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The stochastic Multi Armed Bandit (MAB) model

K unknown reward distributions ν1, . . . , νK called arms

a each time t, select an arm At and observe a reward Xt ∼ νAt

Sequential strategy / algorithm : At+1 can depend on:

previous observation A1,X1, . . . ,At ,Xt

some external randomization Ut ∼ U([0, 1])

some knowledge about the type of reward distributions

[Thompson, 1933, Robbins, 1952, Lattimore and Szepesvari, 2019]
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Bandit problems

Example: A/B/n testing

. . .

p1 p2 pK

pa: probability that a visitor seeing version a buys a product

For the t-th visitor:

choose a version At to display

observe the reward Xt = 1 if a product is bought, 0 otherwise

Objective 1: maximize rewards

maximize E[
∑T

t=1 Xt ] for some (possibly unknown) T

maximize profit

a reinforcement learning problem
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Bandit problems

Example: A/B/n testing

. . .

p1 p2 pK

pa: probability that a visitor seeing version a buys a product

For the t-th visitor:

choose a version At to display

observe the reward Xt = 1 if a product is bought, 0 otherwise

Objective 2: best arm identification

identify quickly a? = arg maxa pa

find the best version (in order to keep displaying it)

a pure exploration problem
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Other applications

clinical trials → reward: success/failure (Bernoulli)

movie recommendation → reward: rating (multinomial)

recommendation in agriculture → reward: yield
(complex, possibly multi-modal distribution)

Objective: design algorithms that leverage as little knowledge
about the rewards distributions as possible
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Outline

1 Thompson Sampling for Rewards Maximization

2 Non Parametric Thompson Sampling

3 Thompson Sampling for Best Arm Identification?

4 General Top Two Algorithms
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Performance measure

ν = (ν1, . . . , νK ) µa = EX∼νa [X ]

µ? = max
a∈{1,...,K}

µa a? = arg max
a∈{1,...,K}

µa.

Maximizing rewards ↔ selecting a? as much as possible
↔ minimizing the regret [Robbins, 52]

Rν(A,T ) = Tµ?︸︷︷︸
sum of rewards of
an oracle strategy

always selecting a?

− Eν

[
T∑
t=1

Xt

]
︸ ︷︷ ︸

sum of rewards of
the strategyA

Regret decomposition

Rν(A,T ) = Eν

[
T∑
t=1

(µ? − µa)

]
Na(T ): number of selections of arm a up to round T .
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− Eν

[
T∑
t=1

Xt

]
︸ ︷︷ ︸

sum of rewards of
the strategyA

Regret decomposition

Rν(A,T ) =
K∑

a=1

Eν [Na(T )](µ? − µa)

Na(T ): number of selections of arm a up to round T .



7/36

(Don’t) Follow The Learder

Select each arm once, then exploit the current knowledge:

At+1 = arg max
a∈[K ]

µ̂a(t)

where

Na(t) =
∑t

s=1 1(As = a) is the number of selections of arm a

µ̂a(t) = 1
Na(t)

∑t
s=1 Xs1(As = a) is the empirical mean of the

rewards collected from arm a

Follow the leader can fail! ν1 = B(µ1), ν2 = B(µ2), µ1 > µ2

E[N2(T )] ≥ (1− µ1)µ2 × (T − 1)

Ü Exploitation is not enough, we need to add some exploration
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A Bayesian algorithm: Thompson Sampling

πa(0): prior distribution on µa
πa(t) = L(µa|Ya,1, . . . ,Ya,Na(t)): posterior distribution on µa

0

1

2 4 346 107 40

Two equivalent interpretations:
[Thompson, 1933]: “randomize the arms according to their
posterior probability being optimal”

modern view: “draw a possible bandit model from the posterior
distribution and act optimally in this sampled model”

Russo et al. 2018, A Tutorial on Thompson Sampling
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A Bayesian algorithm: Thompson Sampling

Input: a prior distribution π(0){
∀a ∈ {1..K}, θa(t) ∼ πa(t)
At+1 = argmax

a=1...K
θa(t).

Thompson Sampling for Bernoulli distributions νa = B(µa)

πa(0) = U([0, 1])

πa(t) = Beta (Sa(t) + 1;Na(t)− Sa(t) + 1)
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A Bayesian algorithm: Thompson Sampling

Input: a prior distribution π(0){
∀a ∈ {1..K}, θa(t) ∼ πa(t)
At+1 = argmax

a=1...K
θa(t).

