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The multiarmed bandit problem Bandit model

Bandit model

A multi-armed bandit model is a set of K arms where

Each arm a is a probability distribution νa of mean µa

Drawing arm a is observing a realization of νa

Arms are assumed to be independent

In a bandit game, at round t, a forecaster

chooses arm At to draw based on past observations, according to its
sampling strategy

observes ’reward’ Xt ∼ νAt

Emilie Kaufmann (Telecom ParisTech) Bayesian and Frequentist Bandits BIP, 24/10/13 4 / 48



The multiarmed bandit problem The regret minimization problem

Our bandit problem: regret minimization

µ∗ = max
a

µa and a∗ = argmax
a

µa

The forecaster wants to maximize the reward accumulated during
learning or equivalentely minimize its regret:

Rn = nµ∗ − E

[
n∑
t=1

Xt

]

He has to find a sampling strategy (or bandit algorithm) that

realizes a tradeoff between exploration and exploitation

Applications (with arms beeing Bernoulli random variables)

Finding the best slot machine in a ’casino’ (just for the name!)

Initial motivation: Sequential allocation of medical treatments
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The multiarmed bandit problem The regret minimization problem

A recent motivation for bandits: Online advertisement

Yahoo!(c) has to choose between K different advertisements the one to
display on its webpage for each user (indexed by t ∈ N).

Ad number a → unknown probability of click pa

Unknown best advertisement a∗ = argmaxa pa

Xt,a ∼ B(pa): (Xt,a = 1)=(user t has clicked on ad a)

Yahoo!(c):

chooses ad At to display for user number t

observes whether the user has clicked or not: Xt,At

wants to maximize the click-through-rate

⇒ How should Yahoo!(c) choose ad At to display depending on the
previous clicks of the (t− 1) first users?
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Bayesian bandits, frequentist bandits Two probabilistic models

Two probabilistic modellings

K independent arms. µ∗ = µa∗ highest expectation of reward.

Frequentist :
θ1, . . . , θK unknown parameters

(Ya,t)t is i.i.d. with distribution
νθa with mean µa

Bayesian :

θa
i.i.d.∼ πa

(Ya,t)t is i.i.d. conditionally to
θa with distribution νθa

At time t, arm At is chosen and reward Xt = YAt,t is observed

Two measures of performance

Minimize regret

Rn(θ) = Eθ

[
n∑
t=1

µ∗ − µAt

] Minimize Bayes risk

Riskn = E

[
n∑
t=1

µ∗ − µAt

]

=

∫
Rn(θ)dπ(θ)
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Bayesian bandits, frequentist bandits Two probabilistic models

Frequentist tools, Bayesian tools

Bandit algorithms based on frequentist tools use:

MLE for the mean parameter of each arm

confidence intervals for the parameter of each arm

Bandit algorithms based on Bayesian tools use:

Πt = (πt1, . . . , π
t
K) the current posterior over (θ1, ..., θK)

One can separate tools and objectives:

Objective Frequentist Bayesian
algorithms algorithms

Regret ? ?

Bayes risk ? ?
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Bayesian bandits, frequentist bandits Bayesian algorithm and Bayes risk

Bayesian algorithms minimizing Bayes risk

Objective Frequentist Bayesian
algorithms algorithms

Regret ? ?

Bayes risk ? ?
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Bayesian bandits, frequentist bandits Bayesian algorithm and Bayes risk

MDP formulation of the Bernoulli bandit game

Benoulli bandits with uniform prior on the means: θa = µa

θa
i.i.d∼ U([0, 1]) = Beta(1, 1)

πta = Beta(Sa(t) + 1, Na(t)− Sa(t) + 1)

Matrix St ∈MK,2 summarizes the game :

Line a gives the parameters of the Beta posterior over arm a, πta

St can be seen as a state in a Markov Decision Process, and the optimal
policy is (depending on the criterion)

arg max
(At)

E

[ ∞∑
t=1

γt−1Xt

]
or arg max

(At)
E

[
n∑
t=1

Xt

]
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Bayesian bandits, frequentist bandits Bayesian algorithm and Bayes risk

The Finite-Horizon Gittins algorithm

Gittins ([1979]) shows the optimal policy in the discounted case is an
index policy:

At = argmax
a

νDisc(πt(a)).

