Bayesian and Frequentist Methods in Bandit Models

Emilie Kaufmann, Telecom ParisTech

Bayes In Paris, ENSAE, October 24th, 2013

Emilie Kaufmann (Telecom ParisTech)

Bayesian and Frequentist Bandits

BIP, 24/10/13 1 / 48

イロト イポト イヨト イヨト

1 The multiarmed bandit problem

2 Bayesian bandits, frequentist bandits

- 3 Two Bayesian bandit algorithms
 - Bayes-UCB
 - Thompson Sampling
- 4 Bayesian algorithms for pure exploration?

5 Conclusion

イロト イポト イヨト イヨト

1 The multiarmed bandit problem

2 Bayesian bandits, frequentist bandits

3 Two Bayesian bandit algorithms

- Bayes-UCB
- Thompson Sampling

4 Bayesian algorithms for pure exploration?

5 Conclusion

Bandit model

A multi-armed bandit model is a set of K arms where

- Each arm a is a probability distribution ν_a of mean μ_a
- Drawing arm a is observing a realization of ν_a
- Arms are assumed to be independent

In a **bandit game**, at round t, a forecaster

- chooses arm A_t to draw based on past observations, according to its sampling strategy
- observes 'reward' $X_t \sim \nu_{A_t}$

イロト 不得 トイヨト イヨト ヨー のなの

Our bandit problem: regret minimization

$$\mu^* = \max_a \mu_a$$
 and $a^* = \underset{a}{\operatorname{argmax}} \mu_a$

The forecaster wants to **maximize the reward accumulated during learning** or equivalentely minimize its **regret**:

$$R_n = n\mu^* - \mathbb{E}\left[\sum_{t=1}^n X_t\right]$$

He has to find a sampling strategy (or bandit algorithm) that

realizes a tradeoff between exploration and exploitation

Applications (with arms beeing Bernoulli random variables)

- Finding the best slot machine in a 'casino' (just for the name!)
- Initial motivation: Sequential allocation of medical treatments

A I = A I = A I = A
 A I = A
 A I = A
 A I = A
 A I = A
 A I = A
 A I = A
 A I = A
 A I = A
 A I = A
 A I = A
 A I = A
 A I = A
 A I = A
 A I = A
 A I = A
 A I = A
 A I = A
 A
 A I = A
 A
 A I = A
 A
 A I = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A recent motivation for bandits: Online advertisement

Yahoo!(c) has to choose between K different advertisements the one to display on its webpage for each user (indexed by $t \in \mathbb{N}$).

- Ad number $a \rightarrow \mathbf{unknown}$ probability of click p_a
- **Unknown** best advertisement $a^* = \operatorname{argmax}_a p_a$

•
$$X_{t,a} \sim \mathcal{B}(p_a)$$
: $(X_{t,a} = 1) = (\text{user } t \text{ has clicked on ad } a)$

Yahoo!(c):

- chooses ad A_t to display for user number t
- observes whether the user has clicked or not: X_{t,A_t}
- wants to maximize the click-through-rate

 \Rightarrow How should Yahoo!(c) choose ad A_t to display depending on the previous clicks of the (t-1) first users?

イロト 不得 トイヨト イヨト 二日

1 The multiarmed bandit problem

2 Bayesian bandits, frequentist bandits

3 Two Bayesian bandit algorithms

- Bayes-UCB
- Thompson Sampling

4 Bayesian algorithms for pure exploration?

5 Conclusion

イロト 不得下 イヨト イヨト 二日

Two probabilistic models

Two probabilistic modellings

K independent arms. $\mu^*=\mu_{a^*}$ highest expectation of reward.

Frequentist :

- $\theta_1, \ldots, \theta_K$ unknown parameters
- $(Y_{a,t})_t$ is i.i.d. with distribution ν_{θ_a} with mean μ_a

Bayesian :

$$\bullet \theta_a \overset{i.i.d.}{\sim} \pi_a$$

• $(Y_{a,t})_t$ is i.i.d. conditionally to θ_a with distribution ν_{θ_a}

At time t, arm A_t is chosen and reward $X_t = Y_{A_t,t}$ is observed

Two measures of performance

Minimize regret

$$R_n(\theta) = \mathbb{E}_{\theta} \left[\sum_{t=1}^n \mu^* - \mu_{A_t} \right]$$

Minimize Bayes risk

$$\mathsf{Risk}_n = \mathbb{E}\left[\sum_{t=1}^n \mu^* - \mu_{A_t}\right]$$
$$= \int R_n(\theta) d\pi(\theta)$$

