TD4 - (Likelihood Ratio) Testing

Exercise 1 We collect one sample X from a Poisson distribution with parameter λ. We recall that its probability mass function is given by

$$
\forall k \in \mathbb{N}, \quad f_{\lambda}(x)=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

We want to test $\mathcal{H}_{0}:(\lambda=5)$ against $\mathcal{H}_{1}:(\lambda=10)$ at level $\alpha=0.05$, based on X.

1. Prove that a randomized Neyman-Pearson test can be formulated as

$$
\begin{array}{ll}
\widetilde{D}(X)=1, & \text { if } X>t \\
\widetilde{D}(X)=\gamma, & \text { if } X=t \\
\widetilde{D}(X)=0, & \text { if } X<t
\end{array}
$$

2. Using that $P_{Z \sim \mathcal{P}(5)}(Z>9)=0.032$ and $P_{Z \sim \mathbb{P}(5)}(Z>8)=0.068$, deduce that $t=9$ and $\gamma=1 / 2$.
3. What is the power of this test?

Exercise 2 We collect iid data X_{1}, \ldots, X_{n} from an exponential distribution with parameter θ. We recall that its density is given by

$$
\forall x \in \mathbb{R}, \quad f_{\theta}(x)=\theta \exp (-\theta x) \mathbb{1}_{[0,+\infty[}(x)
$$

1. Propose a Uniformly More Powerful test of level α for the test

$$
\mathcal{H}_{0}:\left(\theta \leq \theta_{0}\right) \quad \text { against } \quad \mathcal{H}_{1}:\left(\theta>\theta_{0}\right)
$$

2. Can we propose a $\operatorname{UMP}(\alpha)$ test for

$$
\mathcal{H}_{0}:\left(\theta=\theta_{0}\right) \text { against } \mathcal{H}_{1}:\left(\theta \neq \theta_{0}\right) ?
$$

Exercise 3 We consider a two-sample testing problem in which we observe $X_{1}, \ldots, X_{n_{1}} \sim \mathcal{N}\left(\mu_{1}, \sigma^{2}\right)$ and $Y_{1}, \ldots, Y_{n_{2}} \sim \mathcal{N}\left(\mu_{2}, \sigma^{2}\right)$ where $\left(\mu_{1}, \mu_{2}\right) \in \mathbb{R}^{2}$ and want to test

$$
\mathcal{H}_{0}:\left(\mu_{1}=\mu_{2}\right) \quad \text { against } \quad \mathcal{H}_{1}:\left(\mu_{1} \neq \mu_{2}\right)
$$

We denote by $Z=\left(X_{1}, \ldots, X_{n_{1}}, Y_{1}, \ldots, Y_{n_{2}}\right)$ the observation.

1. Assuming the variance σ^{2} is known, compute

$$
\log \widetilde{\Lambda}(Z)=\log \frac{\sup _{\mu_{1}, \mu_{2}} L\left(Z ; \mu_{1}, \mu_{2}\right)}{\sup _{\mu_{1}, \mu_{2}: \mu_{1}=\mu_{2}} L\left(Z ; \mu_{1}, \mu_{2}\right)}
$$

2. Propose a (non-asymptotic) LRT test of level α. Compute its power function.
3. Compare it with the asymptotic LRT test provided by Wilk's theorem.

Exercise 4 We consider a so-called one-parameter canonical exponential family, in which the density wrt to some reference measure is

$$
f_{\theta}(x)=h(x) \exp (\theta x-b(\theta))
$$

where b is some twice diffenrentiable function that is furhtermore stricly convex $\left(b^{\prime \prime}>0\right)$. We admit that these assumption are sufficient to be in a regular model. We denote by $\mu(\theta)=\mathbb{E}_{\theta}[X]$ the expectation of the distribution parameterized by θ.

1. Prove that $b^{\prime}(\theta)=\mathbb{E}_{\theta}[X]$ and $b^{\prime \prime}(\theta)=\operatorname{Var}_{\theta}[X]$.
2. Deduce that the mapping $\theta \mapsto \mu(\theta)$ is one-to-one. We denote by μ^{-1} its inverse.
3. Compute $\widehat{\theta}_{n}$, the maximum likelihood estimator of θ.
4. We introduce $\mathrm{K}\left(\theta, \theta^{\prime}\right)$, the Kullback-Leibler divergence between P_{θ} and $P_{\theta^{\prime}}$, defined as

$$
\mathrm{K}\left(\theta, \theta^{\prime}\right)=\mathbb{E}_{\theta}\left[\log \frac{f_{\theta}(X)}{f_{\theta^{\prime}}(X)}\right]
$$

Prove that

$$
K\left(\theta, \theta^{\prime}\right)=\left(\theta-\theta^{\prime}\right) \mu(\theta)-b(\theta)+b\left(\theta^{\prime}\right)
$$

5. Deduce the following inequality: for all $\theta \in \Theta$,

$$
\log \frac{L\left(X_{1}, \ldots, X_{n} ; \widehat{\theta}_{n}\right)}{L\left(X_{1}, \ldots, X_{n} ; \theta\right)}=n \mathrm{~K}\left(\widehat{\theta}_{n}, \theta\right)
$$