Thompson Sampling for Bernoulli distributions νa = B(µa)

πa(0) = U([0, 1])

πa(t) = Beta (Sa(t) + 1;Na(t)− Sa(t) + 1)

Thompson Sampling for Gaussian distributions νa = N (µa, σ
2)

πa(0) ∝ 1

πa(t) = N
(
µ̂a(t); σ2

Na(t)

)
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An asymptotically optimal algorithm

Upper bound on sub-optimal selections

∀a 6= a?, Eµ[Na(T )] ≤ log(T )

kl(µa, µ?)
+ oµ(log(T )).

where kl(µa, µ?) is the KL divergence between νa and νa?

proved for Bernoulli bandits, with a uniform prior

[Kaufmann et al., 2012, Agrawal and Goyal, 2013]

for 1-dimensional exponential families, with a conjuguate prior

[Agrawal and Goyal, 2017, Korda et al., 2013]

Lower bound [Lai and Robbins, 1985]

Let D be a family of rewards distribution that are continuously

parameterized by their means. Any good bandit algorithm for D satisfies,

on every instance with means µ = (µ1, . . . , µK )

∀a 6= a?, lim inf
T→∞

Eµ[Na(T )]

log(T )
≥ 1

kl(µa;µ?)
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Beyond parametric algorithms?

Thompson Sampling
(TS)

0

1

2 4 346 107 40

At+1 = argmax
a∈[K ]

θa(t)

where θa(t) is a sample from
a posterior distribution on µa

Upper Confidence Bound
(UCB)

0

1

9 3 448 18 21

At+1 = argmax
a∈[K ]

UCBa(t)

UCBa(t) is an UCB on the
unknown mean µa

Ü require some tuning depending on the distributions
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Beyond parametric algorithms?

Thompson Sampling
(TS)

0

1

2 4 346 107 40

???

Upper Confidence Bound
(UCB)

0

1

9 3 448 18 21

At+1 = argmax
a∈[K ]

UCBa(t)

UCBa(t) = µ̂a(t) + B
√

log(t)
2Na(t)

Ü what is Fa is any distribution supported on [0,B]?
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Outline

1 Thompson Sampling for Rewards Maximization

2 Non Parametric Thompson Sampling

3 Thompson Sampling for Best Arm Identification?

4 General Top Two Algorithms
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Motivation: recommending planting dates to farmers

0 2000 4000 6000 8000 10000
dry grain yield (kg/ha)
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CVaR @ 20%

Distribution of the yield of a maize field for different planting dates

obtained using the crop-yield simulator
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Optimality in Non Parametric families

Can we adapt optimally to complex bounded distributions?

Lower bound [Burnetas and Katehakis, 1996]

Under an algorithm achieving small regret for any bandit model
ν ∈ DK , it holds that

∀a 6= a?(ν), lim inf
T→∞

Eν [Na(T )]

log(T )
≥ 1

KDinf(Fa;µ?)
where

KDinf(ν, µ) = inf
{
KL(ν, ν ′)

∣∣ ν ′ ∈ D : EX∼ν′ [X ] ≥ µ
}

with KL(ν, ν ′) the Kullback-Leibler divergence.

DB =
{
ν ∈ P(R), ν is supported on [0,B]

}
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Non Parametric Thompson Sampling

At+1 = arg max
a∈[K ]

θa(t)

where

θa(t) =
1

Na(t) + 1

Na(t)∑
i=1

wa,t(i)Ya,i + wa,t(Na(t) + 1)B


with

(Ya,1, . . . ,Ya,Na(t),B) is the augmented history of rewards
gathered from arm a

wa,t ∼ Dir(1, . . . , 1︸ ︷︷ ︸
Na(t)+1

) a random probability vector

[Riou and Honda, 2020]

Several interpretations:

an extension of multinomial Thompson Sampling

a variant of the Bayesian bootstrap

posterior sampling using a Dirichlet Process prior
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A risk-averse bandit problem

Specifics of our application:

Ü bounded distributions, with known upper bound B

Ü quality of an arm measured by its Conditional Value at Risk

CVaRα(νa) = sup
x∈R

{
x − 1

α
EX∼νa

[
(x − X )+

]}

Interpretation of the CVaR:

if ν is continuous, CVaRα(ν) = EX∼ν
[
X |X ≤ F−1(α)