Frequentist tools, Bayesian tools

Bandit algorithms based on frequentist tools use:

- MLE for the mean parameter of each arm
- confidence intervals for the parameter of each arm

Bandit algorithms based on Bayesian tools use:

• $\Pi_t = (\pi_1^t, \dots, \pi_K^t)$ the current posterior over $(\theta_1, \dots, \theta_K)$

イロト イ理ト イヨト イヨト ニヨー のくの

Frequentist tools, Bayesian tools

Bandit algorithms based on frequentist tools use:

- MLE for the mean parameter of each arm
- confidence intervals for the parameter of each arm

Bandit algorithms based on Bayesian tools use:

• $\Pi_t = (\pi_1^t, \dots, \pi_K^t)$ the current posterior over $(\theta_1, \dots, \theta_K)$

One can separate tools and objectives:

Objective	Frequentist	Bayesian
	algorithms	algorithms
Regret	?	?
Bayes risk	?	?

イロト イ理ト イヨト イヨト ニヨー のくの

Bayesian algorithms minimizing Bayes risk

Objective	Frequentist	Bayesian
	algorithms	algorithms
Regret	?	?
Bayes risk	?	?

Emilie Kaufmann (Telecom ParisTech)

MDP formulation of the Bernoulli bandit game

Benoulli bandits with uniform prior on the means: $heta_a = \mu_a$

$$\boldsymbol{\theta}_a \overset{i.i.d}{\sim} \mathcal{U}([0,1]) = \mathsf{Beta}(1,1)$$
$$\boldsymbol{\pi}_a^t = \mathsf{Beta}(S_a(t)+1, N_a(t) - S_a(t)+1)$$

Matrix $\mathcal{S}_t \in \mathcal{M}_{K,2}$ summarizes the game :

Emilie Kaufmann

• Line a gives the parameters of the Beta posterior over arm a, π_a^t

$$S_{11} = \begin{pmatrix} 1 & 2 \\ 5 & 1 \\ 0 & 2 \end{pmatrix} \xleftarrow{\text{strong}} M_{\text{thermal}}$$

 S_t can be seen as a state in a Markov Decision Process, and the optimal policy is (depending on the criterion)

$$\underset{(A_t)}{\operatorname{arg\,max}} \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} X_t\right] \quad \text{or} \quad \underset{(A_t)}{\operatorname{arg\,max}} \mathbb{E}\left[\sum_{\substack{t=1\\t=1}}^n X_t\right]$$

$$(\text{Telecom ParisTech}) \quad \text{Bayesian and Frequentist Bandits} \quad \text{BIP, 24/10/13} \quad 11/48$$

The Finite-Horizon Gittins algorithm

Gittins ([1979]) shows the optimal policy in the discounted case is an index policy:

$$A_t = \underset{a}{\operatorname{argmax}} \nu_{Disc}(\pi_t(a)).$$

Similarly, in the finite-horizon case (our setting), the optimal policy has an explicit formulation

$$A_t = \underset{a}{\operatorname{argmax}} \nu_{FH}(\pi_t(a), \mathbf{n} - \mathbf{t})$$

The Finite-Horizon Gittins algorithm

• minimizes minimizes the Bayes risk $Risk_n$

and display very good performance on frequentist problems !
But...

- FH-Gittins indices are hard to compute
- the algorithm is heavily horizon-dependent

Emilie Kaufmann (Telecom ParisTech)

Bayesian and Frequentist Bandits

BIP, 24/10/13 12 / 48

Frequentist algorithms minimizing regret

Objective	Frequentist	Bayesian	
	algorithms	algorithms	
Regret	?	?	
Bayes risk	?	Finite-Horizon Gittins algorithm	

Asymptotically optimal algorithms in the frequentist setting

 $N_a(t)$ the number of draws of arm a up to time t

$$R_n(\theta) = \sum_{a=1}^{K} (\mu^* - \mu_a) \mathbb{E}_{\theta}[N_a(n)]$$

[Lai and Robbins, 1985]: every consistent policy satisfies

$$\mu_a < \mu^* \Rightarrow \liminf_{n \to \infty} \frac{\mathbb{E}_{\theta}[N_a(n)]}{\ln n} \ge \frac{1}{\mathsf{KL}(\nu_{\theta_a}, \nu_{\theta^*})}$$