Similarly, in the finite-horizon case (our setting), the optimal policy has an
explicit formulation

At = argmax
a

νFH(πt(a), n− t)

The Finite-Horizon Gittins algorithm

minimizes minimizes the Bayes risk Riskn

and display very good performance on frequentist problems !

But...

FH-Gittins indices are hard to compute

the algorithm is heavily horizon-dependent
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Bayesian bandits, frequentist bandits Frequentist algorithms and regret

Frequentist algorithms minimizing regret

Objective Frequentist Bayesian
algorithms algorithms

Regret ? ?

Bayes risk ? Finite-Horizon Gittins algorithm
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Bayesian bandits, frequentist bandits Frequentist optimality

Asymptotically optimal algorithms in the frequentist setting

Na(t) the number of draws of arm a up to time t

Rn(θ) =

K∑
a=1

(µ∗ − µa)Eθ[Na(n)]

[Lai and Robbins,1985]: every consistent policy satisfies

µa < µ∗ ⇒ lim inf
n→∞

Eθ[Na(n)]

lnn
≥ 1

KL(νθa , νθ∗)

A bandit algorithm is asymptotically optimal if

µa < µ∗ ⇒ lim sup
n→∞

Eθ[Na(n)]

lnn
≤ 1

KL(νθa , νθ∗)
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Bayesian bandits, frequentist bandits The optimism principle

A family of frequentist algorithms

The following heuristic defines a family of optimistic index policies:

For each arm a, compute a confidence interval on the unknown
parameter µa:

µa ≤ UCBa(t) w.h.p

Use the optimism-in-face-of-uncertainty principle:

’act as if the best possible model was the true model’

The algorithm chooses at time t

At = arg max
a

UCBa(t)
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Bayesian bandits, frequentist bandits UCB

Towards optimal algorithms

Example for Bernoulli rewards:

UCB [Auer et al. 02] uses Hoeffding bounds:

UCBa(t) =
Sa(t)

Na(t)
+

√
α log(t)

2Na(t)

and one has:

E[Na(n)] ≤ K1

2(µa − µ∗)2
lnn+K2, with K1 > 1.
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Bayesian bandits, frequentist bandits KL-UCB

KL-UCB: and asymptotically optimal frequentist algorithm

Example for Bernoulli rewards:

KL-UCB [Cappé et al. 2013] uses the index:

ua(t) = argmax
x>

Sa(t)
Na(t)

{
K

(
Sa(t)

Na(t)
, x

)
≤ ln(t) + c ln ln(t)

Na(t)

}
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(t)/N

a
(t)

β(t,δ)/N
a
(t)

with K(p, q) = KL (B(p),B(q)) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
and one has

E[Na(n)] ≤ 1

K(µa, µ∗)
lnn+ C.
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Bayesian bandits, frequentist bandits Frequentist algorithms and Bayes risk

Frequentist algorithms optimal minimizing Bayes risk

Objective Frequentist Bayesian
algorithms algorithms

Regret KL-UCB ?

Bayes risk KL-UCB Finite-Horizon Gittins algorithm

(at least in an asymptotic sense, see [Lai 1987])
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Bayesian bandits, frequentist bandits Bayesian algorithms and regret

Bayesian algorithms minimizing regret

Objective Frequentist Bayesian
algorithms algorithms

Regret KL-UCB ?

