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The stochastic Multi Armed Bandit (MAB) model

@ K unknown reward distributions vy, ..., vk called arms

@ a each time t, select an arm A; and observe a reward X; ~ v4,

Sequential strategy / algorithm : A;,; can depend on:
@ previous observation Ai, X1, ..., A, X
@ some external randomization Uy ~ U([0,1])
@ some knowledge about the type of reward distributions
[Thompson, 1933, Robbins, 1952, Lattimore and Szepesvari, 2019]



Bandit problems

Example: A/B/n testing
= ==
[ [ [
O | O

p1 P2 Pk

pa: probability that a visitor seeing version a buys a product

For the t-th visitor:

@ choose a version A; to display
@ observe the reward X; = 1 if a product is bought, 0 otherwise

Objective 1: maximize rewards
@ maximize E[ZtT:l X¢] for some (possibly unknown) T

@ maximize profit
a reinforcement learning problem




Bandit problems

Example: A/B/n testing
= == ==
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p1 p2 Pk

pa: probability that a visitor seeing version a buys a product

For the t-th visitor:

@ choose a version A; to display
@ observe the reward X; = 1 if a product is bought, 0 otherwise

Objective 2: best arm identification
o identify quickly a, = argmax, p,
e find the best version (in order to keep displaying it)
a pure exploration problem




Other applications

e clinical trials — reward: success/failure (Bernoulli)
R A
Ca® =& =

@ movie recommendation — reward: rating (multinomial)

@ recommendation in agriculture — reward: yield
(complex, possibly multi-modal distribution)

Objective: design algorithms that leverage as little knowledge
about the rewards distributions as possible J




@ Thompson Sampling for Rewards Maximization



Performance measure

V= (o) 2 = Exey,[X]

e = MaX [l 3y = argmax [i,.

Maximizing rewards <> selecting a, as much as possible
< minimizing the regret [Robbins, 52]
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sum of rewards of

an oracle strategy

always selecting a,

Regret decomposition

Ru(A, T) [Z(ﬂ* Na]

N,(T): number of selections of arm a up to round T.
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V= (o) 2 = Exey,[X]

e = MaX [l 3y = argmax [i,.

Maximizing rewards <> selecting a, as much as possible
< minimizing the regret [Robbins, 52]
Ru(A,T) = T s
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Regret decomposition
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N,(T): number of selections of arm a up to round T.




(Don't) Follow The Learder

Select each arm once, then exploit the current knowledge:

Atr1 = argmax [i,(t)

ac[K]
where
o Ny(t) =Yt 1(As = a) is the number of selections of arm a
® [i,(t) = +

rit) i1 Xs1(As = a) is the empirical mean of the

rewards collected from arm a

v




(Don't) Follow The Learder

Select each arm once, then exploit the current knowledge:

Atr1 = argmax [i,(t)
aclK]

where

o Ny(t) =Yt 1(As = a) is the number of selections of arm a

@ [i,(t) = % i1 Xs1(As = a) is the empirical mean of the

N,
rewards collected from arm a

Follow the leader can faill vy = B(u1),v2 = B(u2), 1 > p2
E[No(T)] > (1 — pr)pz x (T —1)

=» Exploitation is not enough, we need to add some exploration



A Bayesian algorithm: Thompson Sampling

7a(0): prior distribution on 1,
ma(t) = L(palYa1,-- -, Ya7Na(t)): posterior distribution on 1,

AT

2 4 .As 107 40

Two equivalent interpretations:
@ [Thompson, 1933]: “randomize the arms according to their
posterior probability being optimal”
@ modern view: “draw a possible bandit model from the posterior
distribution and act optimally in this sampled model”

Russo et al. 2018, A Tutorial on Thompson Sampling



A Bayesian algorithm: Thompson Sampling

Input: a prior distribution m(0)

Va e {1.K}, 0,(t) ~ ma(t)
{ Atr1 = argmax 0,(t). J
a=1..K

Thompson Sampling for Bernoulli distributions va = B(ua)
o 7,(0) = u([0,1])
o 7,(t) = Beta(S,(t) + 1; Na(t) — Sa(t) +1)