A bandit algorithm is **asymptotically optimal** if

$$\mu_a < \mu^* \Rightarrow \limsup_{n \to \infty} \frac{\mathbb{E}_{\theta}[N_a(n)]}{\ln n} \le \frac{1}{\mathsf{KL}(\nu_{\theta_a}, \nu_{\theta^*})}$$

イロト 不得 トイヨト イヨト ヨー つなの

A family of frequentist algorithms

The following heuristic defines a family of optimistic index policies:

For each arm a, compute a confidence interval on the unknown parameter μ_a:

$$\mu_a \leq UCB_a(t) \quad w.h.p$$

• Use the *optimism-in-face-of-uncertainty principle*:

'act as if the best possible model was the true model'

The algorithm chooses at time t

$$A_t = \underset{a}{\operatorname{arg\,max}} \ UCB_a(t)$$

イロト イポト イヨト イヨト

Towards optimal algorithms

Example for Bernoulli rewards:

■ UCB [Auer et al. 02] uses Hoeffding bounds:

$$UCB_a(t) = \frac{S_a(t)}{N_a(t)} + \sqrt{\frac{\alpha \log(t)}{2N_a(t)}}$$

and one has:

$$\mathbb{E}[N_a(n)] \le rac{K_1}{2(\mu_a - \mu^*)^2} \ln n + K_2, \quad ext{with } K_1 > 1.$$

Emilie Kaufmann (Telecom ParisTech)

BIP, 24/10/13 16 / 48

イロト 不得下 イヨト イヨト 二日

KL-UCB

KL-UCB: and asymptotically optimal frequentist algorithm

Example for Bernoulli rewards:

■ KL-UCB [Cappé et al. 2013] uses the index:

$$u_{a}(t) = \underset{x > \frac{S_{a}(t)}{N_{a}(t)}}{\operatorname{argmax}} \left\{ K\left(\frac{S_{a}(t)}{N_{a}(t)}, x\right) \leq \frac{\ln(t) + c \ln \ln(t)}{N_{a}(t)} \right\}$$

with
$$K(p,q) = \mathsf{KL}\left(\mathcal{B}(p), \mathcal{B}(q)\right) = p \log\left(\frac{p}{q}\right) + (1-p) \log\left(\frac{1-p}{1-q}\right)$$

and one has

$$\mathbb{E}[N_a(n)] \leq \frac{1}{K(\mu_a, \mu^*)} \ln n + C.$$

Emilie Kaufmann (Telecom ParisTech)

BIP, 24/10/13

Frequentist algorithms optimal minimizing Bayes risk

Objective	Frequentist	Bayesian	
	algorithms	algorithms	
Regret	KL-UCB	?	
Bayes risk	KL-UCB	Finite-Horizon Gittins algorithm	

(at least in an asymptotic sense, see [Lai 1987])

Emilie Kaufmann (Telecom ParisTech)

イロト 不得下 イヨト イヨト 二日

Bayesian algorithms minimizing regret

Objective	Frequentist	Bayesian	
	algorithms	algorithms	
Regret	KL-UCB	?	
Bayes risk	KL-UCB	Finite-Horizon Gittins algorithm	

We want to design Bayesian algorithm that are optimal with respect to the frequentist regret

Emilie Kaufmann (Telecom ParisTech)

A (10) × (10) × (10)

1 The multiarmed bandit problem

2 Bayesian bandits, frequentist bandits

3 Two Bayesian bandit algorithms

- Bayes-UCB
- Thompson Sampling

4 Bayesian algorithms for pure exploration?

5 Conclusion

イロト イポト イヨト イヨト

UCBs versus Bayesian algorithms

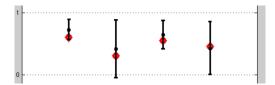


Figure: Confidence intervals on the arms means after t rounds of a bandit game

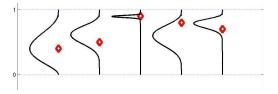


Figure: Posterior over the means of the arms after t rounds of a bandit game

< ロト < 同ト < ヨト < ヨト

UCBs versus Bayesian algorithms

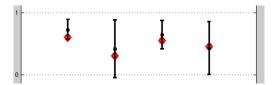


Figure: Confidence intervals on the arms means after t rounds of a bandit game

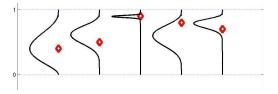


Figure: Posterior over the means of the arms after t rounds of a bandit game

 $\Rightarrow \text{How do we exploit the posterior in a Bayesian bandit algorithm?} \Rightarrow \text{How do we exploit the posterior in a Bayesian bandit algorithm?} \Rightarrow 1/4$

