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AAAI Workshop on RL for Games,
Honolulu, January 28th, 2019

Emilie Kaufmann Bandits Tools for MCTS



Playout-Based Monte-Carlo Tree Search

Goal: decide for the next move based on evaluation of possible
trajectories in the game, ending with a random evaluation.

A famous bandit approach: [UCT, Koczis and Szepesvari 2006]

Ü use UCB in each node to decide the next children to explore
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UCT for MCTS

Zoom on one (MAX) node and its children:

8/11

2/6 2/3 4/2

N=19 visits

n3=6 visits
UCB3 = 4/6 + c√log(N)/n3

Ü UCT is not based on rigourous confidence intervals

Ü no sample complexity guarantees

Ü should we really maximize rewards?
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Outline

1 Best Arm Identification Tools

2 BAI Tools for Planning in Games

3 Optimal Algorithm for Assessing a Node Value
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Best arm identification

µ1 µ2 µ3 µ4 µ5

Goal: identify the arm with highest mean a∗ (of mean µ∗)
(no loss when drawing “bad” arms)

The agent

uses a sampling strategy : arm (At) is selected at round t

stops at some (random) time τ

upon stopping, recommends an arm âτ

Formalization: an (ε, δ)-PAC algorithm:

P(µâτ ≥ µ∗ − ε) ≥ 1 − δ

with a small sample complexity τ . [Even Dar et al. 06]
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The LUCB algorithm

An algorithm based on confidence intervals

Ia(t) = [LCBa(t),UCBa(t)].
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At round t, draw

bt = arg max
a

µ̂a(t)

ct = arg max
a 6=bt

UCBa(t)

Stop at round t if

LCBbt (t) > UCBct (t)− ε

Theorem [Kalyanakrishan et al. 2012]

For well-chosen confidence intervals, LUCB is (ε, δ)-PAC and

E [τδ] = O

([
1

∆2
2 ∨ ε2

+
K∑

a=2

1

∆2
a ∨ ε2

]
ln

(
1

δ

))
with ∆a = µ1 − µa.

Emilie Kaufmann Bandits Tools for MCTS



Regret minimization versus Best Arm Identification

Algorithms for regret minimization and BAI are very different!

UCB versus LUCB
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A simple model for MCTS

A fixed MAXMIN game tree T , with leaves L.

MAX node (= your move)

MIN node (= adversary move)

Leaf `: stochastic oracle O` that evaluates the position
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A simple model for MCTS

At round t a MCTS algorithm:

picks a path down to a leaf Lt

get an evaluation of this leaf Xt ∼ OLt

Assumption: i.i.d. sucessive evaluations, EX∼O` [X ] = µ`
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A simple model for MCTS

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

At round t a MCTS algorithm:

picks a path down to a leaf Lt

get an evaluation of this leaf Xt ∼ OLt

Assumption: i.i.d. sucessive evaluations, EX∼O` [X ] = µ`
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Goal

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

A MCTS algorithm should find the best move at the root:

Vs =


µs if s ∈ L,

maxc∈C(s) Vc if s is a MAX node,
minc∈C(s) Vc if s is a MIN node.

s∗ = argmax
s∈C(s0)

Vs
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A structured BAI problem

MCTS algorithm: (Lt , τ, ŝτ ), where

Lt is the sampling rule

τ is the stopping rule

ŝτ ∈ C(s0) is the recommendation rule

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

Goal: an (ε, δ)-PAC MCTS algorithm:

P(Vŝτ ≥ Vs∗ − ε) ≥ 1 − δ

with a small sample complexity τ . [Teraoka et al. 14]
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A structured BAI problem

MCTS algorithm: (Lt , τ, ŝτ ), where

Lt is the sampling rule

τ is the stopping rule

ŝτ ∈ C(s0) is the recommendation rule

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

Idea: use LUCB on the depth-one nodes

Ü requires confidence intervals on the values (Vs)s∈C0

Ü requires to identify a leaf to sample starting from s ∈ C0
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First tool: confidence intervals

Using the samples collected for the leaves, one can build, for ` ∈ L,

[LCB`(t),UCB`(t)] a confidence interval on µ`

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

Idea: Propagate these confidence intervals up in the tree
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First tool: confidence intervals