A Bayesian algorithm: Thompson Sampling

Input: a prior distribution 7(0)

Vae {1..K}, 0,(t) ~ ma(t)
{ At+1 = argmax 0,(t). }

a=1..K

Thompson Sampling for Bernoulli distributions vy = B(ua)
o m,(0) = U([0,1])
o m,(t) = Beta(S,(t) + 1; Na(t) — Sa(t) +1)

Thompson Sampling for Gaussian distributions v, = N (12, 02)
e m,(0) x 1
2

o malt) = N (it): 155



An asymptotically optimal algorithm

Upper bound on sub-optimal selections

Va4 a,, Eu[Na(T)] < kll(i—(?) 1 o,(log(T)).

where kl(p,, i) is the KL divergence between v, and v,,

@ proved for Bernoulli bandits, with a uniform prior
[Kaufmann et al., 2012, Agrawal and Goyal, 2013]

@ for 1-dimensional exponential families, with a conjuguate prior
[Agrawal and Goyal, 2017, Korda et al., 2013]

Lower bound

Let D be a family of rewards distribution that are continuously
parameterized by their means. Any good bandit algorithm for D satisfies,
on every instance with means g = (p1,. .., tik)
L JELNA(T 1
Va # a,, liminf ulNa(T)] >
T—oo log(T) KI(pea; ex)




Beyond parametric algorithms?

Thompson Sampling Upper Confidence Bound
(TS) (UCB)

0724Q°‘m:ﬂ

Asy1 = argmax 0,(t) Att1 = argmax UCB,(t)
ag[K] ag[K]
where 60,(t) is a sample from UCB,(t) is an UCB on the
a posterior distribution on g, unknown mean i,

=» require some tuning depending on the distributions



Beyond parametric algorithms?

Thompson Sampling Upper Confidence Bound
(TS) (UCB)

0724Q°‘m:ﬂ

Asi1 = argmax 0,(t) Att1 = argmax UCB,(t)
a€[K] ac[K]
where 0,(t) is a sample from UCB,(t) is an UCB on the
a posterior distribution on i, unknown mean ji,

=» what is F; is any distribution supported on [0, B]?



Beyond parametric algorithms?

Thompson Sampling Upper Confidence Bound
(TS) (UCB)
¢
°
.. @ .. @

A¢r1 = argmax UCB,(t)
ac[K]
77

UCB,(t) = fis(t) + By/ 58}

=» what is F; is any distribution supported on [0, B]?



9 Non Parametric Thompson Sampling



Motivation: recommending planting dates to farmers

Empirical distributions estimated after #1e+06 samples

@= day: 057

== day: 072

== day: 087

=@= day: 102

= yield upper bound
— = CVaR @ 20%

3.0e-04

2.5e-04 1

T T T T T
0 2000 4000 6000 8000 10000
dry grain yield (kg/ha)

Distribution of the yield Of§ maize field for different planting dates
obtained using the 105 DSSAT crop-yield simulator



Optimality in Non Parametric families

Can we adapt optimally to complex bounded distributions? |

Lower bound

Under an algorithm achieving small regret for any bandit model
v € DX it holds that

o), it ol 2

where

ICEf(V“u,) = mf{KL(V: VI)‘ V' eD: ]E’XNV/[X] > ,LL}

with KL(v, ') the Kullback-Leibler divergence.

Dg = {1/ € P(R), v is supported on [0, B]}



Non Parametric Thompson Sampling

A¢i1 = argmax,(t)
a€[K]
where
1 Na(t)
0,(t) = ——1—— ) Ya.i N,(t)+1)B
a( ) Na(t)+1 Iz:; Wa,t(’) ai T Wa,t( a( )+ )
with
o (Yar1,..., Ya,Na(t)s B) is the augmented history of rewards
gathered from arm a
® w,; ~ Dir(1,...,1) a random probability vector
——
Na(t)+1 [Riou and Honda, 2020]

Several interpretations:
@ an extension of multinomial Thompson Sampling
@ a variant of the Bayesian bootstrap
@ posterior sampling using a Dirichlet Process prior