Bayes risk KL-UCB Finite-Horizon Gittins algorithm

We want to design Bayesian algorithm that are optimal
with respect to the frequentist regret
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Two Bayesian bandit algorithms Bayesian algorithms versus UCBs

UCBs versus Bayesian algorithms

Figure: Confidence intervals on the arms means after t rounds of a bandit game

Figure: Posterior over the means of the arms after t rounds of a bandit game

⇒ How do we exploit the posterior in a Bayesian bandit algorithm?
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Two Bayesian bandit algorithms Bayes-UCB

The Bayes-UCB algorithm

Let :

Π0 = (π0
1, . . . , π

0
K) be a prior distribution over (θ1, ..., θK)

Λt = (λt1, . . . , λ
t
K) be the posterior over the means (µ1, ..., µK) a the

end of round t

The Bayes-UCB algorithm chooses at time t

At = argmax
a

Q

(
1− 1

t(log t)c
, λt−1

a

)
where Q(α, π) is the quantile of order α of the distribution π.

Bernoulli reward with uniform prior: θ = µ and Πt = Λt

At = argmax
a

Q

(
1− 1

t(log t)c
,Beta(Sa(t) + 1, Na(t)− Sa(t) + 1)

)
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Two Bayesian bandit algorithms Bayes-UCB

Theoretical results for the Bernoulli case

Bayes-UCB is asymptotically optimal in this case

Theorem [K.,Cappé,Garivier 2012]
Let ε > 0. The Bayes-UCB algorithm using a uniform prior over the arms
and with parameter c ≥ 5 satisfies

Eθ[Na(n)] ≤ 1 + ε

KL(B(µa),B(µ∗))
log(n) + oε,c (log(n)) .
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Two Bayesian bandit algorithms Bayes-UCB

Link to a frequentist algorithm

Bayes-UCB index is close to KL-UCB index: ũa(t) ≤ qa(t) ≤ ua(t)
with:

ua(t) = argmax
x>

Sa(t)
Na(t)

{
K

(
Sa(t)

Na(t)
, x

)
≤ log(t) + c log(log(t))

Na(t)

}

ũa(t) = argmax
x>

Sa(t)
Na(t)+1

K
(

Sa(t)

Na(t) + 1
, x

)
≤

log
(

t
Na(t)+2

)
+ c log(log(t))

(Na(t) + 1)


Bayes-UCB appears to build automatically confidence intervals
based on Kullback-Leibler divergence, that are adapted to the
geometry of the problem in this specific case.
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Two Bayesian bandit algorithms Bayes-UCB

Where does it come from?

We have a tight bound on the tail of posterior distributions
(Beta distributions)

First element: link between Beta and Binomial distribution:

P(Xa,b ≥ x) = P(Sa+b−1,1−x ≥ b)

Second element: Sanov inequality: for k > nx,

e−nd(
k
n
,x)

n+ 1
≤ P(Sn,x ≥ k) ≤ e−nd(

k
n
,x)
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Two Bayesian bandit algorithms Thompson Sampling
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Two Bayesian bandit algorithms Thompson Sampling

Thompson Sampling

A randomized Bayesian algorithm:

∀a ∈ {1..K}, θa(t) ∼ λta
At = argmaxa µ(θa(t))

(Recent) interest for this algorithm:

a very old algorithm
[Thompson 1933]
partial analysis proposed
[Granmo 2010][May, Korda, Lee, Leslie 2012]

extensive numerical study beyond the Bernoulli case
[Chapelle, Li 2011]

first logarithmic upper bound on the regret
[Agrawal,Goyal 2012]
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Two Bayesian bandit algorithms Thompson Sampling

An optimal regret bound for Bernoulli bandits

Assume the first arm is the unique optimal and ∆a = µ1 − µa.