1 The multiarmed bandit problem

2 Bayesian bandits, frequentist bandits

Two Bayesian bandit algorithms Bayes-UCB

Thompson Sampling

4 Bayesian algorithms for pure exploration?

5 Conclusion

イロト イポト イヨト イヨト

Bayes-UCB

The Bayes-UCB algorithm

Let :

• $\Pi_0 = (\pi_1^0, \dots, \pi_K^0)$ be a prior distribution over $(\theta_1, \dots, \theta_K)$ • $\Lambda_t = (\lambda_1^t, \dots, \lambda_K^t)$ be the posterior over the means (μ_1, \dots, μ_K) a the end of round t

The Bayes-UCB algorithm chooses at time t

$$A_t = \underset{a}{\operatorname{argmax}} Q\left(1 - \frac{1}{t(\log t)^c}, \lambda_a^{t-1}\right)$$

where $Q(\alpha, \pi)$ is the quantile of order α of the distribution π .

イロト イ理ト イヨト イヨト ニヨー のくの

Bayes-UCB

The Bayes-UCB algorithm

Let :

• $\Pi_0 = (\pi_1^0, \dots, \pi_K^0)$ be a prior distribution over $(\theta_1, \dots, \theta_K)$ • $\Lambda_t = (\lambda_1^t, \dots, \lambda_K^t)$ be the posterior over the means (μ_1, \dots, μ_K) a the end of round t

The **Bayes-UCB** algorithm chooses at time t

$$A_t = \operatorname*{argmax}_a Q\left(1 - \frac{1}{t(\log t)^c}, \lambda_a^{t-1}\right)$$

where $Q(\alpha, \pi)$ is the quantile of order α of the distribution π .

Bernoulli reward with uniform prior: $heta = \mu$ and $\Pi_t = \Lambda_t$

$$A_t = \underset{a}{\operatorname{argmax}} Q\left(1 - \frac{1}{t(\log t)^c}, \operatorname{Beta}(S_a(t) + 1, N_a(t) - S_a(t) + 1)\right)$$

イロト イ理ト イヨト イヨト ニヨー のくの

Theoretical results for the Bernoulli case

Bayes-UCB is asymptotically optimal in this case

Theorem [K.,Cappé,Garivier 2012] Let $\epsilon > 0$. The Bayes-UCB algorithm using a uniform prior over the arms and with parameter $c \ge 5$ satisfies

$$\mathbb{E}_{\theta}[N_{a}(n)] \leq \frac{1+\epsilon}{\mathsf{KL}(\mathcal{B}(\mu_{a}), \mathcal{B}(\mu^{*}))} \log(n) + o_{\epsilon,c} \left(\log(n)\right).$$

イロト 不得 トイヨト イヨト 二日

Link to a frequentist algorithm

Bayes-UCB index is close to KL-UCB index: $\tilde{u}_a(t) \leq q_a(t) \leq u_a(t)$ with:

$$\begin{split} u_a(t) &= \arg \max_{x > \frac{S_a(t)}{N_a(t)}} \left\{ K\left(\frac{S_a(t)}{N_a(t)}, x\right) \le \frac{\log(t) + c\log(\log(t))}{N_a(t)} \right\} \\ \tilde{u}_a(t) &= \arg \max_{x > \frac{S_a(t)}{N_a(t)+1}} \left\{ K\left(\frac{S_a(t)}{N_a(t)+1}, x\right) \le \frac{\log\left(\frac{t}{N_a(t)+2}\right) + c\log(\log(t))}{(N_a(t)+1)} \right\} \end{split}$$

Bayes-UCB appears to build automatically confidence intervals based on Kullback-Leibler divergence, that are adapted to the geometry of the problem in this specific case.

イロト 不得下 イヨト イヨト 二日

Where does it come from?