]
if ν is discrete, with values x1 ≤ x2 ≤ · · · ≤ xM

CVaRα(ν) =
1

α

[
nα−1∑
i=1

pixi +

(
α−

nα−1∑
i=1

pixi

)
xnα

]

where nα = inf {n :
∑n

i=1 pixi ≥ α}.
Ü average of the lower part of the distribution
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A risk-averse bandit problem

Specifics of our application:

Ü bounded distributions, with known upper bound B

Ü quality of an arm measured by its Conditional Value at Risk

CVaRα(νa) = sup
x∈R

{
x − 1

α
EX∼νa

[
(x − X )+

]}

Interpretation of the CVaR:

Choosing α allows to customize the risk-aversion:

α = 20%: farmer seeking to avoid very poor yield

α = 80%: market-oriented farmer trying to optimize the yield
of non-extraordinary years

α = 100%: optimization of the average yield (no risk aversion)
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CVaR regret

Letting cαa = CVaRα(νa), the CVaR regret is defined as

Rαν(A,T ) = Eν

[
T∑
t=1

(
cα? − cαAt

)]
=

K∑
a=1

(cα? − cαa )Eν [Na(T )]

with cα? = maxa c
α
a .

Lower bound [Baudry et al., 2021]

Under an algorithm achieving small CVaR regret for any bandit
model ν ∈ DK , it holds that

∀a : cαa < cα? , lim inf
T→∞

Eν [Na(T )]

log(T )
≥ 1

Kα,Dinf (νa; cα? )

where Kα,Dinf (ν, c) = inf
{
KL(ν, ν ′) |ν ′ ∈ D : CVaRα(ν ′) ≥ c

}
.
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Non Parametric Thompson Sampling for CVaR bandits

Assumption: νa ∈ DB = {distributions supported in [0,B]}.

The B-CVTS algorithm selects

At+1 ∈ arg max
a∈[K ]

Ca(t)

Index of arm a after t rounds

Ha(t) = (Ya,1, . . . ,Ya,Na(t),B) be the augmented history of
rewards gathered from this arm

wa,t ∼ Dir(1, . . . , 1︸ ︷︷ ︸
Na(t)+1

) a random probability vector

Ü yields a random perturbation of the empirical distribution

F̃a,t =
∑Na(t)

i=1 wa,t(i)δYa,i
+ wa,t(Na(t) + 1)δB

Ca(t) = CVaRα

(
F̃a,t
)

α = 1 → Non Parametric Thompson Sampling
[Riou and Honda, 2020]
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Theory

B-CVTS is asymptotically optimal for bounded distributions.

Theorem [Baudry et al., 2021]

On an instance ν such that ν ∈ DK
B , we have

Eν [Na(T )] ≤ logT

Kα,DB
inf (νa, cα1 )

+ o(logT ) .

Key tool: new bounds on the boundary crossing probability

Pw∼Dn

(
Cα(Y,w) > c

)
where

Dn is a Dir(1, . . . , 1) distribution (with n ones)

Y = {y1, . . . , yn} is a fixed support

Cα(Y,w) is the α CVaR of a discrete distribution with
support Y and weights w
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Practice

Competitors: two styles of UCB algorithms

U-UCB [Cassel et al., 2018] uses the empirical cdf F̂a,t

UCB
(1)
a (t) = CVaRα(F̂a,t) +

B

α

√
c log(t)

2Na(t)

CVaR-UCB: [Tamkin et al., 2020] buids an optimistic cdf F a,t

UCB
(2)
a (t) = CVaRα(F a,t)
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Practice
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Outline

1 Thompson Sampling for Rewards Maximization

2 Non Parametric Thompson Sampling

3 Thompson Sampling for Best Arm Identification?

4 General Top Two Algorithms
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Best Arm Identification

Algorithm: made of three components:

Ü sampling rule: At (arm to explore)

Ü recommendation rule: Bt (current guess for the best arm)

Ü stopping rule τ (when do we stop exploring?)

Objectives studied in the literature:

Fixed-budget setting Fixed-confidence setting

input: budget T input: risk parameter δ

τ = T minimize E[τ ]
minimize P(BT 6= a?) P(Bτ 6= a?) ≤ δ
[Bubeck et al., 2011] [Even-Dar et al., 2006]

[Audibert et al., 2010]



24/36

Finding the Best Arm with Thompson Sampling

BT : guess for the best arm after T samples.