Known result : [Agrawal,Goyal 2012]

E[Rn] ≤ C

(
K∑
a=2

1

∆a

)
ln(n) + oµ(ln(n))

Our improvement : [K.,Korda,Munos 2012]

Theorem ∀ε > 0,

E[Rn] ≤ (1 + ε)

(
K∑
a=2

∆a

KL(B(µa),B(µ∗))

)
ln(n) + oµ,ε(ln(n))
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Two Bayesian bandit algorithms Thompson Sampling

Two key elements in the proof

Introduce a quantile to replace the sample:

qa(t) := Q

(
1− 1

t ln(n)
, πta

)
such that

n∑
t=1

P (θa(t) > qa(t)) ≤ 2

and use what we know about quantiles (cf. Bayes-UCB)

Proove separately that the optimal arm has to be drawn a lot

Proposition
There exists constants b = b(µ) ∈ (0, 1) and Cb <∞ such that

∞∑
t=1

P
(
N1(t) ≤ tb

)
≤ Cb.
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Two Bayesian bandit algorithms Thompson Sampling

Thompson Sampling in Exponential Family bandits

Arm a has distribution νθa with density

f(x|θa) = A(x) exp(T (x)θa − F (θa)).

The Jeffreys’ prior on arm a is

πJ(θ) ∝
√
|F ′′(θ)|.

Practical implementation of TS with Jeffreys’ prior

Name Distribution Prior on λ Posterior on λ

B(λ) λx(1− λ)1−xδ0,1 B
(

1
2 ,

1
2

)
B
(

1
2 + s, 1

2 + n− s
)

N (λ, σ2) 1√
2πσ2

e−
(x−λ)2

2σ2 ∝ 1 N
(
s
n ,

σ2

n

)
Γ(k, λ) λk

Γ(k)x
k−1e−λx1[0,+∞[ ∝ 1

λ Γ(kn, s)

Pareto(xm, λ) λxλm
xλ+1 1[xm,+∞[ ∝ 1

λ Γ (n+ 1, s− n log xm)

Posterior after n observations y1, . . . , yn, with s =
∑n

s=1 T (ys).
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Two Bayesian bandit algorithms Thompson Sampling

Thompson Sampling in Exponential Family bandits

Theorem [Korda,K.,Munos 13]
If the rewards distributions belong to a 1-dimensional canonical
exponential family, Thompson sampling with Jeffreys’ prior πJ satisfies

lim
n→∞

E[Na(n)]

lnn
=

1

KL(νθa , νθa∗ )
.
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Two Bayesian bandit algorithms Thompson Sampling

Thompson Sampling in Exponential Family bandits

An idea of the proof
θa(t) be a sample of the posterior πa(t) on θa. TS samples at round t
At = arg maxa θa(t).

Ea,t =

∣∣∣∣∣∣ 1

Na(t)

Na(t)∑
s=1

T (Ya,s)− F ′(θa)

∣∣∣∣∣∣ ≤ δa
 , Eθa,t = (µ(θa(t)) ≤ µa + ∆a)

E[Na(n)] =

n∑
t=1

P(At = a,Ea,t, E
θ
a,t) +

n∑
t=1

P(At = a,Ea,t, (E
θ
a,t)

c)

+

n∑
t=1

P(At = a,Eca,t)

Emilie Kaufmann (Telecom ParisTech) Bayesian and Frequentist Bandits BIP, 24/10/13 33 / 48



Two Bayesian bandit algorithms Thompson Sampling

Thompson Sampling in Exponential Family bandits

Two key ingredients

Theorem (posterior concentration)
There exists two constants C1,a, C2,a such that

P((Eθa,t)
c|Ft)1Ea,t ≤ C1,aNa,te

−Na,t(1−δaC2,a)KL(νθa ,νµ−1(µa+∆a))

Proposition (number of draws of the optimal arm)
For every b ∈]0, 1[, there exists Cb <∞ such that

∞∑
t=1

P
(
N1(t) ≤ tb

)
≤ Cb.
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Two Bayesian bandit algorithms Thompson Sampling

Understanding the deviation result

Recall the result

For every b ∈]0, 1[ there exists a constant Cb <∞ such that

∞∑
t=1

P
(
N1(t) ≤ tb

)
≤ Cb.