6. Prove that the (generalized) log-likelihood ratio associated to the test

$$
\mathcal{H}_{0}:\left(\theta \leq \theta_{0}\right) \quad \text { against } \quad \mathcal{H}_{1}:\left(\theta>\theta_{0}\right)
$$

satisfies

$$
\log \widetilde{\Lambda}(X)=n K\left(\widehat{\theta}_{n}, \theta_{0}\right) \mathbb{1}\left(\widehat{\theta}_{n} \geq \theta_{0}\right)
$$

7. We admit the following concentration inequality (called a Chernoff inequality):

$$
\forall \theta \in \Theta, \forall x>0, \quad \mathbb{P}_{\theta}\left(\widehat{\theta}_{n}>\theta, n \mathrm{~K}\left(\widehat{\theta}_{n}, \theta\right)>x\right) \leq e^{-x}
$$

Propose a LRT of level α. Is this test $\operatorname{UMP}(\alpha)$?
8. Propose a test of level α for testing

$$
\mathcal{H}_{0}:\left(\mu=\mu_{0}\right) \quad \text { against } \quad \mathcal{H}_{1}:\left(\mu \neq \mu_{0}\right) .
$$

Compare it to the asymptotic test of level α obtained using Wilk's theorem, for $\alpha=0.05$. Which one will have the largest power?

Exercise 5 The scientist Mendel (considered as the father of genetics) did the following experiment. He bred two different kind of peas: one with round yellow seeds and one with wrinkled green seeds. There are four types of progeny: round yellow (1), wrinkled yellow (2), round green (3) and wrinkled green (4). For each individual in the progeny, we denote by p_{i} the probability that it is of type i.

Assuming that the individual are independent when there are n individuals, the number of individual of each kind $N_{n}=\left(N_{n, 1}, N_{n, 2}, N_{n, 3}, N_{n, 4}\right)$ follows a so-called multinomial distribution with parameter n and $p=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$, for which

$$
\mathbb{P}\left(N_{n}=\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right)=\frac{n!}{n_{1}!n_{2}!n_{3}!n_{4}!} \prod_{i=1}^{4} p_{i}^{n_{i}}
$$

Mendel's ineheritance theory predicts that p is equal to

$$
p_{0}=\left(\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\right)
$$

He did $n=556$ experiments and observed $N_{n}=(315,101,108,32)$. We want to test

$$
\mathcal{H}_{0}:\left(p=p_{0}\right) \text { against } \mathcal{H}_{1}:\left(p \neq p_{0}\right)
$$

1. Perform a Likelihood Ratio Test of this hypothesis. Does it reject \mathcal{H}_{0} ?
2. For the above testing problem with multinomial data it is common to use another test, called Pearson's χ^{2} test. When there are k possible types, this test is based on the test statistic

$$
T_{n}=\sum_{i=1}^{k} \frac{\left(N_{n, i}-n p_{0, i}\right)^{2}}{n p_{0, i}}
$$

which is proved to satisfy $T_{n} \leadsto \chi_{k-1}^{2}$. Perform a χ^{2} test. Does it reject the hypothesis?
3. Do you think that using statistical testing is appropriate to valide a theory?

Exercise 6 Let Z denote a random variable with density

$$
x \mapsto \frac{1}{\lambda} \exp \left(-\frac{x-\theta}{\lambda}\right) \cdot \mathbb{1}_{[\theta,+\infty}[(x),
$$

where $\lambda>0$ and $\theta \in \mathbb{R}$ are unknown. Let $\left(X_{1}, \ldots, X_{n}\right)$ be a n-sample of i.i.d. variables with the same distribution as that of Z.

1. What is the MLE $\left(\widehat{\lambda_{n}}, \widehat{\theta_{n}}\right)$ of the unknown parameter (λ, θ) ? Evaluate the bias of this estimator and provide an unbiased estimator of (λ, θ).
2. Assume that one is to test $\mathcal{H}_{0}:(\lambda=1)$ against $\mathcal{H}_{1}:(\lambda \neq 1)$. Prove that the (Generalized) Likelihood Ratio Test rejects the null hypothesis $\lambda=1$ whenever $\widehat{\lambda_{n}} \notin[a, b]$, where a and b satisfy some equations to be clarified.
3. Let us now assume that λ is known, and that $\alpha \in] 0,1[$ is given. Use the MLE of θ to build a confidence interval with confidence level $1-\alpha$ for the parameter θ. Deduce a statistical test of $\mathcal{H}_{0}:\left(\theta=\theta_{0}\right)$ against $\mathcal{H}_{1}:\left(\theta \neq \theta_{0}\right)$.
4. Let us finally assume that θ is known and $\widehat{\lambda_{n}}$ denotes the MLE of λ. By using the fact that the exponential distribution with parameter $1 / 2$, i.e., $\mathcal{E}(1 / 2)$, is a χ^{2} distribution with 2 degrees of freedom, what is the distribution of $2 n \widehat{\lambda_{n}} / \lambda$? Deduce a confidence interval for λ with confidence level $1-\alpha=0.95$ when $n=13$.
