Sample complexity of TTTS
For Gaussian bandits, we first analyzed TTTS with the posterior

πa(t) = N
(
µ̂a(t),

σ2

Na(t)

)
coupled with the GLR stopping rule

τδ = inf
{
t ∈ N : min

a 6=â?t

(µ̂â?t − µ̂a(t))2

2σ2

(
1

Nâ?t
(t) + 1

Na(t)

) > β(t, δ)
}

Theorem [Shang et al., 2020]

TTTS(β) is δ-correct and

∀µ, lim
δ→0

Eµ[τδ]

log(1/δ)
≤ T ?

β (µ)

44



The Top Two structure

Top Two algorithm

Given a parameter β ∈ (0, 1), in round t :

define a leader Bt ∈ [K ]

define a challenger Ct 6= Bt

select arm At ∈ {Bt ,Ct} at random :

P (At = Bt) = β P (At = Ct) = 1− β

In Top Two Thompson Sampling,

TS leader : BTS
t = a?(θ) with θ ∼ Πt−1

Re-Sampling (RS) challenger : CRS
t = a?(θ′) where

θ′ ∼ Πt−1|
(
a?(θ′) 6= Bt

)

Ü re-sampling can be costly. Do we even need a posterior ?
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Approximating Re-Sampling

P
(
CRS
t = a|Bt = b

)
=

pt,a∑
i 6=b pt,i

where pt,a = Πt (θa = maxj θj). For Gaussian bandits

pt,a ' Πt (θa > θb) ' exp

−t (µ̂b(t)− µ̂a(t))2

2σ2
(

1
Nb(t) + 1

Na(t)

)


when µ̂b(t) ≥ µ̂a(t).

The Transportation Cost Challenger [Shang et al., 2020]

Idea : select the mode from this distribution instead of sampling !

CTC
t = arg min

a 6=Bt

(µ̂Bt (t)− µ̂a(t))2

2σ2
(

1
NBt (t) + 1

Na(t)

)1(µ̂Bt (t) ≥ µ̂a(t))
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Another (non Bayesian) interpretation

Recall that TTTS was analyzed with

τδ = inf

t ∈ N : min
a 6=â?t

(µ̂â?t − µ̂a(t))2

2σ2

(
1

Nâ?t
(t) + 1

Na(t)

) > c(t, δ)


Ü another interpretation : CTC

t minimizes the Empirical

Transportation Cost (TC) featured in the stopping rule

Ü could we use BEB
T = â?t , i.e. Empirical Best leader ?
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Asymptotically... yes!

Theorem

Combining the GLR stopping rule with a Top Two sampling rule with any
pair of leader/challenger satisfying some properties yields a δ-correct
algorithm satisfying for all ν ∈ DK with distincts means

lim sup
δ→0

Eν [τδ]

log(1/δ)
≤ T ?

β (ν) .

Distributions TS EB RS TC TCI

Gaussian KV 3 3 3 3 3

Bernoulli 3 3 3 3 3

Exponential families ? 3 ? 3 3

Gaussian UV ? 3 ? 3 3

Bounded 3 3 3 3 3

[Jourdan et al., 2022, Jourdan et al., 2023a]
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But exploration is nice in practice

TS-TC

Bt ∼ arg max
a∈[K ]

θ̃a(t) θ̃(t) ∼ Πt

Ct = arg min
a 6=Bt

(µ̂Bt (t)− µ̂a(t))2
+

2σ2
(

1
NBt (t) + 1

Na(t)

)
EB-TCI

Bt = arg max
a∈[K ]

µ̂a(t)

Ct = arg min
a 6=Bt

 (µ̂Bt (t)− µ̂a(t))2
+

2σ2
(

1
NBt (t) + 1

Na(t)

) + logNa(t)


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Numerical experiments

Error parameter δ = 0.1. Top Two algorithms with β = 1/2.

Figure – Empirical sample complexity averaged over 5000 random (Bernoulli)

instances with K = 8 and ∆min ≥ 0.01.
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Numerical experiments

arm = planting date / observation = yield

Error parameter δ = 0.01. Top Two algorithms with β = 1/2.

Figure – Empirical stopping time (a) on scaled DSSAT instances with
their density and mean (b).

51



Top Two algorithms beyond Fixed Confidence

EB-TCε0

Bt = arg max
a∈[K ]

µ̂a(t)

Ct = arg min
a 6=Bt

 µ̂Bt (t)− µ̂a(t) + ε0√
1

NBt (t) + 1
Na(t)


[Jourdan et al., 2023b]

motivated by the lower bound for (ε0, δ)-PAC identification

can be used for (ε, δ)-PAC identification1 for ε 6= ε0

first guarantees in the anytime setting...

