

Practical Algorithms for Multiplayer Bandits

Emilie Kaufmann (ULille, CRIStAL)

Allerton Conference September 25th, 2019

Motivation: Cognitive Radio

Goal : allow radio devices to smartly select communication channels in frequency bandits already used by other devices

▶ licensed bands : Opportunistic Spectrum Access [Jouini et al. 09] arm ↔ availability of a chanel from primary users

■ un-licensed bands : IoT communications arm ↔ background traffic

Motivation: Cognitive Radio

Goal : allow radio devices to smartly select communication channels in frequency bandits already used by other devices

▶ licensed bands : Opportunistic Spectrum Access [Jouini et al. 09] arm ↔ availability of a chanel from primary users

- un-licensed bands : IoT communications arm ↔ background traffic
- → what if **multiple device** want to communicate at the same time?

Outline

1 The multi-player bandit model

2 Homogeneous case : the Rand-Top-M algorithm

3 Heterogeneous case : M-ETC-Elim

Outline

1 The multi-player bandit model

2 Homogeneous case : the Rand-Top-M algorithm

3 Heterogeneous case : M-ETC-Elim

The multi-player multi-armed bandit model

At round t = 1, ..., T, each agent m = 1, ..., M:

- \triangleright selects arm $A^m(t)$ [based on **his past observation**],
- possibly experiment a collision

$$C^{m}(t) := \{ \exists m' \neq m : A^{m'}(t) = A^{m}(t) \}$$

and receives the reward

$$R^{m}(t) = \underbrace{X_{A^{m}(t),t}^{m}}_{\text{rewards of the chosen arm}} \times \underbrace{(1 - 1 (C^{m}(t)))}_{\text{...received if no collision occurs}}$$

Channel qualities for agent m:

Channel 1	$X_{1,1}^{m}$	$X_{1,2}^{m}$	 $X_{1,t}^m$	 $X_{1,T}^m$	$\sim \mathcal{B}\left(\mu_1^m\right)$
Channel 2	$X_{2,1}^{m}$	$X_{2,2}^{m}$	 $X_{2,t}^m$	 $X_{2,T}^m$	$\sim \mathcal{B}\left(\mu_2^m ight)$
Channel K	$X_{K,1}^m$	$X_{K,2}^m$	 $X_{K,t}^m$	 $X_{K,T}^m$	$\sim \mathcal{B}\left(\mu_{K}^{m} ight)$

The multi-player multi-armed bandit model

At round t = 1, ..., T, each agent m = 1, ..., M:

- \blacktriangleright selects arm $A^m(t)$ [based on **his past observation**],
- possibly experiment a collision

$$C^{m}(t) := \{\exists m' \neq m : A^{m'}(t) = A^{m}(t)\}$$

and receives the reward

$$R^m(t) = \underbrace{X^m_{A^m(t),t}}_{ ext{rewards of the chosen arm}} imes \underbrace{\left(1 - \mathbb{1}\left(C^m(t)
ight)
ight)}_{ ext{...received if no collision occurs}}.$$

Goal : design an arm selection strategy for each agent maximizing the global reward of the system

$$\mathbb{E}\left[\sum_{t=1}^{T}\sum_{m=1}^{M}R^{m}(t)\right]$$

Assumption: $X_{k,t}^m \sim$ Bernoulli distribution with mean μ_k^m

Two different setting

- ▶ Homogeneous setting : $\forall m \neq m', \mu_k^m = \mu_k^{m'} = \mu_k$
- → optimal bandit algorithm + orthogonalization mechanism

Lilian Besson & E.K. Multi-player bandit revisited, ALT 2018

- ▶ Heterogeneous setting : agents may have different utilities
- → jointly identify a near-optimal matching from agents to arms

Etienne Boursier, E.K., Abbas Mehrabian & Vianney Perchet

A Practical Algorithm for Multiplayer Bandits when Arm Means Vary

Among Players., arXiv:1902.01239

Outline

1 The multi-player bandit model

2 Homogeneous case : the Rand-Top-M algorithm

3 Heterogeneous case : M-ETC-Elim

Regret in the homogeneous case

Arms sorted by decreasing utility : $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_K$

$$R_{\mu}(\mathcal{A}, T) := \underbrace{\left(\sum_{k=1}^{M} \mu_{k}\right) T}_{\text{oracle total reward}} - \mathbb{E}_{\mu}^{\mathcal{A}} \left[\sum_{t=1}^{T} \sum_{m=1}^{M} R^{m}(t)\right]$$