We have a tight bound on the tail of posterior distributions (Beta distributions)

First element: link between Beta and Binomial distribution:

$$\mathbb{P}(X_{a,b} \ge x) = \mathbb{P}(S_{a+b-1,1-x} \ge b)$$

• Second element: Sanov inequality: for k > nx,

$$\frac{e^{-nd\left(\frac{k}{n},x\right)}}{n+1} \le \mathbb{P}(S_{n,x} \ge k) \le e^{-nd\left(\frac{k}{n},x\right)}$$

Emilie Kaufmann (Telecom ParisTech)

BIP, 24/10/13 26 / 48

イロト 不得下 イヨト イヨト 二日

- 1 The multiarmed bandit problem
- 2 Bayesian bandits, frequentist bandits
- 3 Two Bayesian bandit algorithms
 - Bayes-UCB
 - Thompson Sampling
- 4 Bayesian algorithms for pure exploration?
- 5 Conclusion

イロト イポト イヨト イヨト

Thompson Sampling

A randomized Bayesian algorithm:

 $\begin{aligned} \forall a \in \{1..K\}, \quad \theta_a(t) \sim \lambda_a^t \\ A_t = \mathrm{argmax}_a \ \mu(\theta_a(t)) \end{aligned}$

(Recent) interest for this algorithm:

- a very old algorithm [Thompson 1933]
- partial analysis proposed
 [Granmo 2010][May, Korda, Lee, Leslie 2012]
- extensive numerical study beyond the Bernoulli case [Chapelle, Li 2011]
- first logarithmic upper bound on the regret [Agrawal,Goyal 2012]

An optimal regret bound for Bernoulli bandits

Assume the first arm is the unique optimal and $\Delta_a = \mu_1 - \mu_a$.

Known result : [Agrawal, Goyal 2012]

$$\mathbb{E}[R_n] \le C\left(\sum_{a=2}^K \frac{1}{\Delta_a}\right) \ln(n) + o_\mu(\ln(n))$$

An optimal regret bound for Bernoulli bandits

Assume the first arm is the unique optimal and $\Delta_a = \mu_1 - \mu_a$.

Known result : [Agrawal, Goyal 2012]

$$\mathbb{E}[R_n] \le C\left(\sum_{a=2}^K \frac{1}{\Delta_a}\right) \ln(n) + o_\mu(\ln(n))$$

Our improvement : [K.,Korda,Munos 2012]

Theorem $\forall \epsilon > 0$,

$$\mathbb{E}[R_n] \le (1+\epsilon) \left(\sum_{a=2}^K \frac{\Delta_a}{\mathsf{KL}(\mathcal{B}(\mu_a), \mathcal{B}(\mu^*))} \right) \ln(n) + o_{\mu,\epsilon}(\ln(n))$$

イロト 不得 トイヨト イヨト ヨー のなの

Two key elements in the proof

Introduce a quantile to replace the sample:

$$q_a(t) := Q\left(1 - rac{1}{t\ln(n)}, \pi_a^t
ight)$$
 such that $\sum_{t=1}^n \mathbb{P}\left(heta_a(t) > q_a(t)
ight) \le 2$

and use what we know about quantiles (cf. Bayes-UCB)

イロト 不得下 イヨト イヨト 二日

Two key elements in the proof

Introduce a quantile to replace the sample:

$$q_a(t) := Q\left(1 - rac{1}{t\ln(n)}, \pi_a^t
ight)$$
 such that $\sum_{t=1}^n \mathbb{P}\left(heta_a(t) > q_a(t)
ight) \le 2$

and use what we know about quantiles (cf. Bayes-UCB)

Proove separately that the optimal arm has to be drawn a lot

Proposition

There exists constants $b=b(\mu)\in(0,1)$ and $C_b<\infty$ such that

$$\sum_{t=1}^{\infty} \mathbb{P}\left(N_1(t) \le t^b\right) \le C_b.$$

Emilie Kaufmann (Telecom ParisTech)

Thompson Sampling in Exponential Family bandits

• Arm a has distribution ν_{θ_a} with density

$$f(x|\theta_a) = A(x) \exp(T(x)\theta_a - F(\theta_a)).$$

• The Jeffreys' prior on arm a is

$$\pi_J(\theta) \propto \sqrt{|F''(\theta)|}.$$

Practical implementation of TS with Jeffreys' prior

Name	Distribution	Prior on λ	Posterior on λ
$\mathcal{B}(\lambda)$	$\lambda^x (1-\lambda)^{1-x} \delta_{0,1}$	$B\left(\frac{1}{2},\frac{1}{2}\right)$	$B\left(\frac{1}{2}+s,\frac{1}{2}+n-s\right)$
$\mathcal{N}(\lambda,\sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\lambda)^2}{2\sigma^2}}$	$\propto 1$	$\mathcal{N}\left(rac{s}{n},rac{\sigma^2}{n} ight)$
$\Gamma(k,\lambda)$	$\frac{\lambda^k}{\Gamma(k)} x^{k-1} e^{-\lambda x} 1_{[0,+\infty[}$	$\propto rac{1}{\lambda}$	$\Gamma(kn,s)$
$Pareto(x_m,\lambda)$	$\frac{\lambda x_m^\lambda}{x^{\lambda+1}} 1_{[x_m, +\infty[}$	$\propto rac{1}{\lambda}$	$\Gamma\left(n+1, s-n\log x_m\right)$

Posterior after n observations y_1, \ldots, y_n , with $s = \sum_{s=1}^n T(y_s)$.