A risk-averse bandit problem

Specifics of our application:
=» bounded distributions, with known upper bound B
=» quality of an arm measured by its Conditional Value at Risk

CVaRa(vs) = sup {x - —JExWa [(x = X)7] }

x€eR

Interpretation of the CVaR:
e if v is continuous, CVaRq(r) = Ex~, [X|X < F1(a)]
o if v is discrete, with values x3 < xp < --- < xpy

ng—1 neg—1
CV&R [Z P:X: <Oé - Z piXi> Xna]
i=1

where n, = inf{n:>7" ; pix; > a}.
=» average of the lower part of the distribution



A risk-averse bandit problem

Specifics of our application:
=» bounded distributions, with known upper bound B
=» quality of an arm measured by its Conditional Value at Risk

CVaRq(va) = sup {x - l]EXN,,a [(x — X)+]}
x€R o

Interpretation of the CVaR:

Choosing « allows to customize the risk-aversion:
@ o = 20%: farmer seeking to avoid very poor yield

@ o = 80%: market-oriented farmer trying to optimize the yield
of non-extraordinary years

@ a = 100%: optimization of the average yield (no risk aversion)



A risk-averse bandit problem

Specifics of our application:
=» bounded distributions, with known upper bound B
=» quality of an arm measured by its Conditional Value at Risk

CVaRa(vs) = sup {x - éExrvua [(x = X)*] }

x€R

Interpretation of the CVaR:

Table 3: Empirical yield distribution metrics in kg/ha esti-
mated after 10° samples in DSSAT environment

Empirical distributions estimated after #1¢406 samples

day (action) CVaR,,
5% 20%  80% 100% (mean)

057 0 448 2238 3016
072 46 627 2570 3273
087 287 1059 3074 3629
102 538 1515 3120 3586




CVaR regret

Letting ¢ = CVaR,(v,), the CVaR regret is defined as

RO(A, T) =

with ¢ = max, ¢

Under an algorithm achieving small CVaR regret for any bandit
model v € DX it holds that

E,[NL(T 1
Va:cy <cl, liminf v[Na(T)] > =
T—o0 IOg( T) ]Cﬁ?f (ya; CS‘)

where ICior‘]’fD(V, c) =inf {KL(V, VY[V e D:CVaR, (V) > ¢ }




Non Parametric Thompson Sampling for CVaR bandits

Assumption: v, € Dg = {distributions supported in [0, B]}.
The B-CVTS algorithm selects

Atr1 € argmax C,(t)
ac[K]

Index of arm a after t rounds

® Ha(t) =(Yaz1,---, Yan,(t) B) be the augmented history of
rewards gathered from this arm

® w,: ~ Dir(1,...,1) a random probability vector

N,(t)+1
=» yields a random perturbation of the empirical distribution
Far = S0 w, o (1)y, , + war(Na(t) + 1)0p

C,(t) = CVaR, (Fa,t)

«a =1 — Non Parametric Thompson Sampling
[Riou and Honda, 2020]



B-CVTS is asymptotically optimal for bounded distributions.

On an instance v such that v € Dg, we have

By [N(T)] < —%8 T

<——>>——+o(logT).
K:in’fDB(VﬁCfé)

Key tool: new bounds on the boundary crossing probability

Purp, (Ca(¥, w) > c)
where
e D, is a Dir(1,...,1) distribution (with n ones)
© Y =1{y1,...,yn} is a fixed support

e Cu(Y,w) is the a CVaR of a discrete distribution with
support YV and weights w



B-CVTS is asymptotically optimal for bounded distributions.