Regret decomposition

$$R_{\mu}(\mathcal{A}, T) = \sum_{k=M+1}^{K} (\mu_{M} - \mu_{k}) \mathbb{E}[N_{k}(T)]$$

$$+ \sum_{k=1}^{M} (\mu_{k} - \mu_{M}) (T - \mathbb{E}[N_{k}(T)]) + \sum_{k=1}^{K} \mu_{k} \mathbb{E}[C_{k}(T)].$$

- \triangleright $N_k(T)$ total number of selections of arm k
- \triangleright $C_k(T)$ total number of collisions experienced on arm k

Regret in the homogeneous case

Arms sorted by decreasing utility : $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_K$

$$R_{\mu}(\mathcal{A}, T) := \underbrace{\left(\sum_{k=1}^{M} \mu_{k}\right) T}_{\text{oracle total reward}} - \mathbb{E}_{\mu}^{\mathcal{A}} \left[\sum_{t=1}^{T} \sum_{m=1}^{M} R^{m}(t)\right]$$

Regret decomposition

$$R_{\mu}(A, T) \leq C \sum_{k=M+1}^{K} \mathbb{E}[N_{k}(T)] + D \sum_{k=1}^{M} \mathbb{E}[C_{k}(T)].$$

We need to control:

- ▶ the number of selections of sub-optimal arms
- ▶ the number of collisions on optimal arms

Feedback model

Agent *m* observes :

- ▶ the sensing information of the chosen arm, $X_{A^m(t),t}$
- ▶ his reward $R^m(t)$

Feedback model

Agent m observes:

- ▶ the sensing information of the chosen arm, $X_{A^m(t),t}$
- ▶ his reward $R^m(t)$

At round t, player m uses his past sensing information to :

- \triangleright compute an Upper Confidence Bound for each mean μ_k , UCB_k^m(t)
- ▶ use the UCBs to estimate the M best arms

$$\hat{M}^m(t) := \{ \text{arms with } M \text{ largest UCB}_k^m(t) \}$$

Other UCB-based algorithms :

TDFS [Lui and Zhao 2010], Rho-Rand [Anandkumar et al. 2011]

Two simple ideas:

- \Rightarrow always pick $A^m(t) \in \hat{M}^m(t-1)$
- → try not to switch arm too often

```
s^{m}(t) = \{ player m \text{ is "fixed" at the end of round } t \}
```

→ inspired by Musical Chair [Rosenski et al. 2016]

Two simple ideas:

- \rightarrow always pick $A^m(t) \in \hat{M}^m(t-1)$
- → try not to switch arm too often

$$s^{m}(t) = \{ player m \text{ is "fixed" at the end of round } t \}$$

→ inspired by Musical Chair [Rosenski et al. 2016]

MC-Top-*M*

- ▶ if $A^m(t-1) \notin \hat{M}^m(t-1)$, set $s^m(t) = \text{False}$ and carefully select a new arm in $\hat{M}^m(t-1)$.
- lacktriangle else if $\overline{s^m(t-1)} \cap C^m(t-1)$, pick a new arm at random

$$A^m(t) \sim \mathcal{U}(\hat{M}^m(t-1))$$
 and $s^m(t) = \text{False}$

▶ else, draw the previous arm, and fix on it

$$A^m(t) = A^m(t-1)$$
 and $s^m(t) = \text{True}$

Practical results

($\log scale on the y axis$)

Theoretical results

 $\mathsf{MC} ext{-}\mathsf{Top} ext{-}M$ with $\mathsf{kl} ext{-}\mathsf{based}$ confidence intervals [Cappé et al. 13]

$$\mathrm{UCB}_k^m(t) = \max\left\{q: N_k^m(t) \mathrm{kl}\left(\hat{\mu}_k^m(t), q\right) \leq \ln(t)\right\},\,$$

where
$$kl(x, y) = KL(\mathcal{B}(x), \mathcal{B}(y)) = x \ln \frac{x}{y} + (1 - x) \ln \frac{1 - x}{1 - y}$$
.