・ロン ・聞と ・ヨン ・ヨン

Thompson Sampling in Exponential Family bandits

Theorem [Korda,K.,Munos 13]

If the rewards distributions belong to a 1-dimensional canonical exponential family, Thompson sampling with Jeffreys' prior π_J satisfies

$$\lim_{n \to \infty} \frac{\mathbb{E}[N_a(n)]}{\ln n} = \frac{1}{\mathsf{KL}(\nu_{\theta_a}, \nu_{\theta_a^*})}$$

Emilie Kaufmann (Telecom ParisTech)

イロト 不得 トイヨト イヨト ヨー のなの

Thompson Sampling in Exponential Family bandits

An idea of the proof

 $\theta_a(t)$ be a sample of the posterior $\pi_a(t)$ on θ_a . TS samples at round t $A_t = \arg \max_a \theta_a(t)$.

$$E_{a,t} = \left(\left| \frac{1}{N_a(t)} \sum_{s=1}^{N_a(t)} T(Y_{a,s}) - F'(\theta_a) \right| \le \delta_a \right), \ E_{a,t}^{\theta} = (\mu(\theta_a(t)) \le \mu_a + \Delta_a)$$

$$\mathbb{E}[N_{a}(n)] = \sum_{t=1}^{n} \mathbb{P}(A_{t} = a, E_{a,t}, E_{a,t}^{\theta}) + \sum_{t=1}^{n} \mathbb{P}(A_{t} = a, E_{a,t}, (E_{a,t}^{\theta})^{c}) + \sum_{t=1}^{n} \mathbb{P}(A_{t} = a, E_{a,t}^{c})$$

Emilie Kaufmann (Telecom ParisTech)

BIP, 24/10/13 33 / 48

Thompson Sampling in Exponential Family bandits

Two key ingredients

Theorem (posterior concentration) There exists two constants $C_{1,a}, C_{2,a}$ such that

$$\mathbb{P}((E_{a,t}^{\theta})^{c}|\mathcal{F}_{t})\mathbb{1}_{E_{a,t}} \leq C_{1,a}N_{a,t}e^{-N_{a,t}(1-\delta_{a}C_{2,a})\mathsf{KL}(\nu_{\theta_{a}},\nu_{\mu^{-1}(\mu_{a}+\Delta_{a})})}$$

Proposition (number of draws of the optimal arm) For every $b \in]0, 1[$, there exists $C_b < \infty$ such that

$$\sum_{t=1}^{\infty} \mathbb{P}\left(N_1(t) \le t^b\right) \le C_b.$$

Emilie Kaufmann (Telecom ParisTech)

BIP, 24/10/13 34 / 48

Understanding the deviation result

Recall the result

For every $b \in]0,1[$ there exists a constant $C_b < \infty$ such that

$$\sum_{t=1}^{\infty} \mathbb{P}\left(N_1(t) \le t^b\right) \le C_b.$$

Where does it come from?

$$\left\{N_1(t) \le t^b\right\} = \{\text{there exists a time range of length at least } t^{1-b} - 1$$
 with no draw of arm 1}



Assume that :

• on $\mathcal{I}_j = [\tau_j, \tau_j + \lceil t^{1-b} - 1 \rceil]$ there is no draw of arm 1

• there exists $\mathcal{J}_j \subset \mathcal{I}_j$ such that $\forall s \in \mathcal{J}_j, \forall a \neq 1$, $\mu(\theta_a(s)) \leq \mu_2 + \delta$

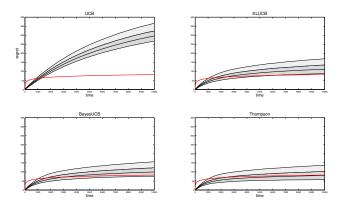
Then :

•
$$\forall s \in \mathcal{J}_j, \ \mu(\theta_1(s)) \leq \mu_2 + \delta$$

 \Rightarrow This only happens with small probability

イロト イポト イヨト イヨト

Why using Bayesian algorithm in the frequentist setting?