On an instance v such that v € Dg, we have

By [N(T)] < —%8 T

<——>>——+o(logT).
K:in’fDB(VﬁCfé)

Key tool: new bounds on the boundary crossing probability

Py~D, (CQ(J}, w) > c) ~ exp (—nlCio;’fDB Uuw), c))
where
e D, is a Dir(1,...,1) distribution (with n ones)
© YV =1{y1,...,yn} is a fixed support

e Cu(Y,w) is the a CVaR of a discrete distribution with
support YV and weights w



Competitors: two styles of UCB algorithms
o U-UCB [Cassel et al,, 2018] uses the empirical cdf F, ;

B [clog(t)

M(y) — 2 v, B
UCBE(6) = OVaRa(Fad) + oy | s

o CVaR-UCB: [Tamkin et al., 2020] buids an optimistic cdf F,
UCBP(t) = CVaRa(F,y)

Table 4: Empirical yield regrets at horizon 10* in t/ha in
DSSAT environment, for 1040 replications. Standard devia-
tions in parenthesis.

o U-UCB  CVaR-UCB B-CVTS
5% 3128 (3) 760 (14) 192 (11)
20% 4867 (11) 1024 (17) 202 (10)
80% 1411 (13) 888 (13) 287 (12)




1e6 Averaged over #1040 replications for a = 20% 1e6 Averaged over #1040 replications for a = 80%
175
5 = BovTS = sCuTs
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-A- cvaruce 150 A cvaruce
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0.05 t0 0.95 quantile range
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Regret as a function of time averaged over N = 1040 simulations
for a =20% (left) and oo = 80% (right)



6 Thompson Sampling for Best Arm ldentification?



Best Arm Identification

Algorithm: made of three components:
=» sampling rule: A; (arm to explore)
=» recommendation rule: By (current guess for the best arm)

=» stopping rule 7 (when do we stop exploring?)

@ Objectives studied in the literature:

Fixed-budget setting | Fixed-confidence setting

input: budget T input: risk parameter §
T=T minimize E[7]
minimize P(BT1 # a,) P(Br # ax) < ¢

[Bubeck et al., 2011] | [Even-Dar et al., 2006]
[Audibert et al., 2010]




Finding the Best Arm with Thompson Sampling

B: guess for the best arm after T samples.

Thompson Sampling selects a lot the best arm...
@ idea (1): By = argmax, N,(T)
o idea (2) : P(By = a) = (1)

Thompson Sampling + (2):

PN

Elp. —pug;] = E Z(M*—ua)Na(TT)
_ R(TS, T) __ (Klog(T)
- A ()

© the estimation error decays with T



Finding the Best Arm with Thompson Sampling

B: guess for the best arm after T samples.

Thompson Sampling selects a lot the best arm...
@ idea (1): By = argmax, N,(T)
o idea (2) : P(Br = a) = M{T)

Thompson Sampling + (2): p

Elp. —pug;] = E Z(M*—ua)Na(TT)
 R(TS, T) Klog(T)
- A ()

© the estimation error decays with T

Uniform Sampling + Empirical Best Arm:

Elps —pg;] = O <K exp <—%A2>>

® but not as fast as with uniform sampling...



Finding the Best Arm with Thompson Sampling

B: guess for the best arm after T samples.

Thompson Sampling selects a lot the best arm...
@ idea (1): By = argmax, N,(T)
o idea (2) : P(Br = a) = M{T)

Thompson Sampling + (2):
AP(Br #a,) ~ E

K N,(T)
;(ﬂ* - Na)T

_ R(T7S_, N _o, (Klzg7(_T)>

© the estimation error decays with T

Uniform Sampling + Empirical Best Arm:
AP(Br #a,) ~ O <Kexp (—%A2>>

® but not as fast as with uniform sampling...



Top Two Thompson Sampling

My = (m1(t), ..., mk(t)) posterior distribution on (u1, ..., tk)

Top-Two Thompson Sampling (TTTS)
Input: parameter 5 < (0.1). In round t 4 1:

@ draw a posterior sample 0 ~ MM, a,(0) = arg max, 6,
e with probability /3, select A1 = a.(6)

@ with probability 1 — 3, re-sample the posterior 8’ ~ [1; until
a,(0") # a.(0), select Arr1 = a,(0")

[Russo, 2016| performs a Bayesian analysis of TTTS:

Me({8: 2.(8) # a.}) S Cexp (—t/ () as.
where the rate is proved to be optimal.