Using the samples collected for the leaves, one can build, for ` ∈ L,

[LCB`(t),UCB`(t)] a confidence interval on µ`

s0

Idea: Propagate these confidence intervals up in the tree
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First tool: confidence intervals

MAX node:

UCBs(t) = max
c∈C(s)

UCBc(t) LCBs(t) = max
c∈C(s)

LCBc(t)

s0
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First tool: confidence intervals

MAX node:

UCBs(t) = max
c∈C(s)

UCBc(t) LCBs(t) = max
c∈C(s)

LCBc(t)

s0
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First tool: confidence intervals

MIN node:

UCBs(t) = min
c∈C(s)

UCBc(t) LCBs(t) = min
c∈C(s)

LCBc(t)

s0
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Property of this construction

s0

⋂
`∈L

(µ` ∈ I`(t)) ⇒
⋂
s∈T

(Vs ∈ Is(t))
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Second tool: representative leaves

`s(t): representative leaf of internal node s ∈ T .

s0

Idea: alternate optimistic/pessimistic moves starting from s
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The BAI-MCTS architecture

run a BAI algorithm on the depth-on nodes

→ selects Rt ∈ C0

sample the representative leaf associated to that node:

Lt = `Rt (t)

(' starting from Rt , run UCT based on “true” CIs)

update the confidence intervals

stop when the BAI algorithm tell us to

recommand the depth-one node chosen by the BAI algorithm
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LUCB-MCTS

Sampling rule: Rt+1 is the least sampled among two
promising depth-one nodes:

bt = argmax
s∈C(s0)

V̂s(t) and ct = argmax
s∈C(s0)\{bt}

UCBs(t),

where V̂s(t) = µ̂`s(t)(t). Lt+1 = `Rt+1(t).

Stopping rule:

τ = inf
{
t ∈ N : LCBbt

(t) > UCBct (t)− ε
}

Recommendation rule: ŝτ = bτ

Variant: UGapE-MCTS, based on [Gabillon et al. 12]
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Theoretical guarantees

Given some exploration function β(s, t), we choose confidence
intervals of the form

LCB`(t) = µ̂`(t)−

√
β(N`(t), δ)

2N`(t)

UCB`(t) = µ̂`(t) +

√
β(N`(t), δ)

2N`(t)
.

Theorem [KK NIPS 17]

Choosing

β(s, δ) ' ln

(
|L| ln(s)

δ

)
,

LUCB-MCTS and UGapE-MCTS are (ε, δ)-PAC and

P
(
τ = O

(
H∗ε (µ) ln

(
1

δ

)))
≥ 1− δ

for UGapE-MCTS.
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The complexity term

H∗ε (µ) :=
∑
`∈L

1

∆2
` ∨∆2

∗ ∨ ε2

where

∆∗ := V (s∗)− V (s∗2 )

∆` := max
s∈Ancestors(`)\{s0}

∣∣VParent(s) − Vs

∣∣
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Some room for improvements

We used the most naive way to build upper and lower confidence
bounds on the minimum/maximum of several means

Ü use improved confidence intervals ?

One expects (and lower bounds reveal) a sparsity pattern, i.e.
some leaves should be visited less than ln(1/δ) times.

Ü can we derive optimal algorithms ?
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Comparing a Node Value to a Threshold

µ1 µ2 . . . µK

γ

Fix threshold γ.

µ∗ := mini µi ≶ γ?
For t = 1, . . . , τ
• pick a leaf At

• observe Xt ∼ µAt

After stopping, recommend m̂ ∈ {<,>}

Goal: controlled error Pµ {error} < δ
and small sample complexity Eµ[τ ]
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Lower Bound and Oracle Allocation

Generic lower bound [Garivier et al. 16] shows sample complexity
for any δ-correct algorithm is at least

Eµ[τ ] ≥ T ∗(µ) ln
(

1
δ

)
.

For our problem the characteristic time and oracle weights are

T ∗(µ) =


1

d(µ∗, γ)
µ∗ < γ,∑

a

1

d(µa, γ)
µ∗ > γ,

w∗a (µ) =


1(a=a∗) µ∗ < γ,

1
d(µa,γ)∑
j

1
d(µj ,γ)

µ∗ > γ.

w∗a (µ): fraction of selections of the leaf a under a strategy that
would match the lower bound
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Dichotomous Oracle Behaviour! Sampling Rule?