Regret as a function of time in a ten arms Bernoulli bandit problem with low rewards, horizon n = 20000, average over N = 50000 trials.

< ロト < 同ト < ヨト < ヨト

Why using Bayesian algorithm in the frequentist setting?

In the Bernoulli case, for each arm,

• KL-UCB requires to solve an optimization problem:

$$u_a(t) = \operatorname*{argmax}_{x > \frac{S_a(t)}{N_a(t)}} \left\{ K\left(\frac{S_a(t)}{N_a(t)}, x\right) \leq \frac{\ln(t) + c \ln \ln(t)}{N_a(t)} \right\}$$

- Bayes-UCB requires to compute one quantile of a Beta distribution
- Thompson Sampling requires to compute one sample of a Beta distribution

Why using Bayesian algorithm in the frequentist setting?

In the Bernoulli case, for each arm,

KL-UCB requires to solve an optimization problem:

$$u_a(t) = \operatorname*{argmax}_{x > \frac{S_a(t)}{N_a(t)}} \left\{ K\left(\frac{S_a(t)}{N_a(t)}, x\right) \leq \frac{\ln(t) + c \ln \ln(t)}{N_a(t)} \right\}$$

- Bayes-UCB requires to compute one quantile of a Beta distribution
- Thompson Sampling requires to compute one sample of a Beta distribution

Other advantages of Bayesian algorithms:

- they easily generalize to more complex models...
- ...even when the posterior is not directly computable (using MCMC)
- the prior can incorporate correlation between arms

イロト イポト イヨト イヨト

- 1 The multiarmed bandit problem
- 2 Bayesian bandits, frequentist bandits
- **3** Two Bayesian bandit algorithms
 - Bayes-UCB
 - Thompson Sampling
- 4 Bayesian algorithms for pure exploration?
- 5 Conclusion

イロト イポト イヨト イヨト

One bandit model, two bandit problems

Recall a bandit model is simply a set of K unknown distributions. Assume

 $\underbrace{\mu_1 \geq \cdots \geq \mu_m}_{\mathcal{S}^*_m} > \mu_{m+1} \geq \cdots \geq \mu_K.$

• We have seen sofar one bandit problem: regret minimization

• We introduce here another bandit problem: pure-exploration:

The forecaster has to **find the set of** m **best arms**, using as few observations of the arms as possible, but *without suffering a loss when* drawing a bad arm.

The forecaster:

- draws the arms according to an exploration strategy
- stops at time τ (stopping strategy) and recommends a set S of m arms

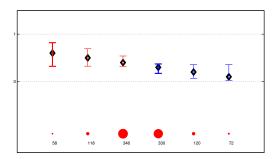
His goal:

$$\mathbb{P}(S = \mathcal{S}_m^*) \geq 1 - \delta \quad \text{and} \quad \mathbb{E}[\tau] \text{ as small as possible}$$

KL-UCB: an algorithm for finding the m best arms

At round t, the KL-LUCB algorithm ([K., Kalyanakrishnan, 13])

- draws two well-chosen arms: u_t and l_t
- **stops** when CI for arms in $\hat{S}_m(t)$ and $(\hat{S}_m)^c(t)$ are separated
- recommends the set $\hat{S}_m(\tau)$ of m empirical best arms



K=6,m=3. Set $\hat{S}_m(t)$, arm l_t in bold Set $(\hat{S}_m(t))^c$, arm u_t in bold

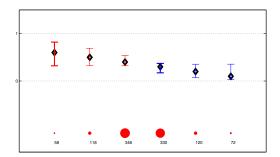
A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Bayesian algorithms for finding the m best?

KL-LUCB uses KL-confidence intervals:

$$L_{a}(t) = \min \{ q \le \hat{p}_{a}(t) : N_{a}(t)K(\hat{p}_{a}(t), q) \le \beta(t, \delta) \}, U_{a}(t) = \max \{ q \ge \hat{p}_{a}(t) : N_{a}(t)K(\hat{p}_{a}(t), q) \le \beta(t, \delta) \}.$$

We use $\beta(t, \delta) = \log\left(\frac{k_1Kt^{\alpha}}{\delta}\right)$ to make sure $\mathbb{P}(S = \mathcal{S}_m^*) \ge 1 - \delta$.