(for exponential families, and some restricted family of priors)



The optimal exponent

=» connected with the optimal sample complexity of
fixed-confidence best arm identification

Lower bound

For any strategy such that P, (B; # a.(v)) < 0 for all
v=(v,...,vk) € DX,

Vv € DK, E,[rs] > T*(v)In (%) )

where T*(v) = mingg(g 1) TE(V)

General expression:

IHO in inf K Kch .
s(r) 7 = sup min inf [Wa, Kine(Va., x) + walCipe(va, X))
WB*ZIB



The optimal exponent

=» connected with the optimal sample complexity of
fixed-confidence best arm identification

Lower bound

For any strategy such that P, (B; # a.(v)) < 0 for all
v=(n,...,vk) € DK,

Vv € DK, E,[rs] > T*(v)In (%) )

where T*(v) = minge1) 75 (V).

Parametric example: Gaussian bandits

)2
Tg(u)_l = sup min (e = pa)” .
WEAy 3Fa* 952 (% i L)

Wix :6 Wa



Sample complexity of TTTS

For Gaussian bandits, one can analyze TTTS with the posterior

) = (Rult) 17 )

coupled with the (GLR) stopping rule

7s =inf{ t € N: min

i
20 <N§¢(t) G

with threshold 3(t,d) ~ log(1/d) + K loglog(t).

TTTS(p) is d-correct and

E“[Tg] < T*

T (k)

i, }I—% log(1/6) =




Sample complexity of TTTS

For Gaussian bandits, one can analyze TTTS with the posterior

) = (A0 175

coupled with the (GLR) stopping rule

s =inf < t € N: min
#A*

TTTS(1/2) is o-correct and

E, [75]

Vi, <2T*()

530 Tog(1/9)




@ General Top Two Algorithms



The Top Two structure

Top Two algorithm

Given a parameter (0, 1), in round t:
@ define a leader B; € [K]
@ define a challenger C; # B;
@ select arm A; € {B¢, G} at random:
P(Ar=B:) =8 PA=CG)=1-p

In Top Two Thompson Sampling,
o TS leader: By = a,(0) with @ ~ M;_;
e Re-Sampling (RS) challenger: C; = a,(6’) where

0/ ~ I_It_1’ (a*(el) # Bt)



The Top Two structure

Top Two algorithm

Given a parameter (0, 1), in round t:
@ define a leader B; € [K]
@ define a challenger C; # B;

@ select arm A; € {B¢, G} at random:
]P(At:Bt)ZIB P(At:Ct):l—/B

In Top Two Thompson Sampling,
o TS leader: By = a,(0) with @ ~ M;_;
e Re-Sampling (RS) challenger: C; = a,(0") where
0/ ~ I_It_1’ (a*(el) # Bt)
Liminations:

=?» re-sampling can be numerically costly

=» beyond parameteric distributions?



Approximating Re-Sampling

Under the RS challenger,

Pt,a

P(Ct = a]Bt = b) = m

where p; , = M; (0, = max; 6;) ~ M (05 > 0p).

For Gaussian bandits when fi,(t) > f14(t),

1

Me (6, > 6p) ~ exp (—t ;
20—2 (Nb(t) + m

(i6(t) — fal1))? )

Idea: compute the mode instead of sampling!

~ A 2
C; = argmin (MB‘(? Ma(ti) 1([
a: t 2
#B: Qo (NBt(t + Na(t))

~—

[Shang et al., 2020]



Links with the stopping rule

Recall that TTTS was analyzed with

Aé*i/\ ¢ 2

s =inf{teN: m|n (fia; = f1a(t))

a at 1 1
207 (A@;(t) +Na<t))

=¥ another interpretation: challenger that minimizes the
Transportation Cost (TC) featured in the stopping rule

> ((t,0)




Links with the stopping rule

Recall that TTTS was analyzed with

Aé*i/\ ¢ 2
s =inf{teN: m|n (fia; = f1a(t))

a#df 5
20 (N*<)+Na<)>

=¥ another interpretation: challenger that minimizes the
Transportation Cost (TC) featured in the stopping rule