<
←
µ
→ γ

>

γ

Two different ideas to get those sampling profiles:

Thompson Sampling (Πt−1 is posterior after t − 1 rounds)

Sample θ ∼ Πt−1, then play At = arg mina θa.

a Lower Confidence Bound algorithm
Play At = arg mina LCBa(t)
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Dichotomous Oracle Behaviour! Sampling Rule?

<
←
µ
→ γ

>

γ

Two different ideas to get those sampling profiles:

Thompson Sampling (Πt−1 is posterior after t − 1 rounds)

Sample θ ∼ Πt−1, then play At = arg mina θa.

a Lower Confidence Bound algorithm
Play At = arg mina LCBa(t)
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A Solution: Murphy Sampling!

<
←
µ
→ γ

>

γ

A more flexible idea:

Murphy Sampling condition on low minimum mean
Sample θ ∼ Πt−1 (·|mina θa < γ), then play At = arg mina θa.

→ converges to the optimal allocation in both cases!
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Properties of Murphy Sampling [KKG, NeurIPS’18]

Theorem

Asymptotic optimality: Na(t)/t → w∗a (µ) for all µ

Sampling rule < >

Thompson Sampling
Lower Confidence Bounds
Murphy Sampling

Lemma

Any anytime sampling strategy (At)t ensuring
Nt
t → w∗(µ) and

good stopping rule τδ guarantee lim supδ→0
τδ

ln 1
δ

≤ T ∗(µ).

→ Murphy Sampling combined with a good stopping rule
asymptotically attains the optimal sample complexity.
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Numerical Results: proportions on >

µ = linspace(1/2, 1, 5) ∈ H>
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Sampling proportions vs oracle, δ = e−7.
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Numerical Results: proportions on <

µ = linspace(−1, 1, 10) ∈ H<
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Sampling proportions vs oracle, δ = e−23.
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What is a “good stopping rule”?

Example: a stopping rule based on individual confidence bounds:
τBox := min (τ<; τ>) where

τ< = inf{t ∈ N : ∃a : UCBa(t) < γ}
τ> = inf{t ∈ N : ∀a,LCBa(t) > γ}

τ = τ< τ = τ>
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What is a “good stopping rule”?

Example: a stopping rule based on individual confidence bounds:
τBox := min (τ<; τ>) where

τ< = inf{t ∈ N : ∃a : UCBa(t) < γ}
τ> = inf{t ∈ N : ∀a,LCBa(t) > γ}

Ü enough to have the previous (asymptotic) results, but in
practice we want to leverage the following:

Multiple low arms
identical or similar

⇒
{

conclude µ∗ < γ faster

tighter confidence interval for µ∗
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Improved Upper Confidence Bound on a Minimum

We identify a threshold function T (x) = x + o(x) such that for
every fixed subset S ⊆ [K ], w.h.p. ≥ 1− δ,

∀t :

[
NS(t)d+

(
µ̂S(t),min

a∈S
µa
)
− ln lnNS(t)

]+

≤ T
(
ln 1

δ

)
.

where NS and µ̂S(t) aggregate all the samples from arms in S.

Ü yields a new upper confidence bound on µ∗

UCBπmin(t) :=max
{
q : ∃S ⊆ [K ] :

[
NSd

+(µ̂S , q)− ln lnNS
]
≤T

(
ln 1

δπ(S)

)}
,

and the corresponding stopping rule

τ< = inf{t ∈ N : UCBπmin(t) ≤ γ}
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Illustration of the new confidence regions
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UCB for minimum: Agg dominates Box with 1, 3 and 10 low arms.
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Sample Complexity Results
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Sample Complexity for delta=0.1 (N=1000 repetitions)
MS + GLRT
MS + Box
MS + Aggregate
LCB + GLRT
LCB + Box
LCB + Aggregate

Agg beats Box and GLRT in adapting to the number k of low
arms. Here µa ∈ {−1, 0} and γ = 0.
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Future work

use Murphy Sampling or our improved confidence intervals
within an MCTS algorithm?

handle growing trees

[non MCTS related] propose efficient algorithms for more
general active testing problems
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