Thompson Sampling selects a lot the best arm...

idea (1): BT = arg maxa Na(T )

idea (2) : P(BT = a) = Na(T )
T

Thompson Sampling + (2):

E[µ? − µBT
] = E

[
K∑

a=1

(µ? − µa)
Na(T )

T

]

=
R(TS,T )

T
= O

(
K log(T )

∆T

)
© the estimation error decays with T

Uniform Sampling + Empirical Best Arm:

E[µ? − µBT
] = O

(
K exp

(
−T

K
∆2

))
§ but not as fast as with uniform sampling...
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Top Two Thompson Sampling

Πt = (π1(t), . . . , πK (t)) posterior distribution on (µ1, . . . , µK )

Top-Two Thompson Sampling (TTTS) [Russo, 2016]

Input: parameter β ∈ (0, 1). In round t + 1:

draw a posterior sample θ ∼ Πt , a?(θ) = arg maxa θa

with probability β, select At+1 = a?(θ)

with probability 1− β, re-sample the posterior θ′ ∼ Πt until
a?(θ′) 6= a?(θ), select At+1 = a?(θ′)

[Russo, 2016] performs a Bayesian analysis of TTTS:

Πt ({θ : a?(θ) 6= a?}) . C exp
(
−t/T ?

β (µ)
)

a.s.

where the rate is proved to be optimal.

(for exponential families, and some restricted family of priors)
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The optimal exponent

Ü connected with the optimal sample complexity of
fixed-confidence best arm identification

Lower bound [Garivier and Kaufmann, 2016]

For any strategy such that Pν (Bτ 6= a?(ν)) ≤ δ for all
ν = (ν1, . . . , νK ) ∈ DK ,

∀ν ∈ DK , Eν [τδ] ≥ T ?(ν) ln

(
1

3δ

)
,

where T ?(ν) = minβ∈(0,1) T
?
β (ν).

General expression:

T ?
β (ν)−1 = sup

w∈4K
wa?=β

min
a 6=a?

inf
x∈I

[
wa?K−inf(νa? , x) + waK+

inf(νa, x)
]
.
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The optimal exponent

Ü connected with the optimal sample complexity of
fixed-confidence best arm identification

Lower bound [Garivier and Kaufmann, 2016]

For any strategy such that Pν (Bτ 6= a?(ν)) ≤ δ for all
ν = (ν1, . . . , νK ) ∈ DK ,

∀ν ∈ DK , Eν [τδ] ≥ T ?(ν) ln

(
1

3δ

)
,

where T ?(ν) = minβ∈(0,1) T
?
β (ν).

Parametric example: Gaussian bandits

T ?
β (µ)−1 = sup

w∈4K
wi?=β

min
a 6=a?

(µ? − µa)2

2σ2
(

1
β + 1

wa

) .
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Sample complexity of TTTS

For Gaussian bandits, one can analyze TTTS with the posterior

πa(t) = N
(
µ̂a(t),

σ2

Na(t)

)
coupled with the (GLR) stopping rule

τδ = inf

t ∈ N : min
a 6=â?t

(µ̂â?t − µ̂a(t))2

2σ2

(
1

Nâ?t
(t) + 1

Na(t)

) > β(t, δ)


with threshold β(t, δ) ' log(1/δ) + K log log(t).

Theorem [Shang et al., 2020]

TTTS(β) is δ-correct and

∀µ, lim
δ→0

Eµ[τδ]

log(1/δ)
≤ T ?

β (µ)
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(
1

Nâ?t
(t) + 1

Na(t)

) > β(t, δ)


with threshold β(t, δ) ' log(1/δ) + K log log(t).

Theorem [Shang et al., 2020]

TTTS(1/2) is δ-correct and

∀µ, lim
δ→0

Eµ[τδ]

log(1/δ)
≤ 2T ?(µ)



28/36

Outline

1 Thompson Sampling for Rewards Maximization

2 Non Parametric Thompson Sampling

3 Thompson Sampling for Best Arm Identification?

4 General Top Two Algorithms
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The Top Two structure

Top Two algorithm

Given a parameter β ∈ (0, 1), in round t:

define a leader Bt ∈ [K ]

define a challenger Ct 6= Bt

select arm At ∈ {Bt ,Ct} at random:

P (At = Bt) = β P (At = Ct) = 1− β

In Top Two Thompson Sampling,

TS leader: Bt = a?(θ) with θ ∼ Πt−1

Re-Sampling (RS) challenger: Ct = a?(θ′) where

θ′ ∼ Πt−1|
(
a?(θ′) 6= Bt

)

Liminations:

Ü re-sampling can be numerically costly

Ü beyond parameteric distributions?
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Approximating Re-Sampling

Under the RS challenger,

P (Ct = a|Bt = b) =
pt,a∑
i 6=b pt,i

where pt,a = Πt (θa = maxj θj) ' Πt (θa > θb).