> ((t,0)

This idea extends to the non-parametric setting

Welij) = inf [N(eYCini (Fi(t), ) + N () (Fi(8),%)]

C: = argmin W;(B, a)
Q#Bt



Links with the stopping rule

Recall that TTTS was analyzed with

75 = inf {t € N:min W; (5, 2) > B(t,&)}
aF#a&y

=» another interpretation: challenger that minimizes the
Transportation Cost (TC) featured in the stopping rule

This idea extends to the non-parametric setting

Welij) = inf [N(eYCni (Filt), ) + N () (Fi(2),%)]
C: = argmin W;(By, a)
a;éBt

... provided that we know how to calibrate the stopping rule



Top Two Algorithms

@ Choices of the leader:
TS - Sample 8 ~ [1; 1 then set B;rs € arg max,c[x] 0,
EB - BEB carg max,e (k] fa(t — 1)

@ Choices of the challenger:
RS - repeat & ~ I, | until CR® € arg maXx,c(k] Ua 7# Bt
TC - C[Ccarg min, g, Wi-1(Bt, a)
TCI - G € argmin, 5, Wi_1(Bt, a) + log Na(t)



Top Two Algorithms

@ Choices of the leader:
TS - Sample 8 ~ [1; 1 then set B;rs € arg max,c[x] 0,
EB - BEB carg max,e (k] fa(t — 1)

@ Choices of the challenger:
RS - repeat & ~ I, | until CR® € arg maXx,c(k] Ua 7# Bt
TC - C[Ccarg min, g, Wi-1(Bt, a)
TCI - G € argmin, 5, Wi_1(Bt, a) + log Na(t)

M;: a sampler (e.g. posterior distribution)
=» parameteric setting: posterior distribution
=» bounded distribution: Dirichlet Sampling




Asymptotic Guarantees

Theorem

Given a calibrated GLR stopping rule, instantiating the Top Two sampling
rule with any pair of leader/challenger satisfying some properties yields a
d-correct algorithm satisfying for all v € DX with distincts means

. EV[T5] *
S Tog(1/a) = 1A )

Distributions TS EB RS TC TCI

Gaussian KV v v v v v
Bernoulli v v v v v
sub-Exp SPEF 7 7 v v/
Gaussian UV ? /7 v v
Bounded v v / v v

[Jourdan et al., 2022, Jourdan et al., 2023]



Experiments: Bounded distributions

arm = planting date / observation = yield

Moderate regime, § = 0.01. Top Two algorithms with 5 =1/2.

——Armm 1
—— Arm 2
—— Arm 3

Arm 4

2.00x10*

1.50x10*

1.00x10*

s k

EBTC  EBTCI TSTC  TSTCI KinfDKM KinfLUCB Fixed  Uniform 0.00

Figure: Empirical stopping time (a) on scaled DSSAT instances with their
density and mean (b). Lower bound is T*(v)In(1/4).
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Experiments: Bounded distributions

arm = planting date / observation = yield

Moderate regime, § = 0.01. Top Two algorithms with 5 =1/2.
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Experiments: Gaussian distributions

Moderate regime, § = 0.1. Top Two algorithms with 5 =1/2.
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Figure: (Left) Empirical stopping time 75. (Right) Empirical errors P(4f # a.)
at time t < 75 on random instances with K = 10, pu1 = 0.6, ua ~ U([0.2,0.5]).



Experiments: Gaussian distributions

Moderate regime, § = 0.1. Top Two algorithms with 5 =1/2.
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Experiments: Gaussian distributions

Moderate regime, § = 0.1. Top Two algorithms with 5 =1/2.
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Conclusion

Thompson Sampling for maximizing rewards:
@ is asymptotically optimal for simple parametric distributions
@ can be extended to some non-parametric settings

@ is flexible enough to tackle alternative performance criterion

Top Two Thompson Sampling for best arm identification:
@ may be viewed as a fix of TS for BAI
@ is a inspiration for others (non-Bayesian) Top Two algorithms

@ ... which are near optimal in theory and very good in practice

Perspective: finite-time performance?
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