1 P
(
µâτ > µ? − ε

)
≥ 1− δ
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Top Two algorithms beyond Fixed Confidence

Figure – Simple regret as a function of time on an instance
µ ∈ {0.4, 0.6}10 with 2 best arms

(... but the theory is just saying that the algorithm is not too much

worse than uniform sampling...)
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Motivation : Clinical Trials

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

For the t-th patient in a clinical trial,

choose a treatment At

observe a response Xt ∈ {0, 1} : P(Xt = 1|At = a) = µa

Goal : maximize the expected number of patients healed (regret) or

identifiy the best treatment a = arg maxa µa (best arm identification)
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Motivation : Clinical Trials

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

For the t-th patient in a clinical trial,

choose a treatment At

observe a response Xt ∈ {0, 1} : P(Xt = 1|At = a) = µa

Ü an (idealized) model for Phase III trials, but bandits could also

be useful for early stage clinical trials in which several indicators

of safety and biological efficacy are jointly monitored
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Early stage clinical trials in vaccinology
Several indicators of immunogenicity are typically measured :

binding antibodies

neutralising antibodies for different variants

cellular responses (T-cells ...)
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K = 20 combinations of Covid vaccines (COVBOOST)

Sampling an arm = giving a vaccine to a patient and measuring (15

days later) all the D indicators of interest (Xt ∈ RD)
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Multi-objective bandits

Given K multi-dimensional distributions with means

µ1, . . . ,µK ∈ RD , what are “good arm(s)” ?

Given a preference function g : RD → R, a maximizer of g(µa)

(such a function is in general hard to define)

An arm maximizing one of the objectives under some (linear)
constraints on the others [Katz-Samuels and Scott, 2019]

All the arms that are not uniformly worse than the others

Ü the Pareto set[Auer et al., 2016]
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Pareto Set

Let X ⊂ RD a set of vectors. Let x , y ∈ X .

x is (strictly) dominated by y (x ≺ y) if ∀d ∈ [D], xd < yd

The Pareto Set is P(X ) := {x ∈ X : @ y ∈ X such that x ≺ y}
A vector x ∈ P(X ) is called Pareto optimal

1 x3 ≺ x1

2 x4 ≺ x2

3 x5 ≺ x1

4 x1 ⊀ x2

5 x2 ⊀ x1

P(X ) = {x1, x2}
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Pareto Set Identification with Fixed Confidence

µ = (µ1, . . . ,µK ) ∈ (RD)K

An algorithm is made of :

a sampling rule At ∈ [K ] : what is the next arm to explore ?

Ü get a new observation Xt ∼ νAt∈ RD

a recommendation rule Ŝt : a guess for the Pareto Set

a stopping rule τ : when to stop the data collection ?

Definition

An algorithm is δ-correct if, for all µ ∈M, Pµ(Ŝτ 6= P?(µ)) ≤ δ.

Goal : a δ-correct algorithm with small sample complexity Eµ[τ ]
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Adaptive Pareto Exploration
First ingredient : a non-dominance measure

x ⊀ y ⇔ ∃ d , xd ≥ yd ,

⇔ ∃ d , xd − yd ≥ 0,

⇔ max
d∈[D]

(xd − yd)︸ ︷︷ ︸
:=M(x ,y)

> 0,

The larger M(x , y) the

“further” y is from

dominating x
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Adaptive Pareto Exploration
Second ingredient : confidence regions

µ̂k(t) ∈ RD the empirical mean vector of arm k at time t

Confidence bonus for arm k :

βk(t) '

√
log(Nk(t)/δ)

Nk(t)

such that, w.p. larger than 1− δ, all

means µk belong to the highlighted

regions, for all t

Letting M(i , j) = M(µi ,µj) and M(i , j ; t) = M(µ̂i (t), µ̂j(t))

M(i , j) ≤ M+(i , j ; t) := M(i , j ; t) + βi (t) + βj(t)

with high probability.
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Adaptive Pareto Exploration
Second ingredient : confidence regions

µ̂k(t) ∈ RD the empirical mean vector of arm k at time t

Confidence bonus for arm k :

βk(t) '

√
log(Nk(t)/δ)

Nk(t)

such that, w.p. larger than 1− δ, all

means µk belong to the highlighted

regions, for all t

Letting M(i , j) = M(µi ,µj) and M(i , j ; t) = M(µ̂i (t), µ̂j(t))

M−(i , j ; t) := M(i , j ; t)− βi (t)− βj(t) ≤ M(i , j)

with high probability.
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Adaptive Pareto Exploration

OPT(t) := {i ∈ [K ] : ∀j ∈ [K ]\{i},M−(i , j ; t) > 0}

We define

a potentially Pareto optimal arm

bt = arg max
i∈[K ]\OPT(t)

min
j 6=i

M+(i , j ; t)

the arm that is the closest to potentially dominate it

ct := arg min
j 6=bt

M−(bt , j ; t)

Adaptive Pareto Exploration (APE)

selects the least sampled among these two candidate arms :

At+1 = arg mina∈{bt ,ct} Na(t)
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Stopping rule

Letting Ŝ(t) = P?(µ̂1(t), . . . , µ̂K (t)), the algorithm stops and

recommends Ŝt = Ŝ(t) when

all arms in Ŝ(t) are confidently non-dominated :

