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Motivation : Cognitive Radio

Goal : allow radio devices to smartly select communication channels in
frequency bandits already used by other devices

» licensed bands : Opportunistic Spectrum Access [Jouini et al. 09]
arm <> availability of a chanel from primary users

Frequency Bands K

Time

Optimal frequency band

- Tow quality
Q high aualiy

» un-licensed bands : loT communications
arm <> background traffic
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Motivation : Cognitive Radio

Goal : allow radio devices to smartly select communication channels in
frequency bandits already used by other devices

> licensed bands : Opportunistic Spectrum Access [Jouini et al. 09]
arm <> availability of a chanel from primary users

Frequency BandsK
12

o e e

Optimal frequency band

i
v - low qualty

» un-licensed bands : loT communications
arm <> background traffic

=» what if multiple device want to communicate at the same time ?
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Outline

The multi-player bandit model

Homogeneous case : the Rand-Top-M algorithm

Heterogeneous case : M-ETC-Elim
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The multi-player bandit model
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The multi-player multi-armed bandit model

Atround t=1,..., T, eachagent m=1,... .M :
> selects arm A”(t) [based on his past observation],
» possibly experiment a collision
CM(t) == {3m' # m: A" (t) = A™(t)}
» and receives the reward

R™(t) = Xan () ¢ x - (1-1(C7(1)))

rewards of the chosen arm  ---received if no collision occurs

Channel qualities for agent m :

Channel 1 || X | X% | oo | X% | oo | X' | ~B(p1")
Channel 2 || X | X35 | ... | X4 | .. | X' | ~B(p3)
Channel K || Xi¢y | X@o | - | X@e | - | X@1 | ~Bug
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The multi-player multi-armed bandit model

Atround t=1,..., T, eachagent m=1,.... M :

> selects arm A”(t) [based on his past observation],
» possibly experiment a collision

C™(t) ;= {3m’ £ m: A" (t) = A"(¢)}

» and receives the reward

R™(t) = Xam(e),¢ x  (1-1(C"(1)))
—_—
rewards of the chosen arm  ---received if no collision occurs

Goal : design an arm selection strategy for each agent maximizing the
global reward of the system

E [Z > Rm(t)]

Assumption : X, ~ Bernoulli distribution with mean /.’
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Two different setting

» Homogeneous setting : Vm # m’, ! = ,uZ" = Lk

=?» optimal bandit algorithm + orthogonalization mechanism
Lilian Besson & E.K. Multi-player bandit revisited, ALT 2018

» Heterogeneous setting : agents may have different utilities

=» jointly identify a near-optimal matching from agents to arms

Etienne Boursier, E.K., Abbas Mehrabian & Vianney Perchet
A Practical Algorithm for Multiplayer Bandits when Arm Means Vary
Among Players., arXiv :1902.01239
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Outline

Homogeneous case : the Rand-Top-M algorithm
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Regret in the homogeneous case

Arms sorted by decreasing utility : 1 > pp >

M
Ru(A,T):= (Z uk) T —E
k=1

oracle total reward

Regret decomposition

I
T M
22 R

Ru(A, T) = Z (1m — i )E[NK(T)]
k=M+1
M K
+> (e — pm) (T = E[Ne(T)]) + ) ukBIC(T
k=1 pa}

» Ni(T) total number of selections of arm k

» Ck(T) total number of collisions experienced on arm k
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Regret in the homogeneous case

Arms sorted by decreasing utility : 1 > pp >

M
Ru(A, T):= (Z uk) T -E}
k=1

oracle total reward

I
T M
22 R0

Regret decomposition

K M
<C Y E[N(TI+DY E[C(T

k=M+1

We need to control :
» the number of selections of sub-optimal arms

» the number of collisions on optimal arms
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The MC-Top-M algorithm

Feedback model

Agent m observes :
» the sensing information of the chosen arm, Xym(s)
> his reward R™(t)
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The MC-Top-M algorithm

Feedback model

Agent m observes :
» the sensing information of the chosen arm, Xym(s)
> his reward R™(t)

At round t, player m uses his past sensing information to :
» compute an Upper Confidence Bound for each mean ux, UCBY'(t)
> use the UCBs to estimate the M best arms

M™(t) := {arms with M largest UCB}'(t)}

Other UCB-based algorithms :
TDFS [Lui and Zhao 2010], Rho-Rand [Anandkumar et al. 2011]
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The MC-Top-M algorithm

Two simple ideas :
= always pick A™(t) € M™(t — 1)
=» try not to switch arm too often
s™(t) = {player mis "fixed" at the end of round t}

— inspired by Musical Chair [Rosenski et al. 2016]
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The MC-Top-M algorithm

Two simple ideas :
= always pick A™(t) € M™(t — 1)
=¥ try not to switch arm too often
s™(t) = {player mis "fixed" at the end of round t}

— inspired by Musical Chair [Rosenski et al. 2016]

MC-Top-M

> if A7(t—1) ¢ M™(t —1), i
set s™(t) = False and carefully select a new arm in M™(t — 1).