Control of the sub-optimal selections

For all $k \in \{M+1,\ldots,K\}$,

$$\mathbb{E}[N_k^m(T)] \leq \frac{\ln(T)}{\mathrm{kl}(\mu_k, \mu_M)} + C_{\mu} \sqrt{\ln(T)}.$$

Control of the collisions

$$\mathbb{E}\left[\sum_{k=1}^K \mathcal{C}_k(T)\right] \leq \left(\sum_{a,b:\mu_a < \mu_b} \frac{M^2\left(2M+1\right)}{\mathrm{kl}(\mu_a,\mu_b)}\right) \ln(T) + O(\ln T).$$

logarithmic regret!

Theoretical results

MC-Top-M with kl-based confidence intervals [Cappé et al. 13] $\mathrm{UCB}_k^m(t) = \max \left\{ q : N_k^m(t) \mathrm{kl} \left(\hat{\mu}_k^m(t), q \right) \leq \ln(t) \right\},$

where
$$\mathrm{kl}(x,y) = \mathrm{KL}\left(\mathcal{B}(x),\mathcal{B}(y)\right) = x \ln \frac{x}{y} + (1-x) \ln \frac{1-x}{1-y}$$
.

Control of the sub-optimal selections

For all $k \in \{M+1,\ldots,K\}$, $\mathbb{E}[N_k^m(T)] \leq \frac{\ln(T)}{\ker(\mu_k,\mu_M)} + C_\mu \sqrt{\ln(T)}.$

Control of the collisions

$$\mathbb{E}\left[\sum_{k=1}^K \mathcal{C}_k(T)\right] \leq \left(\sum_{a,b:\mu_a < \mu_b} \frac{M^2\left(2M+1\right)}{\mathrm{kl}(\mu_a,\mu_b)}\right) \ln(T) + O(\ln T).$$

logarithmic regret!

Optimality?

Control of the sub-optimal selections

For all
$$k \in \{M+1,\ldots,K\}$$
,
$$\mathbb{E}[N_k^m(T)] \leq \frac{\ln(T)}{\mathrm{kl}(\mu_k,\mu_M)} + C_{\mu}\sqrt{\ln(T)}.$$

▶ is this the best we can do?

Optimality?

Control of the sub-optimal selections

For all
$$k \in \{M+1,\ldots,K\}$$
,
$$\mathbb{E}[N_k^m(T)] \leq \frac{\ln(T)}{\mathrm{kl}(\mu_k,\mu_M)} + C_{\boldsymbol{\mu}}\sqrt{\ln(T)}.$$

- ▶ is this the best we can do? NO!
- → best achievable sub-optimal selections for an algorithm "not exploiting too much the collision information"
- one can propose an algorithm such that

$$\sum_{m=1}^{M} \mathbb{E}[N_k^m(T)] \simeq \frac{\ln(T)}{\ln(\mu_k, \mu_M)}$$

by exploiting forced collisions to perform implicit communications

Boursier and Perchet, SIC-MMAB, NeurIPS 2019

Outline

1 The multi-player bandit model

2 Homogeneous case : the Rand-Top-M algorithm

3 Heterogeneous case : M-ETC-Elim

Regret in the heterogeneous case

Utility matrix:

$$\boldsymbol{\mu} = (\mu_k^m)_{\substack{1 \leq k \leq K \\ 1 \leq m \leq M}}$$

Given $\pi: [M] \to [K]$ a matching from agent to arms,

$$U(\pi) := \sum_{m=1}^K \mu_{\pi(m)}^m \text{ and } U_\star = \max_\pi U(\pi).$$

Regret

$$R_{\mu}(\mathcal{A}, T) = TU_{\star} - \mathbb{E}_{\mu}^{\mathcal{A}} \left[\sum_{t=1}^{T} \sum_{m=1}^{M} R^{m}(t) \right]$$

M-ETC-Elim

Feedback model

Agent *m* observes :