For Gaussian bandits when µ̂b(t) > µ̂a(t),

Πt (θa > θb) ' exp

−t (µ̂b(t)− µ̂a(t))2

2σ2
(

1
Nb(t) + 1

Na(t)

)


Idea: compute the mode instead of sampling!

Ct = arg min
a 6=Bt

(µ̂Bt (t)− µ̂a(t))2

2σ2
(

1
NBt (t) + 1

Na(t)

)1(µ̂Bt (t) ≥ µ̂a(t))

[Shang et al., 2020]
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Links with the stopping rule

Recall that TTTS was analyzed with

τδ = inf

t ∈ N : min
a 6=â?t

(µ̂â?t − µ̂a(t))2

2σ2

(
1

Nâ?t
(t) + 1

Na(t)

) > β(t, δ)


Ü another interpretation: challenger that minimizes the

Transportation Cost (TC) featured in the stopping rule

This idea extends to the non-parametric setting

Wt(i , j) = inf
x

[
Ni (t)KD,−inf (Fi (t), x) + Nj(t)KD,+inf (Fj(t), x)

]
Ct = arg min

a 6=Bt

Wt(Bt , a)

... provided that we know how to calibrate the stopping rule
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Wt (ât , a) > β(t, δ)

}

Ü another interpretation: challenger that minimizes the
Transportation Cost (TC) featured in the stopping rule

This idea extends to the non-parametric setting

Wt(i , j) = inf
x

[
Ni (t)KD,−inf (Fi (t), x) + Nj(t)KD,+inf (Fj(t), x)

]
Ct = arg min

a 6=Bt

Wt(Bt , a)

... provided that we know how to calibrate the stopping rule



32/36

Top Two Algorithms

Choices of the leader:

TS - Sample θ ∼ Πt−1 then set BTS
t ∈ arg maxa∈[K ] θa

EB - BEB
t ∈ arg maxa∈[K ] µ̂a(t − 1)

Choices of the challenger:

RS - repeat θ ∼ Πt−1 until CRS
t ∈ arg maxa∈[K ] θa 6= Bt

TC - CTC
t ∈ arg mina 6=Bt

Wt−1(Bt , a)

TCI - CTCI
t ∈ arg mina 6=Bt

Wt−1(Bt , a) + logNa(t)

Πt : a sampler (e.g. posterior distribution)

Ü parameteric setting: posterior distribution

Ü bounded distribution: Dirichlet Sampling
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Asymptotic Guarantees

Theorem
Given a calibrated GLR stopping rule, instantiating the Top Two sampling
rule with any pair of leader/challenger satisfying some properties yields a
δ-correct algorithm satisfying for all ν ∈ DK with distincts means

lim sup
δ→0

Eν [τδ]

log(1/δ)
≤ T ?

β (ν) .

Distributions TS EB RS TC TCI

Gaussian KV 3 3 3 3 3
Bernoulli 3 3 3 3 3
sub-Exp SPEF ? 3 ? 3 3
Gaussian UV ? 3 ? 3 3
Bounded 3 3 3 3 3

[Jourdan et al., 2022, Jourdan et al., 2023]
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Experiments: Bounded distributions

arm = planting date / observation = yield

Moderate regime, δ = 0.01. Top Two algorithms with β = 1/2.

Figure: Empirical stopping time (a) on scaled DSSAT instances with their
density and mean (b). Lower bound is T ?(ν) ln(1/δ).
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Experiments: Gaussian distributions

Moderate regime, δ = 0.1. Top Two algorithms with β = 1/2.

Figure: (Left) Empirical stopping time τδ. (Right) Empirical errors P(â?t 6= a?)

at time t < τδ on random instances with K = 10, µ1 = 0.6, µa ∼ U([0.2, 0.5]).
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Conclusion

Thompson Sampling for maximizing rewards:

is asymptotically optimal for simple parametric distributions

can be extended to some non-parametric settings

is flexible enough to tackle alternative performance criterion

Top Two Thompson Sampling for best arm identification:

may be viewed as a fix of TS for BAI

is a inspiration for others (non-Bayesian) Top Two algorithms

... which are near optimal in theory and very good in practice

Perspective: finite-time performance?
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