Where does it come from?{
N1(t) ≤ tb

}
= {there exists a time range of length at least t1−b − 1

with no draw of arm 1}
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Two Bayesian bandit algorithms Thompson Sampling
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Assume that :

on Ij = [τj , τj + dt1−b − 1e] there is no draw of arm 1

there exists Jj ⊂ Ij such that ∀s ∈ Jj , ∀a 6= 1, µ(θa(s)) ≤ µ2 + δ

Then :

∀s ∈ Jj , µ(θ1(s)) ≤ µ2 + δ

⇒ This only happens with small probability
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Two Bayesian bandit algorithms Go Bayesian!

Why using Bayesian algorithm in the frequentist setting?
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Regret as a function of time in a ten arms Bernoulli bandit problem with low

rewards, horizon n = 20000, average over N = 50000 trials.
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Two Bayesian bandit algorithms Go Bayesian!

Why using Bayesian algorithm in the frequentist setting?

In the Bernoulli case, for each arm,

KL-UCB requires to solve an optimization problem:

ua(t) = argmax
x>

Sa(t)
Na(t)

{
K

(
Sa(t)

Na(t)
, x

)
≤ ln(t) + c ln ln(t)

Na(t)

}
Bayes-UCB requires to compute one quantile of a Beta distribution

Thompson Sampling requires to compute one sample of a Beta
distribution

Other advantages of Bayesian algorithms:

they easily generalize to more complex models...

...even when the posterior is not directly computable (using MCMC)

the prior can incorporate correlation between arms
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...even when the posterior is not directly computable (using MCMC)

the prior can incorporate correlation between arms
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Bayesian algorithms for pure exploration? Setup and notations

One bandit model, two bandit problems

Recall a bandit model is simply a set of K unknown distributions. Assume

µ1 ≥ · · · ≥ µm︸ ︷︷ ︸
S∗m

> µm+1 ≥ · · · ≥ µK .

We have seen sofar one bandit problem: regret minimization
We introduce here another bandit problem: pure-exploration:

The forecaster has to find the set of m best arms, using as few
observations of the arms as possible, but without suffering a loss when

drawing a bad arm.

The forecaster:

draws the arms according to an exploration strategy
stops at time τ (stopping strategy) and recommends a set S of m
arms

His goal:
P(S = S∗m) ≥ 1− δ and E[τ ] as small as possible
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Bayesian algorithms for pure exploration? Algorithms for finding the m best

KL-UCB: an algorithm for finding the m best arms

At round t, the KL-LUCB algorithm ([K., Kalyanakrishnan, 13])

draws two well-chosen arms: ut and lt
stops when CI for arms in Ŝm(t) and (Ŝm)c(t) are separated

recommends the set Ŝm(τ) of m empirical best arms

0

1

58 118 346 330 120 72

K=6,m=3. Set Ŝm(t), arm lt in bold Set (Ŝm(t))c, arm ut in bold
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Bayesian algorithms for pure exploration? Algorithms for finding the m best

Bayesian algorithms for finding the m best?

KL-LUCB uses KL-confidence intervals:

La(t) = min {q ≤ p̂a(t) : Na(t)K(p̂a(t), q) ≤ β(t, δ)} ,
Ua(t) = max {q ≥ p̂a(t) : Na(t)K(p̂a(t), q) ≤ β(t, δ)} .

We use β(t, δ) = log
(
k1Ktα

δ

)
to make sure P(S = S∗m) ≥ 1− δ.

0

1

58 118 346 330 120 72

⇒ How to propose a Bayesian algorithm that adapts to δ?
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Conclusion

Conclusion for regret minimization
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Conclusion

Work in progress
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Conclusion

Conclusion

Regret minimization: Go Bayesian!

Bayes-UCB show striking similarities with KL-UCB

Thompson Sampling is an easy-to-implement alternative to the
optimistic approach

both algorithms are asymptotically optimal towards frequentist regret
(and more efficient in practise) in the Bernoulli case

Thompson Sampling with Jeffreys’ prior is asymptotically optimal
when rewards belong to a one-dimensional exponential family, which
matches the guarantees of the KL-UCB algorithm

Natural open question:

Can Bayesian tools be used to build efficient algorithms for the
pure-exploration objective?
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