- ▶ the collision indicator $\mathbb{1}(C^m(t))$
- ightharpoonup his reward $R^m(t)$

M-ETC-Elim

Feedback model

Agent *m* observes :

- ▶ the collision indicator $\mathbb{1}(C^m(t))$
- ightharpoonup his reward $R^m(t)$

Main ingredients:

- → Initialization phase : assigns M different arms (and M ranks) to the M agents. Agent 1 is the **Leader**, other are **Followers**
- → Exploration phases : each agent is assigned a list of arms to explore (= sample a certain number of times)
- → Communication phases :
 - Leader → Follower : send the list of arm to explore
 - Follower → Leader : report the empirical mean of the explored arms

Communications?

Idea: leverage forced collisions to perform communications

[Boursier et al. 19, Nayyar et al. 18, Tibrewal et al. 19]

The algorithm

Initialization : Leader and Followers are designated, players all have communicating arms and ranks. Leader initializes candidate edges

$$\mathcal{E} = \{(m, k), m \in \{1, \dots, M\}, k \in \{1, \dots, K\}\}\$$

- ▶ For p = 1, 2, ...
 - **→ Leader performs computations** based on estimates $(\tilde{\mu}_k^m)_{(m,k)\in\mathcal{E}}$ $\tilde{\pi}_{\star} = \operatorname{argmax}_{\pi} \tilde{U}(\pi)$ and $\tilde{\pi}_{(m,k)} = \operatorname{argmax}_{\{\pi:\pi(m)=k\}} \tilde{U}(\pi)$
 - if $\tilde{U}(\tilde{\pi}_{\star}) \tilde{U}(\tilde{\pi}_{(m,k)}) > 4M\sqrt{\ln(2M^2KT^2)/2^{1+p^c}}$, remove (m,k) from \mathcal{E}
 - else, add $\tilde{\pi}_{(m,k)}$ to \mathcal{C}
 - → Leader communicate to eack Follower the list of arms to explore

$$\mathcal{L}_m = \{\pi(m) \text{ for } \pi \in \mathcal{C}\}$$

- \rightarrow All agents explore each arm in their list 2^{p^c} times
- → Follower communicate to the Leader, for their explored arms,

$$\tilde{\mu}_k^m$$
: $(p^c+1)/2$ most significant bits of $\hat{\mu}_k^m$

lacktriangle in case $|\mathcal{C}|=1$, the agents enter an **exploitation phase**

Theoretical results

Theorem

(a) M-ETC-Elim with parameter $c \in \{1, 2, ...\}$ satisfies

$$R_{\mu}(T) = O\left(MK\left(rac{M^2\ln(KT)}{\Delta}
ight)^{1+1/c}
ight).$$

(b) If the maximum matching is unique, for M-ETC-Elim with c=1

$$R_{\mu}(T) = O\left(\frac{M^3 K \ln(KT)}{\Delta}\right).$$

where $\Delta = \min_{\pi: U(\pi) < U_{\star}} (U_{\star} - U(\pi)) > 0.$

- \rightarrow an algorithm achieving $O(\ln^{1+\kappa}(T))$ regret for every $\kappa > 0$
- → logarithmic regret in the presence of a unique maximum matching!

improves over [Bistritz and Leshem, NeurIPS 18]

Practical results

$$U_1 = \begin{pmatrix} 0.1 & 0.05 & 0.9 \\ 0.1 & 0.25 & 0.3 \\ 0.4 & 0.2 & 0.8 \end{pmatrix} \qquad U_2 = \begin{pmatrix} 0.5 & 0.49 & 0.39 & 0.29 & 0.5 \\ 0.5 & 0.49 & 0.39 & 0.29 & 0.19 \\ 0.29 & 0.19 & 0.5 & 0.499 & 0.39 \\ 0.29 & 0.49 & 0.5 & 0.5 & 0.39 \\ 0.49 & 0.49 & 0.49 & 0.49 & 0.49 & 0.5 \end{pmatrix}$$

Conclusion

We proposed:

- efficient algorithms with (quasi) logarithmic regret for the homogeneous and heterogeneous setting...
- ... under different feedback model

Future work:

• efficient algorithm with provable regret guarantees when each player only observes the reward $R^m(t)$