> else if sm(t — 1) N C™(t — 1), pick a new arm at random
AM(t) ~ U(M™(t — 1)) and s™(t) = False
> else, draw the previous arm, and fix on it

A"(t) = A"(t—1) and s"(t) = True
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Practical results

Multi-players M =3 : Cumulated centralized regret, averaged 100 times
9 arms: [B(0.1), B(0.2), B(0.3), B(0.4), B(0.5), B(0.6), B(0.7)*, B(0.8)", B(0.9)"]

<

k=
o
8
v
2
B
S
E
E
[}

0 20000 40000 60000 80000 100000 120000
Time steps ¢ = 1...T, horizon T 123456,

(log scale on the y axis)
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3%

CentralizedMultiplePlay(KLUCB)
RandTopM-KLUC

MCTopM-KLUCB

RhoRand-KLUCB

=0.099, py=0.1, a=0.1, 3=0.5)
95117)

MusicalChair(T} = 118764)

MusicalChair(T, = 257152)
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Theoretical results

MC-Top-M with kl-based confidence intervals [Cappé et al. 13]
UCBJ(t) = max{q : NP(£)K1 (7(), 4) < In(8)},
where kl(x, y) = KL (B(x), B(y)) = xIn 5 + (1 = x) In i=x

<

Control of the sub-optimal selections

Forall ke {M+1,... K},
E[NJ(T)] < % + Cu/In(T).

Control of the collisions

K 2
E lch(T)] < ( > w) In(T) + O(In T).
k=1

a,b i< fhs kl(/v‘aa /Lb)

logarithmic regret !
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Theoretical results

MC-Top-M with kl-based confidence intervals [Cappé et al. 13]
UCBJ(t) = max{q : NP(£)K1 (7(), 4) < In(8)},
where kl(x, y) = KL (B(x), B(y)) = xIn 5 + (1 = x) In i=x

<

Control of the sub-optimal selections

Forall ke {M+1,... K},

m In(T)
EING(T] < (o= + Cu/In(T).

Control of the collisions

K 2
E lch(T)] < ( > w) In(T) + O(In T).
k=1

a,b i< fhs kl(/v‘aa /Lb)

logarithmic regret !
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Optimality ?

Control of the sub-optimal selections

Forall ke {M+1,... K},

ey () < D

< \NJ
= Kl(peks pm)

» is this the best we can do?

Emilie Kaufmann | ULille, CRIStAL
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Optimality ?

Control of the sub-optimal selections

Forall ke {(M+1,...,K},

ey () < D

< 7
= Kl(pk, pom)

> is this the best we can do? NO'!
=» best achievable sub-optimal selections for an algorithm

“not exploiting too much the collision information”

» one can propose an algorithm such that
M
In(T)
EN(T)] ~ ————
2 BN = g,y

by exploiting forced collisions to perform implicit communications

Boursier and Perchet, SIC-MMAB, NeurlPS 2019
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Outline

Heterogeneous case : M-ETC-Elim
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Regret in the heterogeneous case

Utility matrix :
po= (') 1<k<k
1<m<M

Given 7 : [M] — [K] a matching from agent to arms,

K
U(r) = Z Ha(my and U, = max U().

m=1

T M
Z Z R™(t)

t=1 m=1

Ru(A, T)=TU, —E}}
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M-ETC-Elim

Feedback model

Agent m observes :
» the collision indicator 1(C™(t))
> his reward R™(t)

Emilie Kaufmann | ULille, CRIStAL
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M-ETC-Elim

Feedback model

Agent m observes :
» the collision indicator 1(C™(t))
> his reward R™(t)

Main ingredients :

=» Initialization phase : assigns M different arms (and M ranks) to the
M agents. Agent 1 is the Leader, other are Followers

=» Exploration phases : each agent is assigned a list of arms to explore
(= sample a certain number of times)
=» Communication phases :

e Leader — Follower : send the list of arm to explore
e Follower — Leader : report the empirical mean of the explored arms
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Communications ?

)

Idea : leverage forced collisions to perform communications
[Boursier et al. 19, Nayyar et al. 18, Tibrewal et al. 19]
Agent 1 Agent 2 Agent 3

t=1
t=2

01101011

|

2
2
2
|

Emilie Kaufmann | ULille, CRIStAL

Agent can send
sequence of bits
to each other.

» transmit O :
select his own
communicating arm

» transmit 1 :
select the other’s

communicating arm

Ranks — order of
communications
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The algorithm

> Initialization : Leader and Followers are designated, players all have
communicating arms and ranks. Leader initializes candidate edges

E={(mk),me{l,... .M}, ke {l,... . K}}

» Forp=1,2 ...
=» Leader performs computations based on estimates (fif )(m,k)ce
e = argmaxwlj(ﬂ') and T(m, k) = Argmax {r.q(m)=k} 0(77)
o if O(72) = U(F(m,k)) > 4M+/In 2M?KT?) /2156,
remove (m, k) from £
e else, add 7(m ) to C

=» Leader communicate to eack Follower the list of arms to explore
Lm = {n(m) forw e C}

= All agents explore each arm in their list 27" times
=» Follower communicate to the Leader, for their explored arms,

fir : (p° +1)/2 most significant bits of i}

> in case |C| = 1, the agents enter an exploitation phase

Emilie Kaufmann | ULille, CRIStAL
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Theoretical results

(a) M-ETC-Elim with parameter ¢ € {1,2,...} satisfies
M2 In(KT)\ e
R.(T)=0 (MK (%) .

(b) If the maximum matching is unique, for M-ETC-Elim with ¢ =1
M3K In(KT
R.(T)=0 (%) .

here A = i Us.—-u > 0.
where 7r:U?71TI)n<U*( (77))

=» an algorithm achieving O(In*™"(T)) regret for every x > 0

=» logarithmic regret in the presence of a unique maximum matching!

improves over [Bistritz and Leshem, NeurlPS 18]
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Practical results
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Conclusion

We proposed :

> efficient algorithms with (quasi) logarithmic regret for the
homogeneous and heterogeneous setting...

» ... under different feedback model

Future work :

> efficient algorithm with provable regret guarantees when each player
only observes the reward R™(t)

Emilie Kaufmann | ULille, CRIStAL
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