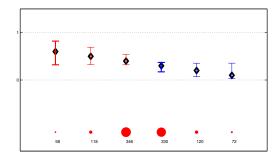


Bayesian algorithms for finding the m best?

KL-LUCB uses KL-confidence intervals:

$$L_{a}(t) = \min \{ q \le \hat{p}_{a}(t) : N_{a}(t)K(\hat{p}_{a}(t), q) \le \beta(t, \delta) \}, U_{a}(t) = \max \{ q \ge \hat{p}_{a}(t) : N_{a}(t)K(\hat{p}_{a}(t), q) \le \beta(t, \delta) \}.$$

We use $\beta(t, \delta) = \log\left(\frac{k_1Kt^{\alpha}}{\delta}\right)$ to make sure $\mathbb{P}(S = \mathcal{S}_m^*) \ge 1 - \delta$.



\Rightarrow How to propose a Bayesian algorithm that adapts to δ ?

Emilie Kaufmann (Telecom ParisTech)

- 1 The multiarmed bandit problem
- 2 Bayesian bandits, frequentist bandits
- **3** Two Bayesian bandit algorithms
 - Bayes-UCB
 - Thompson Sampling
- 4 Bayesian algorithms for pure exploration?
- 5 Conclusion

イロン 不聞と 不同と 不同と

Conclusion

Conclusion for regret minimization

Objective	Frequentist	Bayesian
	algorithms	algorithms
Regret	KL-UCB	Bayes-UCB
		Thompson Sampling
Bayes risk	KL-UCB	Gittins algorithm
		for finite horizon

Emilie Kaufmann (Telecom ParisTech)

(日) (四) (三) (三) (三)

Work in progress

Objective	Frequentist	Bayesian	
	algorithms	algorithms	
Regret	KL-UCB	Bayes-UCB	
		↑Thompson Sampling	2
Bayes risk	KL-UCB	Gittins algorithm	l t
		for finite horizon	

Emilie Kaufmann (Telecom ParisTech)

BIP, 24/10/13 45 / 48

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへ⊙

Conclusion

Regret minimization: Go Bayesian!

- Bayes-UCB show striking similarities with KL-UCB
- Thompson Sampling is an easy-to-implement alternative to the optimistic approach
- both algorithms are asymptotically optimal towards frequentist regret (and more efficient in practise) in the Bernoulli case
- Thompson Sampling with Jeffreys' prior is asymptotically optimal when rewards belong to a one-dimensional exponential family, which matches the guarantees of the KL-UCB algorithm

Conclusion

Regret minimization: Go Bayesian!

- Bayes-UCB show striking similarities with KL-UCB
- Thompson Sampling is an easy-to-implement alternative to the optimistic approach
- both algorithms are asymptotically optimal towards frequentist regret (and more efficient in practise) in the Bernoulli case
- Thompson Sampling with Jeffreys' prior is asymptotically optimal when rewards belong to a one-dimensional exponential family, which matches the guarantees of the KL-UCB algorithm

Natural open question:

Can Bayesian tools be used to build efficient algorithms for the pure-exploration objective?

References (1/2)

- S.Agrawal and N.Goyal, Analysis of Thompson Sampling for the multi-armed bandit problem, COLT 2012
- O.Cappé, A.Garivier, O. Maillard, R. Munos, G. Stoltz. Kullback-Leibler upper confidence bound for optimal sequential allocation, Annals of Statistics, 2013
- J.C. Gittins. Bandit processes and dynamic allocation indices, Journal of the Royal Statistical Society, Serie B, 1979
- E. Kaufmann, O. Cappé, and A. Garivier. *On Bayesian upper confidence bounds for bandit problems*. AISTATS 2012
- E.Kaufmann, N.Korda, and R.Munos. Thompson Sampling: an asymptotically optimal finite-time analysis. ALT 2012

References (2/2)

- E.Kaufmann and S.Kalyanakrishnan. Information Complexity in Bandit Subset Selection, COLT 2013
- N.Korda, E.Kaufmann, R.Munos. Thompson Sampling for one-dimensional exponential families, to appear in NIPS 2013
- T.Lai, Adaptive treatment allocation and the multi-armed bandit problem, Annals of Statistics, 1987
- T.Lai and H.Robbins. Asymptotically efficient adaptive allocation rules, Advances in applied mathematics, 1985
- W. Thompson, On the likelihood that one unknown probability exceeds another in view of the evidence of two samples, Biometrika, 1933