Z1(t) := min
i∈Ŝ(t)

min
j 6=i

M−(i , j ; t) > 0

all arms in (Ŝ(t))c are confidently dominated :

Z2(t) := min
i /∈Ŝ(t)

max
j 6=i

[
−M+(i , j ; t)

]
> 0

Stopping rule for (exact) PSI

τ = inf
{
t ∈ N : Z1(t) > 0,Z2(t) > 0

}
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Stopping rule

Letting Ŝ(t) = P?(µ̂1(t), . . . , µ̂K (t)), the algorithm stops and

recommends Ŝt = Ŝ(t) when

all arms in Ŝ(t) are confidently non-dominated :

Z1
δ(t) := min

i∈Ŝ(t)
min
j 6=i

Mδ
−(i , j ; t) > 0

all arms in (Ŝ(t))c are confidently dominated :

Z2
δ(t) := min

i /∈Ŝ(t)
max
j 6=i

[
−Mδ

+(i , j ; t)
]
> 0

Stopping rule for (exact) PSI

τ δ = inf
{
t ∈ N : Z1

δ(t) > 0,Z2
δ(t) > 0

}
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Results : Theory

Theorem [Kone et al., 2023]

Assume the observations are bounded in [0, 1]D . Then, with

probability larger than 1− δ, APE with the stopping rule τδ outputs

Ŝτ = P?(µ) using at most

K∑
a=1

32

∆̃2
a

log

(
2KD

δ
log

(
32

∆̃2
a

))
,

samples, where ∆̃a is an appropriate notion of gap [Auer et al., 2016]

APE can further be combined with different stopping rules to tackle
different relaxations of PSI, e.g. min(τ, τ k) where

τ k = inf{t ∈ N : |OPT(t)| ≥ k}

to identify at most k Pareto optimal arms.
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Results : Practice

APE[k=1] APE[k=2*] APE[k=3] APE[k=20] PSI-Unif-Elim
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(Log) Empirical sample complexity of APE (with a k-relaxation) compared to the

algorithm of [Auer et al., 2016] on simulated CovBoost data [Munro et al., 2021]

improved practical performance

the k-relaxation (provably) reduces the sample complexity
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Optimality ?

For arms that are multi-variate Gaussian, could we further try to

match the lower bound ?

T ?(µ)−1 = sup
w∈∆K

inf
λ∈Alt(µ)

(
K∑

a=1

waKL(N (µa,Σ),N (λa,Σ))

)
.

where Alt(µ) = {λ ∈ (RD)K : P?(λ) 6= P?(µ)}.

Ü The structure of the alternative is very complex for the PSI

problem, making even the computation of “minimal distance”

(needed for the stopping rule) challenging...

[Crepon et al., 2024]

... but we don’t need to compute it !
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A Fully Sampling-Based Approach

Posterior Sampling for PSI (PSIPS) [Kone et al., 2025]

For all m ≤ M(t, δ), sample θ̃m = (θ̃m
1 , . . . , θ̃

m
K ) with

θ̃m
a ∼ N

(
µ̂a(t),

c(t, δ)

Na(t)
Σ

)
If for all m, P?(θ̃m) = P?(µ̂(t)), stop and return Ŝt = P?(µ̂(t))

Else, take the first m such that P?(θ̃m) 6= P?(µ̂(t))

Update an online learning algorithm on ∆K with the gain

gt(w) =
∑K

a=1 wa
1
2‖µ̂a(t)− θ̃m

a ‖2
Σ−1 to get wt

Select arm At ∼ wt

Ü For c(t, δ) ' log(log(t)/δ)
log(1/δ) and M(t, δ) ' log(t/δ)

δ , PSIPS satisfies

lim supδ→0
E[τδ]

log(1/δ) ≤ T?(µ) when arms are Σ-subGaussian
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Experiments

CovBoost dataset (d = 3) for δ = 0.1 (left) and δ = 0.01 (right)
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Conclusion

The “follow the lower bound” approach made of

a Tracking sampling rule

the Generalized Likelihood Ratio (GLR) stopping rule

can reach the minimal sample complexity in a regime of small error

δ, for quite general pure exploration tasks.

For some particular tasks (e.g. Best Arm Identification) :

“Top-Two” sampling rules are easier to implement, perform well

for moderate values of δ and are near-optimal for δ → 0

we analyzed a sampling-based stopping rule as an interesting

alternative to the GLR (e.g. for PSI)
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Perspectives

A better understanding of the moderate confidence regime : is

there a price for asymptotic optimality ?

Investigate the trade-off between optimality and some

algorithmic constraints (privacy, fairness)

Can bandits help for adaptive clinical trials, for real ?

Beyond bandits ?

We made some progress on the characterization of the
complexity of near-optimal policy identification in a (finite)
Markov Decision Process
[Al Marjani et al., 2023, Tuynman et al., 2024]

But the gap between theory (tabular MDPs) and practice (deep
reinforcement learning) is huge...
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